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Abstract 

In order to achieve optimal operational conditions, the integration of decision-making across different 

layers of a company and the consideration of uncertain parameters in view of dynamic market conditions 

are essential. In this study, we propose a framework for the integration of scheduling and control for 

nonlinear systems under process uncertainties. The framework includes the use of piecewise affine 

functions (PWA) to handle non-linearities, a robust model predictive control scheme and the use of 

surrogate models to derive the closed-loop input-output behavior of the dynamic system. We take a 

preventive approach in handling disturbances at control level. Through a case study, we evaluate the 

performance of the framework and evaluate the impacts of such disturbances in scheduling solutions. 
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Introduction

The problem of integrating production scheduling and 

process control has gained increasing attention by academia 

and industrial communities as research shows the 

possibility of improving performance when the decision 

making processes across all the layers of the chemical 

supply chain are addressed simultaneously (Grossmann, 

2005). Furthermore, such integration seems natural given 

the closer relation between scheduling and control 

problems, and the extensive exchange of information 

required for the solution of both problems. 

The most intuitive approach for the integration of 

scheduling and control involves the incorporation of the 

dynamic behavior of the process to the scheduling problem 

and developing techniques to solve the resulting mixed 

integer dynamic optimization (MIDO) problem. These 

approaches, however, face considerable challenges 

associated to the use of high-fidelity representations of the 

process dynamics and the complexity, nonlinearities and 

discontinuities that this brings to the scheduling problem. 

The computational cost of performing the integrated 

scheduling/control calculations online and in real-time 

represent one of the main barriers in the deployment of an 

integrated scheduling and control framework in practical 

applications. Furthermore, most of the frameworks 

proposed so far neglect the dynamic market conditions to 

which process industries are subject, and fail to address the 

effects of uncertainties in process operation. 

Uncertainties can be associated to exogenous and 

endogenous factors, and can be effectively handled by the 

scheduling and control problems depending on its source. 

Disturbances such as flow and rate temperature variations, 

stream quality fluctuations, and dynamic model mismatches 

are associated to the control problem, while disturbances 

related to product demands, prices, processing times and 

equipment availability affect mainly scheduling solutions. 

Furthermore, based on the availability of information, 

uncertainties can be described by probability functions or 

by upper and lower bounds, and approaches for dealing with 

uncertainties can be classified as preventive or reactive (Li 

& Ierapetritou, 2008). In reactive approaches, solutions for 

scheduling and control problems are based on nominal 

models, and are updated in response to the occurrence of 

uncertainties. Preventive approaches, on the other hand, 

incorporate the model of uncertainty in the scheduling and 

control formulations and generate robust solutions prior to 

the occurrence of a disturbance.  

In this work, we focus our attention in disturbances at 

the control level and propose a preventive framework for 

the integration of production scheduling and model 

predictive control (MPC) for nonlinear systems under 

process uncertainties. Compared to recent works in the 

integration of scheduling and MPC (Baldea et al., 2015; 

Zhuge & Ierapetritou, 2015), our main contributions are: i) 

the use of a robust model predictive control in the integrated 



  

framework; ii) a comparison between integrated 

frameworks using deterministic and robust control 

strategies; and iii) the use of surrogate based techniques to 

derive closed-loop input-output relationships of systems 

controlled by different MPC schemes. The models are 

added as constraints on the scheduling problem, resulting in 

a mixed integer nonlinear program (MINLP) formulation. 

The general algorithm for the integration of scheduling 

and control is presented in the next section. The first step is 

to approximate the nonlinear dynamics of the system using 

a piecewise affine (PWA) model identification technique 

described in the section “PWA for nonlinear MPC”. Then 

we propose to handle uncertainties at control level by 

introducing a robust model predictive control scheme in 

section "Robust model predictive control". Surrogate 

models are built to approximate the control actions and 

closed loop behavior of the dynamic system, and the 

integration of robust MPC and production scheduling is 

achieved following the formulation presented in section 

"Scheduling problem formulation". A case study illustrates 

the performance of the framework, followed by discussions 

and conclusions. 

Framework for integration of scheduling and robust 

control using surrogate models  

The main components of the framework for the 

integration of scheduling and robust MPC are described in 

the following sections and are shown in Figure 1. We first 

approximate the nonlinear dynamic behavior of the system 

with piecewise affine functions. Then, a robust control 

scheme based on model predictive control is built, so 

uncertainties such as model mismatch and internal 

disturbances can be appropriately handled. The third step is 

to use surrogate models to approximate the closed-loop 

input-output relationships, control actions during transition 

and transition times imposed by the robust control. The 

models are incorporated to the scheduling formulation as 

constraints, and the scheduling problem is solved for state 

references and production sequences. This information is 

then transmitted to the robust control, which tracks the state 

references online. If some disturbance affects the system 

leading the state values away from its quality bounds, re-

scheduling is triggered and a new scheduling solution is 

implemented. 

 
Figure 1. Algorithm for the integration of scheduling and 

robust MPC 

PWA for nonlinear MPC 

PWA systems have shown to be an effective approach 

in dealing with nonlinear systems. The basic idea of PWA 

system is that the nonlinear dynamics can be approximated 

by a collection of distinct linear (or affine) dynamic 

approximations with associated regions of validity. 

Compared to standard linear models, PWA composes a 

group of linear models and therefore it is capable to address 

the process dynamics at the entire state domain. Therefore, 

PWA models eliminate the nonlinearity while retaining 

high approximation accuracy. 

If the original nonlinear dynamic model of the system 

is known, the piecewise affine functions can be identified 

using optimization based identification techniques. We 

follow the technique presented by Dias et al. (2016), which 

can be summarized as follows: 

For one-dimensional functions, valid regions 𝑉𝑅 and 

PWA functions 𝑓 are defined as: 

𝑉𝑅𝑖 = {𝑥|𝑥𝑖𝑛𝑡,𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖𝑛𝑡,𝑖}, 𝑖 ∈ 𝐼 = {1,2,… , 𝑁𝑖} (1) 

𝑓(𝑥) = 𝑎𝑖𝑥 + 𝑏𝑖 , 𝑖𝑓 (𝑥) ∈ 𝑉𝑅𝑖 (2) 

The domain of the original nonlinear function 𝑓(𝑥) is 

partitioned in 𝑁𝑖 regions, generating 𝑁𝑖 intermediate points 

𝑥𝑖𝑛𝑡,𝑖. Each valid region can then be defined by the interval 

between two consecutive intermediate points. The PWA 

function associated to each valid region assumes the form 

of Eq. (2). Coefficients 𝑎𝑖 and 𝑏𝑖 can be determined by 

solving the optimization problem given by Eq. (3), which 

includes constraints to enforce continuity at the intersection 

points (Eq. 4). Note that if the continuity at the intersection 

points is established, then the continuity at the whole 

domain of 𝑓(𝑥) is established as well.   

min
𝑥,𝑎𝑖,𝑏𝑖

∑(𝑓(𝑥𝑖𝑛𝑡,𝑖) − 𝑓(𝑥𝑖𝑛𝑡,𝑖))
2

𝑖

 
(3) 

𝑠. 𝑡.  𝑎𝑖𝑥𝑖𝑛𝑡,𝑖 + 𝑏𝑖 = 𝑎𝑖+1𝑥𝑖𝑛𝑡,𝑖 + 𝑏𝑖  (4) 

For multi-dimensional functions that can be classified 

as separable functions, i.e., functions that can be written as 

a sum of functions of single variables, PWA approximations 

can be obtained by applying one-dimensional 

approximations as explained above for each term of the 

function. For non-separable equations, we follow the 

procedures suggested in Szucs et al. (2012) in converting 

non-separable functions into the separable form, 

summarized as follows: 

Procedure 1: if the function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is in form 

of a product, i.e. 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑓(𝑥1)𝑓(𝑥2)… 𝑓(𝑥𝑛), 
then introduce new variables to transform the product into 

a separable function. For example, for a function f given by 

𝑓 = 𝑥1𝑥2, let 𝑦1 = 𝑥1 + 𝑥2 and 𝑦2 = 𝑥1 − 𝑥2, then 𝑥1𝑥2 =
(𝑦1

2 − 𝑦2
2)/4, and the function f transformed to a separable 

form is 𝑓 = (𝑦1
2 − 𝑦2

2)/4. 

Procedure 2: if the function 𝑓(𝑥) can be written in the 

form of Eq. (5), first obtain the PWA approximation of the 

inner function, then define 𝑤 = 𝑓𝑖𝑛(𝑥) and approximate the 

function 𝑓𝑜𝑢𝑡(𝑤). 



  

𝑓(𝑥) = 𝑓𝑜𝑢𝑡(𝑓𝑖𝑛(𝑥)) (5) 

A n-dimensional separable function will have the form: 

𝑓 = 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯+ 𝑓𝑛(𝑥𝑛). PWA functions can 

be defined for each one-dimensional function 𝑓𝑘 , 𝑘 =

1,2, … 𝑛, and the PWA function for 𝑓 can be written as 𝑓 =

𝑓1 + 𝑓2 +⋯𝑓𝑛. 

The variables in a dynamic model of a system will 

include the state variables 𝑥, control variables 𝑢 and 

uncertain parameters 𝛿. A PWA for a system with one state 

variable, one control input and one uncertain parameter will 

have the form:  

𝑥𝑘+1 = 𝐴𝑖𝑥𝑘 + 𝐵𝑖𝑢𝑘 + 𝐶𝑖𝛿 + 𝐷𝑖 , 𝑖𝑓 (𝑥, 𝑢, 𝛿) ∈ 𝑉𝑅𝑖 (6) 

Robust Model Predictive Control 

In process operations, disturbances such as flow and 

rate temperature variations, stream quality fluctuations and 

model mismatch (including, for example, mass/heat transfer 

coefficients and kinetic constants) must be handled by an 

appropriate control. In the fields of advanced process 

control and, more specifically, model predictive control, 

control schemes for uncertain systems arise specially in the 

form of robust MPC. Robust MPC was first proposed by 

Campo and Morari (1987), who considered the possibility 

of model mismatch and assumed that the system behavior 

could be described by a set of linear time invariant (LTI) 

models instead of a single LTI. They proposed to minimize 

the worst-case tracking error for the family of linear plants, 

and showed how to recast the resulting minimax 

optimization problem as a linear program. This approach 

was further extended by Allwright and Papavasiliou (1992) 

and Zheng and Morari (1993), and can be classified as open-

loop robust MPC formulation. Open-loop MPC solves 

optimization problems in which the decision variable is a 

sequence of control actions, and ignores the fact that the 

controller will react to the uncertainty in the next steps, 

which may lead to infeasibilities and conservative solutions. 

Therefore, closed-loop robust MPC was proposed by 

Kothare et al. (1996) and (Lee & Yu, 1997), and the 

optimization problem was solved for a control policy, which 

is a sequence of control laws, overcoming the drawbacks of 

open-loop robust MPC.  

More recently, tube-based MPC has been presented by 

Mayne et al. (2005). In tube based control, an ancillary 

controller that constraints deviations of the state of the 

uncertain system from the nominal trajectory is determined. 

Recent advances in tube model predictive control regarding 

the calculation of ancillary controller are presented by 

Rakovic et al. (2012) and Yu et al. (2013). 

The purpose of this paper is to evaluate the benefits of 

using a preventive control scheme and the impacts of 

disturbances at the control level in the scheduling solutions. 

Therefore, we propose a simple open-loop robust control 

strategy for nonlinear systems described by a set of PWA 

functions, summarized as follows: 

Step 1: Set initial states and initial manipulated variables 

𝑥0, 𝑢0 

Step 2: Locate corresponding LTI for current states. 

If 𝑥 ∈ 𝛺𝑖 = {𝑥: 𝑉𝑖𝑥 ≤ 𝑊𝑖}, 𝑖 ∈ 𝑆𝑖 = {1,2, … , 𝑁𝑖}, then 

select 𝐿𝑇𝐼𝑖: 𝑥𝑘+1 = 𝐴𝑖𝑥𝑘 + 𝐵𝑖𝑢𝑘 + 𝐶𝑖𝛿 + 𝐷𝑖  
Step 3: Minimize the worst-case tracking error by solving 

the robust MPC problem for PWA systems (Eq. 7), where a 

dynamic reference �̅�𝑘+𝑘𝑝 is tracked.  

min
𝑢𝑘

max
𝛿
∑ (‖𝑥𝑘+𝑘𝑝 − �̅�𝑘+𝑘𝑝‖

𝑄𝑘𝑝
+ ‖𝑢𝑘+𝑘𝑝−1 −

𝑁−1
𝑘𝑝=1

�̅�𝑘+𝑘𝑝−1‖
𝑅𝑘𝑝
) + ‖𝑥𝑘+𝑁 − �̅�𝑘+𝑁‖

𝑄𝑁  
(7) 

𝑠. 𝑡.

{
 
 

 
 𝑥𝑘 = 𝑥

0                                                                                
𝑥𝑘+𝑘𝑝 = 𝐴𝑖𝑥𝑘+𝑘𝑝−1 + 𝐵𝑖𝑢𝑘+𝑘𝑝−1 + 𝐶𝑖𝛿𝑘+𝑘𝑝−1 +𝐷𝑖 ,

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑘+𝑘𝑝 ≤ 𝑥𝑚𝑎𝑥,,                                                     

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘+𝑘𝑝 ≤ 𝑢𝑚𝑎𝑥 ,                                                     

 

where N is the time horizon and Q and R are the 

performance weights. 

Step 4: Evaluate state transfer 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) 
Step 5: 𝑘 = 𝑘 + 1, go to step 2. 

Surrogate modeling 

Scheduling and control are naturally related problems, 

and process operations at scheduling and control levels 

require data exchange between them. For example, 

scheduling transfer decisions such as batch sizes, start times 

and state references to the control level, while control 

provides transition times and dynamic behavior of the 

system to the scheduling level. Therefore, the simultaneous 

solution of scheduling and control problems can lead to 

decisions that are overall optimal. Attempts to integrate 

scheduling and control include the use of the dynamic 

models of the system as constraints in the scheduling 

problem (Flores-Tlacuahuac & Grossmann, 2006), use of 

explicit control laws derived through multi-parametric 

MPC (Zhuge & Ierapetritou, 2014), and the use of time-

scale bridging models (Du et al., 2015).  

In this work, we propose to use surrogate models to 

approximate the closed-loop input-output dynamics of the 

process, the transition times and the average value of the 

control actions taken during transitions, which will be 

further incorporated as constraints in the scheduling 

problem. Many fields in engineering have successfully used 

surrogate models to solve optimization problems 

characterized by partial or total lack of analytical equations 

describing the constraints and objective of the problem. In 

particular, surrogate modeling techniques are of great 

interest for engineering design when high fidelity and 

expensive analysis codes are used, such as the fields of 

computational fluid dynamic models and large-scale 

integrated flow sheet models.   

The proposed framework for building surrogate models 

can properly handle problems associated to the different 

time horizons in which scheduling and control problems are 

defined, and provides a simple way to derive an explicit 

expression to approximate the closed-loop behavior of a 

process imposed by a general control. We consider a system 



  

with 𝑛 state variables and 𝑚 manipulated variables, and 

consider the problem of scheduling in a multiproduct plant. 

The framework follows common basic steps and can be 

summarized as follows: 

Step 1: Determine the sample points in the design space 

using design of experiments. In particular, Latin Hypercube 

Sampling is used with 10𝑑 + 1 samples, where 𝑑 = 𝑛 +𝑚 

is the number of dimensions. The variables of the dynamic 

problem are the initial values of states 𝑥0 and control inputs 

𝑢0. 

Step 2: Run simulations to collect the observed results 

at each sample point. For each simulation, the input data are 

the initial conditions of the system defined by step 1 and 

steady state information for the desired product. The outputs 

of the simulations are the average control actions during 

transitions, the transition times, and the values of the future 

states 𝑥𝑘+1.   

Step 3: Build three surrogate models for each product 

𝑝 using kriging models. The first surrogate model predicts 

the average value of control actions during transitions, �̅�. 

The second surrogate model predicts the transition times 𝜃. 

The third surrogate predicts future states 𝑥𝑘+1, where the 

time length of 𝑘 is pre-defined by the user. 

Kriging was originally developed in geostatistics by 

Krige (1951), and it was later applied to both deterministic 

and stochastic simulation models for developing input-

output relationships. For the derivation of Kriging, the 

output of a deterministic computer experiment is treated as 

a realization of a random function (Eq. 8). The function is 

defined as the sum of a global trend function, which here 

will be taken as a constant 𝛽0, and a Gaussian random 

function 𝑍(𝑥). 𝑍 denotes a statitionary random process with 

zero mean, variance 𝜎2 and nonzero covariance (Eq. 9), 

where 𝑅(𝑥𝑖 , 𝑥𝑗) is the correlation function. The kriging 

predictor for a point 𝑥∗ can then be written as Eq. (10), in 

which 𝑹 is defined as the (𝑛×𝑛) matrix where the (𝑖, 𝑗) 
element is the correlation between 𝑍(𝑥𝑖) and 𝑍(𝑥𝑗), and 𝑟 

is defined as the correlation vector between 𝑍(𝑥∗) and 

𝑍(𝑥𝑖), for 𝑖 = 1, . . . , 𝑑. The generalized least square 

estimation of 𝛽0 is given by Eq. (11). 

𝑦(𝑥) = 𝛽0 + 𝑍(𝑥) (8) 

𝐶𝑜𝑟𝑟[𝑍(𝑥𝑖), 𝑍(𝑥𝑗)] = 𝜎
2𝑅(𝑥𝑖 , 𝑥𝑗) (9) 

�̂�(𝑥∗) = 𝛽0 + 𝑟
𝑇(𝑥∗)𝑹−1(𝑦𝑠 − 𝛽0𝟏) (10) 

𝛽0 = (1
𝑇𝑹−1𝟏)−11𝑇𝑹−1𝑦𝑠  (11) 

The surrogate models built in this step can be written 

in a general form as given by Eqs. (12-14).  

�̅�𝑝 = 𝐹𝑝(𝑥
0, 𝑢0) (12) 

𝜃𝑝 = 𝐺𝑝(𝑥
0) (13) 

𝑥𝑘+1,𝑝 = 𝐻𝑝(𝑥
0, 𝑢0) (14) 

Scheduling problem formulation 

In this work, the problem of continuous cyclic 

production is addressed, and scheduling constraints are 

adapted from the work of Flores-Tlacuahuac and 

Grossmann (2006). Constraints at control level include the 

surrogate models predicting the transition times and the 

control actions during transitions. These models, given by 

Eq. (12) and (13), are valid when product 𝑝 is produced in 

slot 𝑠, and this implicit requirement is transformed into 

explicit constraints (Eqs.15-18).  

�̅�𝑠 ≥ 𝐹𝑝(𝑥
0, 𝑢0) − 𝑀(1 − 𝑦𝑝,𝑠) (15) 

�̅�𝑠 ≤ 𝐹𝑝(𝑥
0, 𝑢0) + 𝑀(1 − 𝑦𝑝,𝑠) (16) 

𝜃𝑠 ≥ 𝐺𝑝(𝑥
0) − 𝑀(1 − 𝑦𝑝,𝑠) (17) 

𝜃𝑠 ≤ 𝐺𝑝(𝑥
0) + 𝑀(1 − 𝑦𝑝,𝑠) (18) 

where 𝑦
𝑝,𝑠

 is 1 if product 𝑝 is produced in slot 𝑠, and 

(𝑥0, 𝑢0) are the steady state conditions of the previous slot, 

calculated with the use of linking constraints as presented 

in the work of Zhuge and Ierapetritou (2015). The objective 

function of the problem is the maximization of total profit 

𝛷, which is given by Eq. 19.  

𝛷 = ∑𝑃𝑝𝑊𝑝 − (∑𝑃𝑟𝑢𝑠
𝑛𝛩𝑠

𝑁𝑠

𝑠=1

+∑𝑃𝑟�̅�𝑠𝜃𝑠

𝑁𝑠

𝑠=1

)

𝑁𝑝

𝑝=1

 
(19 

where 𝑁𝑝 is the number of products, 𝑃𝑝 is the price of 

product 𝑝, 𝑊𝑝 is the amount of product 𝑝 produced in a 

cycle,  𝑁𝑠 is the number of slots, 𝑢𝑠
𝑛 is the nominal value of 

the control variable in slot 𝑠, 𝑃𝑟  is the cost of raw material 

and 𝛩𝑠 is the production time. 

The scheduling problem is solved for the production 

sequences. Once the sequences are defined, the state values 

throughout transitions can be calculated using Eq. 14.  Such 

values are used as references in the online control loop. 

Case study 

To demonstrate the feasibility of the proposed 

approaches, we solve a simple numerical case involving a 

SISO CSTR and the cyclic production of four products. 

The reaction 3R P takes place in an isothermal 

CSTR, while products A, B, C and D, which are 

differentiated by their concentration (Table 1) are 

manufactured in a cyclic mode. The basic dynamic model 

of the process is shown in Eq. (26). 

𝑑𝑥

𝑑𝑡
=

𝑢

5000
(1 − 𝑥) − 𝑘𝑥3 (26) 

where 𝑢 is the feed flow rate (i.e., manipulated variable) and 

𝑥 is the concentration of raw material in the outflow (i.e., 

state variable). In addition to satisfying product demand, an 

upper limit of 144 hours is enforced for the production 

cycle, and the manipulated variable is constrained to 𝑢 ∈
[0, 3000]. The objective is to maximize hourly profit.  

 



  

Table 1 – Case Study Steady State Information  

Product u [L/h] x[mol/L] 
Demand 

rate [kg] 

Product 

cost 

[$/kg] 

A 100 0.2 5500 30 

B 400 0.3032 8000 20 

C 1000 0.393 10000 15 

D 2500 0.5 14000 10 

 

We build two scenarios to solve the scheduling 

problem: in the first one we use a deterministic MPC while 

the second one uses the robust MPC for building surrogate 

models and for online control. We assume the kinetic 

constant 𝑘 is uncertain. In the first scenario, 𝑘 =
2 𝑙𝑡2𝑚𝑜𝑙−1ℎ−1, while in the second scenario 𝑘 is bounded 

and in the form  𝑘 = [2,2.3] 𝑙𝑡2𝑚𝑜𝑙−1ℎ−1. Following our 

framework, we built a PWA system to represent the 

dynamic model assuming that 𝑥, 𝑢 and 𝑘 are the variables. 

The control schemes are proposed, differing only on step 3 

on the control algorithm, where the first scenario uses the 

deterministic MPC instead of the robust one. Trough 

simulations the surrogate models are built, and the 

scheduling problem is solved using GAMS/SBB. The 

results are presented in table 2. 

Table 2 – Results of integrated problem 

 Integration using 

Deterministic MPC 

Integration using 

Robust MPC 

Number of variables 138 138 

Number of constraints 82 82 

CPU Time (s) 4 4 

Optimal sequence A-D-C-B A-C-D-B 

Transition times 7.62–2–1.95-3.24 8.02-3.24-1.67-1.33 

Amount (103kg) 5.5-14-12-8.21 5.5-8-10.13-14 

Revenue ($/hr) 4509.08 4284.74 

Raw material cost ($/hr) 2619.31 2470.92 

Profit ($/hr) 1889.77 1813.82 

 

We notice that the framework using deterministic MPC 

provides slightly better profit than robust MPC. This is a 

result of the different control actions taken during 

transitions and production times. However, the advantages 

of the solutions from deterministic MPC are specific to this 

example and to the given parameters. Furthermore, robust 

MPC has the advantage of effectively handling 

uncertainties and guaranteeing feasible solutions in the 

presence of uncertainties, as it is shown in the simulations 

below. 

We first assume that no disturbances affect the system, 

and therefore the value of the kinetic constant is kept at 

2 𝑙𝑡2𝑚𝑜𝑙−1ℎ−1 throughout the whole simulation. We 

simulate the behavior of robust and nominal control and the 

results are shown in Figure 2. 

Next, we assume that the uncertain parameter 𝑘 

assumes its nominal value throughout most of the 

simulation period, with the exception of times t=100h to 

t=110h, when 𝑘 = 2.3 𝑙𝑡2𝑚𝑜𝑙−1ℎ−1. 

 

Figure 2. Simulations for deterministic and robust control 

when no disturbances affect the process 

Figure 3. Simulations for regular and robust control in a 

system affected by disturbances from times t=100h to 

t=110h 

While the robust control can effectively handle the 

uncertainties that affect the system, the nominal control 

cannot. For 9.33 hours, the production of C is affected, 

period in which the product does not meet the quality 

requirements and therefore we assume it cannot be 

commercialized. Consequently, the demand of C in the 

given time horizon will not be satisfied and the hourly profit 

decays to $1299.65. In this case, re-scheduling will be 

triggered, however the problem will be infeasible, since the 



  

demands of C and D will cannot be satisfied in the 

remaining time. The preventive scenario, on the other hand, 

is able to handle the disturbances and ensures that the 

product specifications are met during the whole time 

horizon. 

The computational cost of the integrated problem can 

be evaluated by the number of simulation calls in the 

surrogate building step and CPU time of scheduling 

solutions. For the second scenario of this problem, 4 ∗
(10𝑛 + 1) or 84 simulation calls were done, and the CPU 

time for scheduling solutions was 4 seconds. Calculations 

were performed using a PC of 2.40GHz/16GB RAM. 

Conclusions and Future Directions 

In this study, we propose a novel framework for the 

integration of scheduling and control. This framework aims 

to simultaneously consider the scheduling and control 

objectives and is capable of handling disturbances to the 

dynamic system in a preventive manner, avoiding 

infeasibilities and reducing calls for re-scheduling. The 

framework includes the use of a robust model predictive 

control scheme and the use of surrogate models to predict 

the closed-loop input-output behavior of the system, and 

can be extended to a wide variety of process in which 

different control strategies are applied. A simple case study 

was presented to demonstrate the performance of the 

framework and its advantages when compared to the 

integration of scheduling and deterministic control. 

The results of the case study show a superiority of the 

deterministic MPC framework in the nominal scenario, and 

superiority of the robust MPC framework in a scenario 

subject to disturbances. Although these results cannot be 

generalized, they provide some useful insights. Robust 

MPC is capable of handling disturbances in a more effective 

way when compared to deterministic MPC. Therefore, in a 

scenario where the process is subject to disturbances in the 

control level, the integration of scheduling and robust MPC 

is more likely to provide feasible solutions, and may 

guarantee higher profits if disturbances are frequent. 

Future challenges include addressing higher 

dimensional problems, as well as integrating scheduling and 

control while considering uncertainties in both scheduling 

and control levels. 
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