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Abstract

An asymptotic observer is applied to estimate sea spray emissions over the Southern Ocean band. Estimations were
derived from a global 3D chemical transport model and microphysical package adapted with an observer using satellite
observations of aerosol optical depth. We designed the observer using a control Lyapunov function and tuned it to
produce optimal performance. Results from the observer using a tuning parameter of six hours agrees with previous
work, which estimated sea spray emissions based on sea surface temperature.
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Literature Review

The atmosphere contains a mixture of gaseous and par-
ticulate pollutants generated by a wide range of sources. Air-
borne particles, composed of solid and liquid phases, known
as “aerosols” tend to scatter/reflect radiation causing a net
effect of global cooling while greenhouse gases absorb radi-
ation causing a net effect of global warming. Aerosols also
impact cloud physics by changing their optical properties and
formation of precipitation, which is collectively known as
the aerosol indirect effect. Particles that contribute to the
aerosol indirect effect are known as cloud condensation nu-
clei (CCN). The CCN enable cloud droplets to form as water
condenses onto pre-existing CCN particles depending on the
composition, concentration, and size of the aerosol (Seinfeld
and Pandis, 2006). The balance between overall aerosol and
greenhouse gas effects is poorly understood at present and
represents one of the major uncertainties in predicting cli-
mate into the next decades. Models have been developed to
estimate CCN concentration distributions and their effect on
radiative forcing with widely varying results and degrees of
accuracy (Cubasch et al., 2013; Wang et al., 2011) because of
the multi-scale nature of the dynamics and sparsity of CCN-
related measurements.

In a remote marine environment, the most significant
source of aerosols is natural emissions resulting in a com-
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position profile (in order of decreasing contribution) of sea-
salt, non-sea-salt sulfate, mineral dust, and nitrate; how-
ever, the concentration of the last three compounds is collec-
tively at least an order of magnitude lower than the concen-
tration of sea-salt (Fitzgerald, 1991). Therefore, sea-salt is
the most significant source of remote marine aerosols gen-
erated by sea spray. Sea Salt Aerosols (SSA) are mostly
formed from breaking waves that generate bursting bub-
bles to form “film and jet drops” followed by wave tear-
ing at high wind speeds resulting in “spume drops” (Lewis
and Schwartz, 2004). These emissions have been studied
under different meteorological conditions to determine pa-
rameterizations and methodologies describing the produc-
tion of SSA based on laboratory experiments and field mea-
surements (Monahan et al., 1986; Mårtensson et al., 2003;
Gong, 2003; Clarke et al., 2006; O’Dowd et al., 2008; Sofiev
et al., 2011; Jaeglé et al., 2011). In the past, SSA parame-
terizations have been directly determined based on measure-
ments of sea spray and often validated with optical depth data
(Witek et al., 2016). However, there are difficulties in using
SSA field measurements to determine a general aerosol flux
source function since the measurements widely vary with
their conditions.

There are large; long-term; and rapidly growing data sets
generated by satellite observations that indirectly relate to
aerosol burden and SSA, which allow extrapolation of the
parametrization to varying conditions. Process control is of-
ten used to determine representative measurements for accu-



rate estimations in addition to stabilizing systems with indi-
rect measurements. Therefore, it is desirable to use process
control theory as a framework for estimating parameters that
describe atmospheric dynamics. Typical parameter estima-
tion approaches involve a least-squares optimization routine
in which knowledge of uncertainty in both model predictions
and observations is vital (Jacob, 2007). A nonlinear feedback
observer, the approach taken here, deviates from the more
classical techniques such as Kalman Filtering by formulat-
ing an estimation scheme that is based on the exact system
dynamics instead of a local linear approximation and its in-
herent uncertainty (Todling, 2000), which can be difficult to
determine.

Methods

The Southern Ocean band just North of Antarctica (42°S
– 82 °S) is a remote marine area in which aerosol optical
depth is dominated by the contribution from SSA, and it
reaches across the globe East to West so that longitudinal
boundary conditions are not relevant. As a proof-of-concept,
this paper focuses on designing an observer for estimating
SSA emissions in the Southern Ocean band using a 3-D
chemical transport model.

SSA Emissions Flux

The sea spray emissions generate a number flux of SSA
(FN ),

dFN
dlogDp
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βi,jD
j
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This expression was determined by Clarke et al. based on
field measurements at the University of Hawaii Bellows Air
Force Station as a function of wind speed at a 10 m-altitude
(U10), emitted dry particle diameter (Dp), and the empiri-
cal constants (βi,j) (Clarke et al., 2006). The i index corre-
sponds to the size of SSA emitted while the j index repre-
sents the term of a fifth-order polynomial fit. It is apparent
from (1) that wind speed takes on a significant role in de-
termining SSA emissions, which is physically interpreted as
a measure on the fraction of breaking waves at any point in
time. However, this functional form of SSA emissions does
not capture the complete physical phenomena that generates
SSA since it is based on one simplified formation mecha-
nism; conditions besides wind speed have previously shown
to affect SSA flux, such as sea surface temperature (Jaeglé
et al., 2011).

MODIS Observation Dataset

Acquiring global SSA concentration profiles with high
temporal resolution to better estimate sea spray emissions is
not a realistic task, so instead we will utilize a global dataset
of aerosol optical depth (AOD). NASA’s Terra satellite con-
tains a suite of instruments to measure data related to climate
change including a MODerate Resolution Imaging Spectro-
radiometer (MODIS). MODIS measures the Earth’s reflected
radiance in spectral bands between 470 and 2130 nm, which
is used with cloud coverage to retrieve AOD at 550 nm. The
satellite is in a sun synchronous orbit so that it makes one
revolution around the Earth over the course of about 99 min-
utes and retrieves near global coverage daily. During each
revolution, retrieved AOD is discretized into 5 minute inter-
vals covering a 2330 km-long square with a pixel for every 9
km2.

After Terra has made it around the entire globe each day,
it has acquired enough data to cover the Southern Ocean
band. Therefore, we will average data in this region through-
out a day to determine a daily average AOD of the Southern
Ocean. Although AOD has a complex dependence on physi-
cal properties of aerosol burden, we will assume a SSA pro-
file with uniform light extinction and near-ambient marine
conditions of 80% relative humidity. The proposed observer
computes AOD from modelled dry aerosol mass burden (Mt)
with a mass extinction coefficient (αext), optical adjustment
for water uptake at a relative humidity ( f(RH) ), and surface
area (A):

AOD =
αextf(RH)

A
Mt . (2)

The surface area, A, of the Southern Ocean band is near 30
million square-miles. The mass extinction coefficient is near
2.03 m2/g for dry SSA (Hand and Malm, 2007), and the
adjustment of sea-salt light extinction at 80% RH from dry
conditions is approximately 2 (Carrico et al., 1998).

Chemical Transport and Microphysical Model

The framework for determiningMt and its rate of change
is a global chemical transport model, GEOS-Chem, com-
bined with the TwO-Moment Aerosol Sectional (TOMAS)
microphysics package. GEOS-Chem is a 3-D, global model
with inputs from the Goddard Earth Observing System
(GEOS) for meteorological fields (Bey et al., 2001). GEOS-
Chem v9-02 with a resolution of 4°x5°and 47 vertical lay-
ers spanning an altitude of approximately 80 km was used
with GEOS Version 5 meteorology. TOMAS was used for
the size-resolved aerosol species with respect to mass, which



keeps track of 10 logarithmically-spaced bins that correspond
to diameters between 10 nm and 1 µm in addition to two bins
for supermicron aerosols. The model uses an operator split-
ting technique to determine the overall mass balance,

∂ms,p,t

∂t = (
∂ms,p,t

∂t )adv + (
∂ms,p,t

∂t )diff + ...

+(
∂ms,p,t

∂t )dep +Rs,p,t + Es,p,t + (
∂ms,p,t

∂t )coag + ...

+(
∂ms,p,t

∂t )nuc + (
∂ms,p,t

∂t )cond ,

(3)

for all species s in each grid box p at every time-step
t, which encompasses several sinks and sources: advec-
tion, diffusion, wet and dry deposition, chemical production
(R), emission sources (E), coagulation, nucleation, conden-
sation/evaporation. The last three mechanisms of produc-
tion in Equation (3) are specific to aerosol-species calcu-
lated from the TOMAS package, so they do not contribute
to the mass balance for gas-phase and non-aerosol species.
The net production is calculated by combining the gener-
ation/consumption from each term based on a forward ex-
plicit Euler integration. An example output of GEOS-Chem
TOMAS is shown in Figure 1 for the average concentration
of sea-salt aerosol throughout October 2010.
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Figure 1. Modelled average sea-salt aerosol
concentration (µm/m3) for October 2010

Observer Design

From the global and complete atmospheric speciation,
the subset that either make up dry aerosol or are affected
by sea spray over the Southern Ocean band were taken into
account to form a reduced-state space, which includes six
components each resolved into 12 size bins: number of parti-
cles, sulfate, sea-salt, elemental carbon, organic carbon, dust.
The reduced-state space considered here is a cumulative dry
aerosol mass and aerosol number over this region (Mt and
Nt) along with the unknown sea spray scaling factor (θt),
which has a nominal value of one for a perfect model. To re-
construct the mass balance equation with θt, the net produc-
tion of aerosol dry mass and number (F and Fn) is found for

a time interval of ∆t by combining all terms in Equation (3)
and taking out the controlling factor: sea-salt mass and num-
ber emissions from the total emissions term (E). After inte-
grating Equation (1) over the aerosol size range, the total sea
spray mass and number emissions (ESSA, t and EnSSA, t) is
scaled by θt and added to the mass and number production
rate. The scaling factor is set to one in the original model,
but takes on a fraction greater or less than one for either a
positive or negative model bias. The discrete-time system is

Mt = Mt−1 +
(
Ft−1 + θt−1ESSA, t−1)

)
∆t

Nt = Nt−1 +
(
Fn, t−1 + θt−1EnSSA, t−1

)
∆t

yt = 4.06
A Mt

(4)

with a linear relationship for determining AOD (yt) based on
the RH-adjusted mass extinction coefficient (αext · f(RH)

) and surface area of the Southern Ocean band (A). The ob-
server is implemented in the model to estimate the scaling
factor θ̂t so that the estimated state-space and the estimated
output are represented as M̂t, N̂t, and ŷt respectively. The
parameter estimate θ̂t is found by determining a Control Lya-
punov Function (CLF), V (ŷ), that describes the system (4)
and satisfies three conditions,

V (ŷ) = 0 for ŷ = ym (5)

V (ŷ) > 0 ∀ ŷ 6= ym (6)

dV

dt
=

∂V

∂(ŷ − ym)

(dŷ
dt
− dym

dt

)
≤ 0 ∀ ŷ, (7)

so that the system achieves stability and convergence to a set
of observations ym (Khalil, 2002). The method adopted to
determine a valid CLF is based on the quadratic function

V (ŷt) =
1

2

(
ŷt − ymt

)2

(8)

since V takes on its minimum value at ym and is always pos-
itive satisfying constraints (5) and (6), respectively. Then,
a negative quadratic dV

dt satisfies Equation (7) by equating
the output error rate of change to the error scaled by a neg-
ative proportionality constant. This approach results in pro-
portional control of V by solving

∂ŷt

∂M̂t

(
Ft + θ̂tESSA, t

)
− dymt

dt
= −C

(
ŷt − ymt

)
(9)

for θ̂t where C is a positive gain constant. Replacing the
proportional gain C with 1/τ where τ represents a measure



of the observer convergence time gives

θ̂t = E−1
SSA, t−1

[
A

αextf(RH)
dymt
dt −

A
ταextf(RH)

(
ŷt−1 − ymt

)
−∆t

τ

(
Ft−1 + θ̂t−1ESSA, t−1

)
− Ft

]
.

(10)

Results & Discussion

The observer update of θ̂t was implemented into GEOS-
Chem+TOMAS throughout a 15-month simulation starting
October 2009, and the first three months were discarded as
model “spin-up” to remove artificial effects from uncertain
initial conditions. Instead of analyzing the observer start-up
performance, we observe its ability to estimate satellite AOD.

Proof-of-Concept

The first set of results represents a “proof-of-concept”
simulation since a constant value of 0.53, two times the mod-
elled GEOS-Chem+TOMAS AOD, was implemented as a
fictitious annual AOD to see how well the observer can recre-
ate a given profile. Figure 2 shows these results using four
differently tuned observers. As τ decreases, the AOD es-
timate gets closer to the set point of 0.53 such that if τ is
greater than 144 hours, the observer has negligible effects on
the modelled AOD and if τ is set to 1 hour, the observer os-
cillates.
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Figure 2. Estimated AOD proof-of-concept

The observer with τ equal to 6 hours results in estimated
AOD with an annual profile similar to the original model dy-
namics, but scaled so that it is closer to the set point. The best
performance appears with τ equal to 2 hours since it balances
the tradeoff between oscillatory behavior and not replicating
the observation dynamics. Average marine SSA residence
time is on the order of hours (Gong et al., 2002), so a τ of 6
hours may be too long to capture the SSA dynamics whereas

a τ of 2 hours leaves enough time for the estimated AOD
to converge to the observed AOD before SSA are removed
through the many aerosol sinks.

Observer Implemented with Satellite Observations

The same strategy was applied to the MODIS observa-
tions of daily average AOD, and the resulting estimate of
AOD is shown in Figure 3 for τ less than the average SSA
residence time. The estimations using actual satellite data
with a 1 hour, 2 hour, and 6 hour τ qualitatively replicate
the proof-of-concept results giving a normalized root mean
square error of 41%, 60%, and 141% respectively.
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Figure 3. Estimated AOD from MODIS data

There is a larger offset between the set point and esti-
mate for the 1 hour observer March through August indicat-
ing a seasonal variation that is not captured by the observer.
The offset could originate from dynamics not captured by
MODIS observations or in the modelled aerosol burden.

Scaling Factor

The estimated scaling factor gives intuition into the physical
phenomena that the observer is applying to sea spray. Figure
4 shows the annual and daily dynamics of θ̂ from the 2 hour
and 6 hour observers described above compared with pre-
vious corrections due to sea surface temperature (SST) that
Jaeglé et al. estimated as a fifth-order polynomial in SST
(Jaeglé et al., 2011).The annual θ̂ is 0.41, 0.46, and 0.60 for
the 1 hour, 2 hour, and 6 hour time constants, respectively.
Jaeglé corrections based on the modelled monthly Southern
Ocean mean SST approximately line up with the 6 hour ob-
server. Therefore, a larger portion of the corrections observed
here seem to be influenced by temperature effects on sea
spray flux. The 2 hour observer results in an annual θ̂ rel-
ative standard deviation of 24% while the observations ym

vary 32% from their annual average.
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Figure 4. Estimated scaling factor from MODIS data
with an inset of the daily response.

Conclusions

The proposed estimation scheme of a sea spray scaling
factor based on a squared-error CLF applied to a nonlinear
observer can attain a constant, annual AOD as well as a dy-
namic profile from satellite observations. The estimated out-
put converges to the observations with an offset if τ is 6 hours
or less while there is no significant difference between the
model and the estimation if τ ≥ 144 hours. Additionally, the
AOD estimate oscillates when τ is set to 1 hour because the
control action over-corrects at each time step.

The 2 hour observer, which results in an annual mean
sea spray scaling factor of 0.41, remains the best estimate of
MODIS daily AOD observations since it is slow enough to
inhibit oscillatory action and fast enough to follow the obser-
vation profile. The 1 hour observer results in an annual θ̂ with
a relative standard deviation of 93%. This variance decreases
for increasing τ , yet the profile does not precisely replicate
the observation dynamics if τ ≥ 6 hours. Despite the simpli-
fications in estimating AOD and sparsity of observations due
to cloudy conditions and inadequate retrieval, estimations of
AOD agree with previous work completely independent of
optical measurements.
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