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Abstract 

The growth in computation complexity of multistage stochastic programs (MSSPs) with problem size 
often prevents its application to real-world size problems. In this work, we present a branch and bound 
algorithm capable of reducing the resource requirements for the generation and solution of large-scale 
MSSPs. Using the algorithm to solve four instances of the pharmaceutical R&D pipeline management 
problem revealed that the algorithm used significantly less memory compared to the deterministic 
equivalent solutions.   
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Introduction

Applications of optimization under uncertainty in 
chemical process industry cover a broad range of problems 
including production planning and scheduling, location and 
transportation planning, product and process design, and 
resource allocation. One approach that is used to model and 
solve these problems is stochastic programming (SP). In SP, 
a scenario based framework is used to explicitly account for 
uncertainty. The main components of a SP are (1) a set of 
scenarios representative of the outcomes of the uncertain 
parameters, and (2) stages where actions can be taken. 
When all uncertain parameters can be considered 
independent, scenarios are generated using the Cartesian 
product of the realizations of each parameter (Apap and 
Grossmann, 2015). Stochastic programs can be classified 
based on the number of decision stages. Problems with a 
single decision stage, after which uncertainty is realized, are 
called two-stage SPs. When uncertainty is revealed 
gradually over multiple decision stages the problem is 
called a multistage SP (MSSP) (Birge and Louveaux, 2011). 
                                                           

* selen-cremaschi@auburn.edu 

The stages in MSSPs are typically tied to time periods, 
where uncertainty is revealed at different time periods and 
the decisions are made sequentially based on available 
information. 

The uncertainty in SPs can be grouped into two broad 
categories, endogenous and exogenous. The realization of 
exogenous uncertain parameters is not affected by the 
decisions. In contrast, decisions impact endogenous 
uncertain parameters. This impact can either determine 
when the uncertainty is resolved or change the 
distribution(s) of the uncertain parameter(s).  

At the beginning of the planning horizon and before 
any decisions are made, all scenarios in a SP are 
indistinguishable. As uncertainty is revealed, either through 
decisions or naturally, the scenarios begin to be 
distinguishable. Once a set of scenarios is differentiable 
from the rest, decisions for it may be made independently. 
To avoid using unrealized values of the uncertain 
parameter(s) when making decisions, non-anticipativity 



  
 
constraints (NACs) are introduced to the SP formulation. 
The NACs of a MSSP with endogenous uncertainty also 
depend on the decisions. 

Most real-world-size MSSP problems with 
endogenous uncertainty are computationally intractable due 
to the space complexity of the problem caused by 
exponential growth in the size of the variables and the 
number of NACs. The number of scenarios increases with 
the number of uncertain parameters and the number of 
realizations associated with each uncertain parameter. 
Several approaches have been developed to address this 
complexity. One approach relaxes the NACs using 
Lagrangean-relaxation. The problem is then solved using a 
duality based approach. (Goel and Grossmann, 2004; 
Tarhan et al., 2013). Gupta and Grossmann (2014) recently 
presented an improvement to this approach by incorporating 
a scenario grouping strategy. Colvin and Maravelias (2010) 
increased the size of the pharmaceutical R&D pipeline 
management problem that can be solved by using a branch 
and cut algorithm that gradually added NACs. Solak et al. 
(2010) used a sample average approximation approach, 
where candidate solutions were generated using subsets of 
the full scenario set. Jiang et al. (2016) introduced a set of 
cutting plane inequalities to strengthen the linear relaxation 
of the general multistage stochastic unit commitment 
problem.  

This paper presents a branch and bound algorithm that 
uses progressive hedging (PH) combined with the knapsack 
decomposition algorithm (KDA) (Christian and Cremaschi, 
2015) to solve large-scale MSSPs with endogenous 
uncertainty. We test the performance of the algorithm on 
pharmaceutical R&D pipeline clinical trial planning 
problem. The algorithm solves the problems using less 
random-access memory (RAM) than the deterministic 
equivalent MSSPs. 

The Branch and Bound Algorithm 

The algorithm is summarized in Fig. 1. At the 
initialization step, the values for the relative gap between 
the upper bound and the lower bound (α), and the tolerance 
(ε) are set. Next, the iteration count, i, is set to zero. The 
algorithm starts by generating a feasible solution, φi, using 
the KDA, which is a heuristic algorithm that solves the 
original MSSP by decomposing it into a series of knapsack 
problems. The Equivalent Expected Net Present Value 
(EENPV) for the KDA solution provides the initial lower 
bound, LB0. The algorithm next determines the branching 
variable(s) by comparing the values of decision variables 
that have been fixed in the current branch to values of 
decision variables in the KDA solution, φi. From the 
decisions variables in φi that have not yet been fixed in the 
current branch, the ones that occur at the earliest time period 
are selected as the branching variable(s).  

Assuming that there is one binary branching variable, 
two new linear programs (LPs) are generated; in one, the 
branching variable takes the value of one, in the other, the 
value of zero. In both LPs, the values of decision variables 

that were fixed in the parent branch are carried over. The 
solution of each of these LPs provides an upper bound, Un, 
for each branch n. The LPs are added to the set of active 
branches, N, and the parent branch is removed. After 
determining the upper bound for each branch, the algorithm 
determines the upper bound for the problem, UBi, for 
iteration i. It is defined as max {𝑈𝑈𝑛𝑛  ∀𝑛𝑛 ∈ 𝐍𝐍}, and Q is the 
set of fixed decisions corresponding to the upper bound of 
the problem, UBi. 

Un = LP with 
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φi = KDAGreedy Solution 
with Q fixed
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Select Binary
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Figure 1.  The branch and bound algorithm 

The algorithm continues by comparing the decisions in 
Q with values of the decision variables in the KDA solution, 
φi-1. If the values of the decision variables match then the 
lower bound of the problem, LBi, is equal to the lower 
bound of the previous iteration, LBi-1. Otherwise, the 
algorithm solves the MSSP where the values of the decision 
variables in Q are fixed using the KDAGreedy algorithm, 
and generates a new feasible solution, φi. If the EENPV of 
φi is greater than LBi-1, the lower bound, LBi, takes the value 



  

of the EENPV of φi. If the EENPV of the KDA solution is 
lower than LBi-1, the value of LBi is set equal to LBi-1. The 
algorithm updates α using LBi and UBi. If α is lower than ε 
or the maximum iteration count is reached, the algorithm 
terminates. Otherwise, the algorithm increments the 
iteration count and selects new branching variables. At 
termination, φi provides the solution of the MSSP at a 
relative gap of α. 

A Progressive Hedging Upper Bound 

The LPs used for determining the upper bound are 
solved using the Progressive Hedging (PH) approach 
originally presented in Rockafellar and Wets (1991) and 
adapted by Watson and Woodruff (2011). The PH approach 
is proven to converge to the optimum of convex MSSPs 
with exogenous uncertainty. It decomposes the MSSP into 
individual scenario quadratic programs (QPs) with a 
modified objective function, and uses the solutions of these 
QPs to converge to the MSSP solution. This scenario-wise 
approach allows solving linear MSSPs with exogenous 
uncertainty without generating the full MSSP.  
The SP formulation with exogenous uncertainty can be 
written as ( )∑ ∈+ Ss sss yfpcxmin , ( ) SsQyxts ss ∈∀∈,  .. where 
c is the cost associated with the constrained decision vector 
x, ps is the probability that the scenario s will occur, and fs 
represents the cost of the scenario specific decisions ys. The 
decision vector x represents the decisions which must be 
identical in all scenarios. By writing the decision vector as 
a single variable enforceable in all scenarios, Watson and 
Woodruff (2011) implicitly enforce the NACs. 

The PH algorithm used in this work is given in Fig. 2. 
After initializing the iteration counter (k) to zero, the 
algorithm solves the deterministic optimization problem for 
each scenario, finding x(k) (Fig. 2, Step 2). Next, the average 
values for the decision vector, , and the weights, ws

(k)
, are 

calculated (Fig. 2,Steps 3 and 4). In Step 5, the iteration 
counter is incremented, and new QPs are constructed using 
the values of �̅�𝑥(k) and ws

(k). Solutions of these QPs are used 
to update the values of �̅�𝑥(k) and ws

(k) (Fig. 2, Steps 7 and 8). 
The convergence of the algorithm is checked in Step 10 
using the value of g(k) calculated in Step 9 (Fig. 2). If the 
algorithm is within ε, it terminates. Otherwise, it returns to 
Step 5. 

The PH algorithm requires the knowledge of the 
scenarios and their differentiation time periods. The 
problems of interest in this work are MSSPs with integer 
decision variables and endogenous uncertainty, where the 
differentiating events can be specified but not when and if 
they would occur. To ensure that the solutions obtained by 
the PH algorithm are true upper bounds for these problems, 
the integrality constraints of the MSSP are relaxed, and 
appropriate upper and lower bounds for these variables are 
introduced. Next, all NACs except the current-stage NACs 
are removed, which yields a two-stage SP. For the problems 
considered in this work, the values of the uncertain 
endogenous parameters are realized gradually as the 
corresponding series of decisions are taken. To ensure that 

the ‘current-stage’ NACs are always enforced, we used a set 
of problem specific logical statements that tracks the value 
of differentiating decision variables and determines if any 
uncertainty realizations have occurred. The solutions 
obtained by the PH algorithm (Fig. 2) to these relaxed two-
stage SPs are used to update the upper bounds of the MSSP 
(Fig. 1) at each iteration. 

 

Figure 2. The progressive hedging algorithm 
(Watson and Woodruff, 2011) 

Updating the Lower Bound Using the KDAGreedy 
Algorithm 

The lower bound of the problem is found using a 
modified version of the KDA (Christian and Cremaschi, 
2015). The original KDA uses a series of knapsack 
problems to find a feasible solution for MSSPs with 
endogenous uncertainty. The KDA starts by decomposing 
the decision variables into a set of items. Each item has an 
associated value and weight. The value of the item is based 
on the expected potential gains from the associated decision 
variable. The weight of the item corresponds to the resource 
requirements associated with the decision variable. The 
KDA starts by packing an initial knapsack with the items 
based on overall weight limitations. The selected items are 
used to determine the value of the decision variables at the 
first time period in the planning horizon. The uncertainty 
associated with those decision variables are realized, and 
the KDA generates a new knapsack problem for each 
realization. Based on the realizations, the algorithm decides 
which items are eligible to be considered in each of the 
newly created knapsack problems, and solves them. 
Solutions determine the values of the decision variables, 
which in turn results in realizations of associated uncertain 
parameters. The KDA algorithm continues until the end of 
the planning horizon. To ensure that the KDA solution does 
not over-utilize resources early in the planning horizon, the 
algorithm introduces a heuristic overscheduling constraint. 
The constraint prevents selection of items if there are not 
sufficient resources (i.e., maximum weight) for potential 
knapsack problems that may be generated due to the 
realizations of the item in consideration in the future. 
Details of the KDA can be found elsewhere (Christian and 
Cremaschi, 2015). 

1. 𝑘𝑘 ≔ 0 
2. 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆, 

𝑥𝑥𝑠𝑠(𝑘𝑘) ≔ 𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛(𝑐𝑐𝑥𝑥 + 𝑓𝑓𝑠𝑠𝑦𝑦𝑠𝑠): (𝑥𝑥, 𝑦𝑦𝑠𝑠) ∈ 𝑸𝑸𝑠𝑠  
3. �̅�𝑥(𝑘𝑘) ≔ ∑ Pr(𝑠𝑠)𝑥𝑥𝑠𝑠(𝑘𝑘)

𝑠𝑠∈𝑆𝑆  
4. 𝑤𝑤𝑠𝑠(𝑘𝑘) ≔  𝜌𝜌�𝑥𝑥𝑠𝑠(𝑘𝑘) − �̅�𝑥(𝑘𝑘)� 
5. 𝑘𝑘 ≔ 𝑘𝑘 + 1 
6. 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆, 

𝑥𝑥𝑠𝑠(𝑘𝑘) ≔ 𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛�𝑐𝑐𝑥𝑥 + 𝑤𝑤𝑠𝑠(𝑘𝑘−1)𝑥𝑥  
               + 𝜌𝜌

2� �𝑥𝑥 − �̅�𝑥(𝑘𝑘)�
2

+ 𝑓𝑓𝑠𝑠𝑦𝑦𝑠𝑠� : (𝑥𝑥, 𝑦𝑦𝑠𝑠) ∈ 𝑸𝑸𝑠𝑠  
7. �̅�𝑥(𝑘𝑘) ≔ ∑ Pr(𝑠𝑠)𝑥𝑥𝑠𝑠(𝑘𝑘)

𝑠𝑠∈𝑆𝑆  
8. 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆,𝑤𝑤𝑠𝑠

(𝑘𝑘) ≔ 𝑤𝑤𝑠𝑠(𝑘𝑘−1) +  𝜌𝜌�𝑥𝑥𝑠𝑠(𝑘𝑘) − �̅�𝑥(𝑘𝑘)� 
9. 𝑎𝑎(𝑘𝑘) ≔  ∑ Pr(𝑠𝑠)𝑠𝑠∈𝑆𝑆 �𝑥𝑥 − �̅�𝑥(𝑘𝑘)� 
10. 𝐼𝐼𝑓𝑓 𝑎𝑎(𝑘𝑘) <  𝜀𝜀, 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 𝑎𝑎𝐹𝐹 𝑡𝑡𝐹𝐹 5.𝑂𝑂𝑡𝑡ℎ𝑒𝑒𝐹𝐹𝑤𝑤𝑎𝑎𝑠𝑠𝑒𝑒 𝑡𝑡𝑒𝑒𝐹𝐹𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡𝑒𝑒 



  
 

The original KDA is modified by removing the 
heuristic overscheduling constraint and changing when new 
knapsack problems are generated. Removing this constraint 
allows the KDAGreedy algorithm to pack any eligible item 
in any knapsack while keeping the feasibility of its solution. 
In the original KDA, new knapsacks are only generated 
after all uncertainty associated with selected items was 
realized. In the KDAGreedy algorithm, new knapsack 
problems are generated at every time period allowing non-
zero decision variable values if there are enough resources 
at any time period. 

Case Studies – Pharmaceutical R&D Pipeline Management 
Problem  

We use the branch and bound algorithm to solve four 
instances of the pharmaceutical R&D pipeline management 
problem. A brief overview of the pharmaceutical R&D 
pipeline management problem is provided in the section 
below. Values for the constants in each case can be found 
in Christian and Cremaschi (2015). The branch and bound 
algorithm is implemented in Python 3.5. The PH algorithm 
and the KDAGreedy utilize Pyomo 4.1 (Hart et al., 2011) 
and CPLEX 12.6. The solutions to the deterministic 
equivalent MSSP for each case were found using Pyomo 4.1 
and CPLEX 12.6. All of the problems in this work were 
solved using the Auburn University Hopper Cluster.  

The Pharmaceutical R&D Pipeline Management Problem 

The pharmaceutical R&D pipeline management 
problem consists of a set of new pharmaceutical drug 
development projects. The goal of the problem is to 
determine the clinical trial schedule which yields the 
highest ENPV given uncertainty in the outcome of each 
clinical trial. In this work, we use the formulation presented 
by Colvin and Maravelias (2008). 

The mathematical formulation of the clinical trial 
planning problem is characterized by a set of potential new 
products [dєD]. Each potential product is required to 
complete a series of clinical trials [jєJ]. Completion of 
clinical trials is limited by a set of resources [rєR]. Clinical 
trials have both an associated resource cost(s) [ρd,j,r] and 
monetary cost [Cd,j]. Resource expenditures are limited by 
maximum resource availability [ρr

max]. 
The scheduling of clinical trials occurs along a 

discretized planning horizon of n months divided into |T| 
time steps [tєT]. Each clinical trial has a fixed duration [τd,j]. 
The success of the clinical trial is given as a Bernoulli 
random variable with a known probability of success [pd,j]. 
Successful completion of all clinical trials results in 
commercial availability, and revenue from the market 
success of the product is realized [Revd

max]. Penalties for 
having products idle in the pipeline and for reduced active 
patent life due to delayed development of a product, γd

L (loss 
of patent life) and γd

D (loss of market share), are accessed 
when calculating the ENPV. 

Results and Discussion 

The branch and bound algorithm was first used to solve 
a toy-box sized two-product two-clinical-trial case. We 
present the first five iterations of the algorithm in Fig. 3. 
The initial lower bound obtained by KDA is 1097. The 
algorithm uses the solution from the initial lower bound to 
select decisions variables to branch on. In this problem, the 
algorithm selects the first clinical trial of both Drug 1 
andDrug 2 starting at the first time period, i.e., (D1, P1, 0) 
and (D2, P1,0). Selecting two decision variables to branch 
on creates four branches marked as 1A, 1B, 1C, and 1D in 
Fig. 3. The LPs are generated, and their upper bound 
solutions – obtained by the PH algorithm – are 1141.83 
(1A), 1139.53 (1B), 1138.34 (1C), and 1136.03 (1D)  

 

Figure 3.   Five iterations of the branch and bound algorithm for the two-product two-clinical trial case study
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Because the upper bound of 1A is the highest, the algorithm 
sets the values of the decision variables associated with (D1, 
P1, 0) and (D2, P1,0) equal to zero, and calls KDAGreedy. 
The solution obtained by the KDAGreedy suggest starting 
the first clinical trials of D1 and D2 at the second time 
period (t=1). The algorithm generates four new branches 
(2A-D), and finds their upper bounds using PH. The 
algorithm continues by selecting the end branch with the 
highest upper bound (e.g, 1B for the third iteration) until the 
stopping criteria are met. 

Figure 4 plots the log (base 10) of the CPU time 
consumed by the algorithm versus the relative gap ((UBi-
LBi)/UBi) for the two- and three-product cases. Labels on 
the marker on the graph identify the number of completed 
iterations. In all three cases, the slopes in Fig. 4 are 
approximately linear indicating a logarithmic relationship 
between the CPU time and the relative gap. Therefore, the 
decision variables branched on in earlier iterations have a 
larger impact on the relative gap then the decisions 
branched on in later iterations, which initially improves the 
upper bound rapidly. The quality of the PH upper bound is 
limited due to the linear relaxation of the MSSP and use of 
only next stage NACs. Premature termination of the 
algorithm in the two-product three-trial case was also 
caused by the PH upper bound. To ensure that the PH-
algorithm solution provides a true upper bound for the 
problem, all integrality constraints are relaxed. Hence, the 
solutions at the upper bound allows partial investments (i.e. 
non-integer results) on some of the clinical trials. The 
KDAGreedy only generates feasible solutions, in which 
these non-integer decision variables become zero and are 
never branched on. For the three-product three-trial case 
study, the algorithm ran for the maximum allowable wall 
time of ten days. At termination, the relative gap was 2.6%. 
The time needed to run each algorithm to completion is 
shown in Table 1. As expected, compared to the 
deterministic equivalent MSSP (also in Table 1), the branch 
and bound algorithm takes significantly longer to close the 
gap.  

One of the challenges with solving real-world size 
MSSPs is the space complexity of the problem (i.e. the 
RAM required to generate the problem). As can be seen 
from Table 1, the branch and bound algorithm uses 
significantly lower random-access memory (RAM) than its 
deterministic equivalent counterpart for all case studies. 

The RAM usage of the branch and bound algorithm for the 
three-product case is higher than both two-product cases 
and the five-product case. This increase in RAM usage is 
caused by the number of iterations the algorithm completed. 
In each iteration, at least two new branches are created. The 
storage of these branches gradually increase memory 
requirements of the algorithm. 

 

Figure 4.   Plot of CPU time vs. relative gap for 
the two- and three-product case studies 

The impact of parallelizing the PH algorithm is studied 
for the five-product three-clinical trial case study. The 
problem has a total of 1024 scenarios. Table 2 shows the 
number of threads used for parallelization for each instance 
of the problem along with the approximate number of 
problems solved per thread per PH iteration. Because 
CPLEX 12.6 recommends allocating additional processor 
cores for solution of the QPs when available, six cores were 
allocated for each thread. This also improved the efficiency 
of the PH algorithm. 

Based on the number of iterations completed, 
parallelization has the greatest impact when nine threads are 
used. In the case where nine threads were used, 183 
iterations were completed and the relative gap of the 
problem was reduced to 6.4%. However, our limited 
computational experiments showed that increasing from 

Table 1.   Resource usage, relative gap, and computational time results for the deterministic equivalent MSSP 
and the branch and bound algorithm

 Deterministic Equivalent Branch and Bound 

 RAM 
(MB) 

Relative 
Gap 

CPU Time 
(HH:MM:SS) 

RAM 
(MB) 

Relative 
Gap 

CPU Time 
(HH:MM:SS)  

Two-Product Two-Trial 2.45 0.001 0:00:01 0.05 0.005 0:03:08 
Two-Product Three-Trial 5.93 0.001 0:00:01 0.48 0.017 0:01:01 
Three-Product Three-Trial 89.79 0.001 0:00:03 26.07 0.026 615:07:05 
Five-Product Three-Trial 1430.15 0.001 0:00:42 2.12 0.068 643:41:52 
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Table 2. Parallelization results for the five-
product case study 

Number of 
Threads 

Completed 
Iterations 

Relative 
Gap 

Problems 
Per Thread 

3 39 0.0684 341 
6 41 0.0772 170 
9 183 0.064 113 

three threads to six threads had an inverse effect on the 
solution quality. The current implementation of the branch 
and bound algorithm selects decisions to branch on from the 
KDA decision tree. In general, the algorithm selects 
decision variables from the KDAGreedy solution that have 
non-zero values starting with the variables earliest in the 
planning horizon. When the algorithm selects which 
decision variables to branch on, it selects all the decisions 
in one particular branch of the KDA decision tree. Because 
the object that holds the decision tree is not ordered, the 
algorithm may not always select the same branch (i.e., 
corresponding to the same realizations) from the KDA 
decision tree. The performance of the algorithm when the 
parallelization studies were conducted suggests that it is 
particularly sensitive to the order in which decision 
variables are selected for branching. 

Conclusions and Future Directions 

In this work, we successfully implemented a branch 
and bound algorithm that reduces the RAM requirements 
for solving large-scale MSSPs. The algorithm was applied 
to four instances of the pharmaceutical R&D pipeline 
management problem. Our studies reveal that, in all case 
studies, the CPU time for the algorithm is higher than the 
deterministic MSSP. However, the RAM usage of the 
algorithm is less than half of the amount required for 
solving the deterministic equivalent MSSP. Despite having 
a slower convergence time, the first iteration of the 
algorithm provides a true bound on the solution. For larger 
problems we expect longer computation times due to the 
convergence times of the PH algorithm and linear scaling in 
the RAM requirements.  

For future work, two paths have been identified to 
increase the effectiveness and efficiency of the algorithm. 
First, the algorithm will be modified to branch on the 
variables with the non-integer values in the upper bound if 
the KDAGreedy algorithm fails to provide a branching 
decision variable. Second, we plan to investigate different 
rules for selecting the branching variables and further 
parallelization approaches for the algorithm. 
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