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Abstract 

Real-Time Optimization (RTO) is not always able to achieve optimal process operation due to the 
presence of significant uncertainty about the plant models used to make decisions, and also due to the 
differences between control architecture layers which operate on different time-scales and use different 
kind of models. To overcome these issues, the economic optimization problem solved in the RTO layer 
can be changed following the Modifier Adaptation methodology (MA), which uses plant measurements 
to bring the process to the real optimum, despite the presence of uncertainty. Traditionally, modifiers are 
updated only at the steady state of the process using static information to compute the process gradients. 
It implies a slow convergence to the optimum operating point, especially in processes with a long settling 
time. This issue is considered in this paper, assuming that these gradients can be estimated from 
measured data during the transient using adaptive estimation techniques.  The proposed approach is 
shown to avoid the necessity to wait for the steady state of the process being valid for parametric and 
structural uncertainty. A simulated example, the Otto-Williams reactor, is used to illustrate the 
effectiveness of the proposed technique. 

Keywords 

Real-Time Optimization, Modifier Adaptation, Uncertainty. 

Introduction

                                                           

* To whom all correspondence should be addressed 

 

The management of large scale systems, such as many in 
the petrochemical industry, consists of making decisions in 
order to satisfy process specifications and constraints on 
many variables. In addition, these decisions should be 
optimal with respect to efficiency, economy, environment, 
etc. This problem requires the use of large models and 
optimization methods. RTO consists of an optimization 
layer that operates above the control layer and makes 
decisions on a time scale of hours by explicitly considering 
economic objectives. The optimum operating point 
obtained by the RTO layer is passed to lower-level 
controllers that include basic control and model predictive 
control. However, optimal operation is not guaranteed 
since the process models are inaccurate, so the optimum 

computed from the model may not be the same as the 
optimum of the process. Usually, the RTO layer uses a 
steady-state model of the process to make decisions, where 
the RTO problem is formulated as follows: 
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where J is the cost function to be minimized, g 
represents the constraints, 𝛽𝛽 the uncertain parameters, and 
u the decision variables which present lower and upper 
limits uL and uU. 



  
 

Several proposals have been developed to cope with 
the uncertainty already mentioned and to drive the process 
to its real optimum point. The first approach emerged in 
the late 1970s as an iterative two-stage algorithm involving 
a parameter estimation step (to update uncertain model 
parameters) followed by an economic optimization that is 
solved to obtain new decision variables (Chen and Joseph, 
1987). This formulation works well only if there is little 
structural plant-model mismatch and the changing 
operating conditions provide sufficient excitation to 
estimate the uncertain parameters (Yip and Marlin, 2004).  

A new approach was developed by Roberts who 
incorporated information regarding plant gradients, adding 
a modifier to the economic cost function that emerges from 
the equality of the necessary optimality conditions (NCO) 
for the real process and the static model used in the RTO 
layer (Roberts, 1979). This method was called “integrated 
system optimization and parameter estimation” (ISOPE). 
Tatjewski proved that the convergence to the optimum 
point does not depend on parameter estimation, but on the 
equality between the outputs of the process and the model 
at each RTO iteration (Tatjewski, 2002). For this reason, 
he introduced a new modifier that takes into account the 
difference between these outputs. New modifiers were also 
defined by Gao and Engell for process dependent 
constraints (Gao and Engell, 2005). The resultant modified 
RTO problem, Eq. (2), in which JM and gM are the 
modified cost function and constraints, u*k-1 is the input 
applied in the previous steady state, that is, the optimal 
solution of the previous RTO, and the subscript “p” 
indicates that the variable is evaluated from the process 
measurements.  
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The modifiers λk, γk and εk are given by Eq. (3): 
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Figure 1 presents the general formulation of MA. 
 
 
 

 

 

 

 

 
Figure 1. General formulation of MA 

From these ideas, several methods have emerged; most 
of them requiring the computation of experimental 
gradients, which is a difficult task. In particular, Dual 

Modifier Adaptation (DMA) (Marchetti et al., 2010) 
estimates experimental gradients from past operating 
points generated by the previous RTO iterations by using 
the definition of directional derivative. To ensure that 
gradients are obtained accurately, a new constraint (δ ≥ a) 
is added to the optimization problem, where δ represents 
the condition number of the gradient estimation. This 
constraint represents the dual characteristic of the method: 
while the rest of the optimization aims to converge to the 
optimum of the modified model (primal objective), the 
dual constraint ensures that, in the next RTO iteration, the 
system will have enough excitation to estimate the process 
gradient adequately (dual objective).  

The calculation of experimental gradients can be 
avoided by using a different formulation called Nested-
Modifier Adaptation (NMA) (Navia et al., 2015). This 
method uses a nested optimization architecture with a 
gradient-free optimization algorithm, for example, the 
Nelder-Mead algorithm, to directly update the modifiers, 
iterating with them over the modified optimization until the 
optimum of the process is found. In this way, the process 
gradient estimation is replaced by another method that 
takes into account the minimization of the cost function 
measured directly from the process.  

One of the main disadvantages of MA is the necessity to 
wait for the steady state of the process before updating the 
modifiers. In many real applications, the transients can last 
for several hours, so the convergence of MA can be very 
slow and the real optimum may only be achieved after 
several days of operation. During this period of time, the 
operating conditions or the plant-model mismatch may 
change and the method will not converge to the real 
optimum. This issue makes the application of this 
methodology impractical in these cases. 

In order to speed up the convergence of MA 
methodology for slow dynamic processes, several 
researchers have suggested the use of transient 
measurements to estimate the variables required by the 
steady-state optimization. This idea was pursued by Zhang 
and Roberts in 1990 (Zhang and Roberts, 1990), who 
combined the ISOPE scheme with a linear dynamic model 
identification to compute process gradients for the steady 
state optimization of nonlinear constrained processes with 
slow dynamics, but this work did not address the problem 
of shortening the gradient estimation time. In contrast, 
François and Bonvin (François and Bonvin, 2014) 
proposed an approach that uses transient measurements to 
compute process gradients by the neighbouring extremal 
method which relies on the accuracy of the linearization 
resulting from a variational analysis of the nominal model. 
However, none of these techniques work well in the 
presence of strong structural plant-model mismatch. 

This paper tries to extend the idea of using transient 
measurements to speed up the convergence to the optimum 
of MA, since waiting for the steady state at each RTO 
iteration is no longer necessary, estimating the process cost 
and constraint gradients directly by means of a recursive 
identification method, dealing with both parametric and 
structural uncertainties. The performance of the proposed 
method is illustrated through a case study corresponding to 
the Otto- Williams reactor.   
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The paper is organized as follows. The section MA 
using transient information describes the problem to deal 
with showing how the process gradients are estimated and 
applied in this kind of method. Later on, the application of 
this technique to a simulated process will be presented, 
showing, in the next section, the obtained results, followed 
by brief conclusions. 

Modifier Adaptation Using Transient Information 

MA is normally applied based on static information. 
However, the implementation of these methods is 
sometimes impractical, especially in processes with a long 
settling time, as the process needs to reach the steady-state 
at each RTO execution to estimate the process gradients. 
Over these long periods of time, the operating conditions 
or differences between process and model may change and 
the method may not converge to the real optimum. 

To overcome this problem, a MA technique based on 
the use of transient measurements is presented, speeding 
up the convergence to the plant and being valid for 
parametric and structural uncertainty. 

This approach considers that process gradients can be 
estimated from input-output data during the transient using 
adaptive estimation techniques (Goodwin and Sin, 1984). 
In this case, the recursive extended least squares algorithm 
(RELS) has been used for this task.  

Process Gradient Estimation 

As it was mentioned before an adaptive estimation 
technique will be used to estimate the process gradients 
and therefore the modifiers of the modified RTO problem. 
The essential ingredient of a parameter estimation problem 
is to choose the class of model. In this case, the dynamics 
of the cost function has been parametrized as Eq. (4) 
considering a quadratic Taylor polynomial that relates the 
variation of the process cost function ΔJk to the variation of 
the input variables Δuk (decision variables of the RTO 
problem). Other simpler functions can be supposed, for 
example, a first order approximation. However, this 
approximation would be realistic only for linear systems 
which are rarely met in practice.  
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where kĴ∆  is the estimator for the variation of the cost 
function, and kθ̂  is the vector of estimated parameters 
which contains the required process gradients to compute 
the modifiers, i.e., the gradients of the process cost 
function with respect to the decision variables uk .  

The gradients contained in kθ̂  are estimated by 
employing RELS with forgetting factor α. This algorithm 
has been applied because is simple, easy to implement and 
generally has much faster convergence than other methods 
such as the projection algorithm. It is based on the 
difference between the current input uk  and the previous 
ones, and the difference between the measured  ΔJk  and 
the predicted kĴ∆  change in the cost function (Guay, 
2014). Then, the parameter estimation update approach is 
given as follows: 
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where Σ is the covariance matrix of the estimate error 

whose initial value is Σ0, ek the output prediction error,  uk-1 
is the input applied to the process until the current sample 
time k, uk-2  and uk-3, are the inputs applied two and three 
sample instants before. In addition, ΔJk = Jk- Jk-1  is the 
difference between the current process cost function and 
the cost function measured one sampling time before. 
Figure 2 presents an overview of the described method: 
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Figure 2.   Schematic of MA based on the direct estimation 
of process gradients over the transient 

One advantage of this technique is that does not require 
any assumption about the type of uncertainty of the model, 
parametric or structural, or the knowledge of the parameter 
responsible for the plant- model mismatch. Consequently, 
the proposed method can be applied to both parametric and 
structural uncertainty without modifying the RTO model or 
identifying what the uncertain parameters are. Another 
advantage is that this method works well even with a high 
number of decision variables since the experimental 
gradients are estimated from an adaptive estimation 
technique without requiring an extra excitation for each 
input. 



  
 

Simulation Study 

A sampled- data reactor system has been considered to 
show the performance of the described approach 
comparing to the traditional static MA.  

This example is the Otto Williams reactor, illustrated in 
the Figure 3. It is a CSTR that has been used widely in the 
literature to study the performance of different RTO 
approaches with modelling mismatch (Roberts, 1979), 
(Forbes and Marlin, 1994) and (Marchetti et al., 2010). 

The system consists of a continuous reactor that is fed 
with two sources of raw material A and B, by means of the 
streams FA and FB respectively. Inside the vessel, three 
parallels reactions take place forming 4 new compounds: 
C, G, E and P, as Eq. (14) shows. These compounds, along 
with the unused reactive, leave the reactor from the bottom 
of the vessel in a single stream FR. Xi represents the mass 
fraction of the i compound inside the reactor and TR is the 
reactor temperature. 

 
Figure 3.   Diagram of the Otto-Williams reactor. 

Real Process 

The system can be described using a first principles 
model, where the mass balance for each compound in the 
reactor is defined as follows: 

,EPCB,CBA 21 kk +→+→+  
GPC 3k→+  

 
(14) 
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where M𝑖𝑖 represents the molecular weight of the 
compound 𝑖𝑖, and 𝑟𝑟𝑗𝑗 is the molecular reaction rate of the 
chemical reaction 𝑗𝑗 defined with respect to its limiting 
reactive. Since we are dealing with pseudo-compounds it is 
necessary to define the relation among their molecular 
weight. This can be obtained assuming that MA = MB = 
MC. Under this consideration the ratios from Eq. (15-20) 
are: 
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Regarding the reaction rate, it can be calculated as 
follows: 

BA11 XXkr =  (23) 

CB22 XXkr =  (24) 

PC33 XXkr =  (25) 

where 𝑘𝑘𝑗𝑗 is the kinetic constant of the reaction 𝑗𝑗 that can 
be obtained using an Arrhenius expression, and 𝐸𝐸𝐴𝐴𝑗𝑗 is the 
activation energy from reaction 𝑗𝑗. 
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Cost Function 

The objective is to maximize the operating profit, which 
is expressed as the cost difference between the product and 
reactant flowrates: 

BBBAAAEEPPR CXFCXF)PXPX(FJ −−+=   
(27) 

The flowrate of reactant A (FA) is fixed at 1.8275 kg/s. 
The flowrate of reactant B (FB) and the reactor temperature 
(TR) are the decision variables, thus u = (FB, TR).  

Process Optimum 

The optimal solution for the plant (simulated reality) is 
presented in Table 1. The mass fractions obtained at the 
optimal solution are given in Table 2. 

Table 1. Process optimum 

FB
*

 (Kg/s) TR
* (ºC) J* ($/s) 

4.78 89.70 191.22 

Table 2. Mass fractions at the optimum 

XA
* XB

* XC
* XE

* XG
* 

0.0874 0.3896 0.0153 0.2906 0.1075 

Steady State Model 

The mass fraction of the product C is one order of 
magnitude below the rest of the compounds. Therefore, a 
common choice in a gross representation of the process is 
considering only the other five species, with the 
corresponding modelling mismatch. Then, only two 
parallel reactions inside the reactor are considered: 

EGPBA,EPB2A 21 k~k~ +→+++→+     (28) 

with this given source of modeling mismatch, the steady 
state model to be used in the RTO layer is the following: 

0r~Vr~VXFF 2R1RARA =−−−  (29) 
0r~Vr~V2XFF 2R1RBRB =−−−  (30) 

0r~V2XF 1RER =+−  (31) 
0r~V3XF 2RGR =+−  (32) 



  

0r~Vr~VXF 2R1RPR =−+−  (33) 
BAR FFF +=  (34) 
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where the tilde represents the parameters used in the 
model which includes mismatch. 

Original Optimization Problem 

Hence, the model based optimization can be 
summarized as: finding the decision variables F𝐵𝐵 and 𝑇𝑇𝑅𝑅 
which maximize the profit, subject to a model that takes 
into account only five compounds and two chemical 
reactions, corresponding to the simulated modeling 
mismatch: 
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The values of the parameters used from Eq. (15) to Eq.  
(37) are summarized in Table 3. 

Table 3. Value of the model parameters 

Parameter Value Parameter Value 
F𝐴𝐴 1.8725 1AE~  -8077.6 

𝑉𝑉𝑅𝑅 2105 2AE~  -12438.5 
𝑘𝑘1

0 1.6599×106 FB
L 3 

𝑘𝑘2
0 7.2177×108 FB

U 6 
𝑘𝑘3

0 2.6745×1013 TR
L 70 

𝐸𝐸𝐴𝐴1 -6666.7 TR
U 100 

𝐸𝐸𝐴𝐴2 -8333.3 PP 1143.38 
𝐸𝐸𝐴𝐴3 -11111 PE 25.92 

0
1k~  2.611×1012 𝐶𝐶𝐴𝐴 76.23 
0
2k~  1.655×108 𝐶𝐶𝐵𝐵 114.34 

Modified Optimization Problem 

The modified optimization problem solved at each RTO 
iteration is defined as follows: 
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where the modifiers λ1, λ2 are computed as the difference 
between experimental gradients (obtained from past 
operating points using DMA and estimated by RELS using 
the MA approach based on transient information), and the 
model gradients. JP is the value of the cost function 
directly measured from the process. 
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Results 

Results applying Dual Modifier Adaptation 

DMA has been implemented over the Otto- Williams 
reactor with a value of a equal to 0.01 (δ ≥ a, dual 
constraint that ensures that in the next RTO iteration the 
system will have enough excitation to estimate the process 
gradient accurately). The RTO is executed every hour, the 
time required for the process to achieve a new steady-state. 
Figure 4 shows the evolution of the process cost function 
whereas Figures 5 and 6 show the evolution of the RTO 
decision variables: 

 
Figure 4.   Evolution of the process cost function JP 

 
Figure 5.   Evolution of the decision variable TR 

 
Figure 6.   Evolution of the decision variable FB 

Fixing a tolerance band of 0.5% with respect to the 
optimal value of the cost function, the graphs (in particular, 
Figure 4) show that the optimum of the process is achieved 
after approximately 46800 seconds using static MA (13 
hours). It involves 13 steady states, 11 RTO executions 
plus nu initial steady states required to estimate the 
gradients, where nu is the number of decision variables. For 
this long period of time operating conditions and the plant- 
model mismatch could change resulting in a loss of 
optimality since the MA method would not converge to the 
process optimum. 
Results applying MA using transient measurements to 
estimate process gradients. 

The described MA approach based on transient 
measurements has been implemented with a RTO sample 
time of 600 seconds that is one sixth of the process 



  
 
stabilization time. The forgetting factor α considered for 
the estimation of the process gradient has been 0.90. 
Figure 7 shows the evolution of the process cost function 
whereas Figures 8 and 9 show the evolution of the RTO 
decision variables: 

 
Figure 7.   Evolution of the process cost function JP 

 
Figure 8.   Evolution of the decision variable TR 

 
Figure 9.   Evolution of the decision variable FB 

 
By applying the new approach, updating the modifiers 

during the transient, and fixing a tolerance band of 0.5%, 
the optimum operating point is achieved after 12000 
seconds, approximately 3.5 hours, which means a 
considerable time reduction compared to 46800 of the 
static MA approach. It involves 20 RTO solutions 
executed during the transient. 

 A comparison of the performance of the two 
implemented approaches is shown in Table 4. 

Table 4. Summary results 
 DMA Transient MA 

Convergence time (s) 46800 12000 
RTO sampling time (s) 3600 600 

RTOs executed (#) 11 20 
Conclusions 

In this paper, a new method to speed up the convergence 
of RTO-MA to the real plant optimum has been proposed. 
It is based on transient information, obtaining process 
gradients directly from truncated Taylor expansions of the 

process cost and gradients combined with adaptive filtering 
estimation techniques. 

 The method has been tested in the Otto Williams 
reactor and the results obtained show that it is possible to 
effectively perform the optimization of this reactor in the 
presence of structural plant-model mismatch reducing by a 
factor of 4 the time required to achieve the process 
optimum as compared with standard static MA techniques, 
such as DMA. 
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