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Abstract

In this paper, we apply formal verification and falsification of temporal logic specifications to chemical plant
automation systems. This can provide useful information about the behavior of the closed-loop hybrid system
without requiring costly simulation or manual inspection. We extend previous work by applying a recently-
developed approach to handle simultaneous invariance and reachability requirements, which require that the certain
sets of states always be avoided, and that other sets of states always remain reachable. In addition, we develop a set
of tests that can be generated automatically for a given control system, some of which can be tested using existing
methods, and some of which combine invariance and reachability and therefore necessitate the new approach.
In both cases, we work with abstractions of the automation logic in order to apply symbolic model checking to
industrial-scale systems. We demonstrate the results using a series of small illustrative examples, and also report
results from a case study using an industrial control system.
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1 Introduction

1.1 Background and Motivation

Automating a modern chemical plant involves repeatedly
making a large number of discrete decisions (once per sam-
ple interval) to guide the evolution of the process along the
desired trajectory. This task is performed by a logical control
system that observes and manipulates the process and contin-
uous control system. The coupling between these three major
components of a chemical plant results in a cyber-physical
system, a type of hybrid (continuous and discrete) dynamical
system, as described by Engell et al. (2000).

Due to the lack of systematic tools that can be used to
design the discrete automation logic, the current industrial
practice is to do so by hand, relying on a combination of
engineer skill and intuition, semi-formal guidelines and best
practices, rules of thumb, and simulation. Such an approach
is both time consuming and error prone; this is a critical issue
when it comes to the behavior of the plant, as described in the
perspective by Leveson and Stephanopoulos (2013), which
advocates the viewpoint that the various elements that make
up the overall system are inextricably linked. The importance
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of developing tools to design hybrid process control systems
is also highlighted in the perspective by Grossmann and West-
erberg (2000). Analyzing existing systems is the first step
toward systematically designing correct logic. The objectives
of this work are to extend the existing methods for analyzing
discrete chemical plant automation logic, and to apply the
methods to industrial-scale systems.

1.2 Analysis of Logical Control Systems

A significant body of research has focused on verifying
the correctness of logical control systems. This includes mod-
eling programmable logic controllers (PLCs) so that a formal
specification of the desired behavior can be verified (Moon
1994; Rausch and Krogh 1998; Canet et al. 2000; Gourcuff
et al. 2008; Biallas et al. 2010; Darvas et al. 2013). The basic
approach consists of the following steps:

1. Model the (discrete) dynamical behavior of the PLC as a
(finite) state transition system.

2. Specify the desired behavior as a temporal logic formula.

3. Apply model checking to determine whether the model
fulfills the specification.

This approach has previously been applied in the chemical pro-
cessing industry (Moon et al. 1992; Probst et al. 1997; Bauer
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et al. 2004; Kim and Moon 2011). One of the main limita-
tions of this approach is the state-explosion problem (Clarke
and Grumberg 1987), which refers to the fact that the prob-
lem size increases rapidly as the number of discrete variables
increases.

To overcome the state-explosion problem, Park and Bar-
ton (1997) proposed an implicit Boolean state-space model
that describes the discrete logic. The implicit model is con-
verted to an equivalent integer programming problem, which
is checked for feasibility. The implicit model captures indi-
vidual transitions, but not sequences of transitions from one
reachable state to the next; as a result, it can be used to verify
invariance properties (which require that the system never
leave a particular fixed set of good states), but is conservative
in the sense that it may fail to verify a correct system. For
this reason, the standard approach based on symbolic model
checking remains the most widely used method for analyzing
logical control systems.

1.3 Contribution

The main contribution of this paper is to demonstrate the
application of both verification and falsification to analyze
the behavior of large-scale chemical plant automation sys-
tems. We do so in a way that accounts for the limitations
(imposed by the hybrid dynamical nature of the systems) on
the classes of specifications that can be verified or falsified.
The verification methods are the same as those that have been
applied previously; the difference is the particular specifica-
tions that we verify, and what the result indicates about the
system. The falsification methods that we apply were devel-
oped recently, and allow a broader class of specifications to
be addressed than in previous work. For both verification and
falsification, we use a model-reduction technique to mitigate
the state-explosion problem; the validity of the results is main-
tained, and the approach allows us to address industrial-scale
systems. We also provide a set of specifications that can
be used with the approach we describe to analyze a general
automation system. We demonstrate our results through a se-
ries of illustrative examples, and report computational results
from test cases provided by The Dow Chemical Company.

In Section 2, we introduce discrete automation systems
and some specifications that they should satisfy. In Section 3,
we show how to model standard control and automation logic.
In Section 4, we describe the formal analysis methods that are
applied to determine whether a system meets the specifica-
tions. In Section 5, we introduce a way to approximate large
systems to avoid the state-explosion problem. In Section 6,
we describe a pair of open source software tools that imple-
ment the methods presented in the paper. In Section 7, we
apply the methods to an industrial case study. In Appendix A,
we introduce background material that is used throughout the
paper.

1.4 Notation

We use the notation ai(j) throughout the paper to repre-
sent vectors. The subscript i indicates element i of the vector,
and the superscript (j) is used to distinguish between differ-

ent vectors (e.g., in a sequence or a set). In addition, we
often partition a vector into other named variables, so that

for the vector a =

(
b
c

)
∈ Rna ≡ Rnb+nc , a1 ≡ b1 and

anb+1 ≡ c1; we use the top-level variable (a in this case) and
the inner variables (b and c in this case) interchangeably for
convenience.

To simplify notation involving discrete variables, we use
‘‘0’’ and ‘‘1’’ to represent the integer values 0 and 1 as well
as the Boolean values false and true, respectively. That is,
for d ∈ {0, 1}2, we treat the expressions d1 + d2 ≥ 1 and
d1 ∨ d2 as being equivalent.

The notation F : X ⇒ Y represents a set-valued map.
This is equivalent to F : X → P(Y ), where P(Y ) is the
power set of Y .

2 Discrete Logic in Chemical Plants

2.1 Dynamics

We consider sample-and-hold control systems (SHCSs)
produced by applying sample-and-hold control to continuous
chemical processes, modeled in the hybrid dynamical system
formalism from Section A.5 as:

x=


z
u
s
τ

 ∈ Rnz × Rnu × {0, 1}ns × [0, T ] =: X

F (x) =


Fz(z, u)

0
0
1



G(x) =


z{(

u+

s+

) ∣∣∣∣ ∃r ∈ ρ(z) : u+ ∈ Gu(z, s
+)

s+ = gs(r, s)

}
0


D = {x ∈ X | τ = T}

C =X \D

(1)

where:

• z is a vector of continuous process state variables.

• u is a vector of continuous control variables.

• s is a vector of discrete control variables.

• τ is a timer variable that tracks the amount of time that
has passed since the previous sample was taken.

• Fz : Rnz × Rnu ⇒ Rnz represents the process dynam-
ics.

• u̇ and ṡ are both 0 because the control variables only
change value in discrete jumps when samples are taken.

• z+ = z because the process is continuous.

• Gu : Rnz × {0, 1}ns ⇒ Rnu is the continuous control
law, which depends on the discrete control variables, s.



• gs : {0, 1}nr × {0, 1}ns → {0, 1}ns is the discrete
automation logic.

• ρ : Rnz ⇒ {0, 1}nr returns discrete readings from the
process and operators.

• τ̇ = 1 and τ+ = 0 cause samples to occur every T time
units.

• T is the sample time.

In such a system, the discrete control and automation logic
is contained in the function gs, which updates logical state
of the control system in response to discrete readings. The
discrete readings ρ come from the process (for example, by
checking whether or not a continuous state variable is within
a desired operating range) and the operators (in the form of
discrete toggles on the operator’s control interface).

The dynamics introduced by the discrete logic in a control
system are fundamentally different than those introduced by
the continuous control logic. A poorly-tuned PID controller
(which would appear in Gu in Eq. (1)) will result in quantita-
tively degraded closed-loop performance, but the performance
is often qualitatively similar to the performance that would
be achieved using a well-tuned controller (i.e., the system
is still stable, but converges to the set point more slowly).
Minor changes in the discrete logic, however, usually produce
qualitatively different behavior in the plant (i.e., a piece of
equipment no longer activates under the correct conditions).

2.2 Process-Independent Tests

When checking the discrete automation logic in an SHCS,
the specifications are in terms of the discrete control vari-
ables s. The atomic propositions from Section A.2 are then
relational expressions involving those variables. Using these
atomic propositions, temporal logic formulas can be con-
structed to describe certain properties of the desired system
behavior.

Specifying the entire desired behavior of the closed-loop
system is difficult for the same reasons that defining the con-
trol logic correctly is difficult. This leads to the goal of
automatically generating specifications that describe part of
the overall requirements that a control system must meet. We
refer to these as process-independent tests (PITs), because
they do not relate to the underlying chemical process (and
can therefore be generated without knowledge of the process).
Some PITs are listed in Table 1, and described in more detail
in the remainder of this section.

A variable lock is the situation in which one of the discrete
variables becomes stuck in either value, 0 or 1, without the
possibility of ever changing. The requirement to avoid vari-
able locks specifies that none of the output variables should
ever become locked. This specification does not require that
the variable ever changes value, only that the logic does not
strictly prevent that from happening. For example, in the ideal
case that a threshold alarm is never tripped, the correspond-
ing discrete variable is always 0. This is not a variable lock
unless there is no way the alarm would ever turn on (even in
response to the threshold being violated).

Automation logic often involves explicitly defined op-
erating modes, such as startup, react, and shutdown. This
is described in detail by Park and Barton (2000). The sys-
tem must always be in one (and only one) operating mode,
which is specified by the requirement that the corresponding
variables sum to 1. In addition to this, the control system
should always be capable of reaching each of the operating
modes, which is similar to the variable lock specification. As
in the case of variable locks, the requirement that the operat-
ing modes remain reachable does not mean that any of them
is actually reached, only that it is always possible to reach
each of them. This specification is similar to the reachability
requirement from Park and Barton (2000) (feasibility of a
sequence).

The test for irrelevant logic is slightly different than the
other specifications. The expected outcome is that removing
part of the automation logic affects the behavior of the system
in some way. This is done on a per-variable basis by introduc-
ing a new variable si′ with the same assignment logic as si,
then removing part of the assignment logic for si′. The reach-
ability specification EF(si 6= si

′) specifies that there should
be some reachable state in which the original and modified
variables have different values. If the specification is satisfied,
then the logic that was removed is relevant (to the behavior of
the system). If the specification is not satisfied, then the logic
that was removed is irrelevant, and can be removed without
modifying the system’s behavior. It is common practice to
intentionally include redundant (irrelevant) terms to clarify
the logic, but sometimes this behavior is not intended.

3 Modeling PLC Programs

The methods we describe in this paper apply to any control
system that has the form of Eq. (1). PLCs are often used in the
chemical processing industry to implement the discrete logic
of SHCSs. For this reason, we focus on PLC programs as the
target of our analysis, and to give concrete examples; specif-
ically, we use the Structured Text (ST) language defined in
standard standard IEC 61131-3 (International Electrotechnical
Commission 2013).

PLCs operate by repeating the following steps in a non-
terminating loop:

1. Input scan: inputs to the PLC program (continuous and
discrete values) are read from the plant.

2. Evaluate logic: the PLC logic is executed with the new
inputs to update the outputs.

3. Output scan: the new outputs are applied to the plant.

In relation to the model in Eq. (1), step 1 corresponds to ρ,
step 2 corresponds to G, and step 3 corresponds to the jump
x+ ∈ G(x).

3.1 Translation to a Formal Model

We address PLC programs defined using a restricted sub-
set of the ST language, similar to previous work (Rausch and
Krogh 1998; Gourcuff et al. 2008). We assume the following
restrictions:



Table 1. Process-independent tests.

Property to test Specification
Avoid variable locks. AG(EF(si = 0) ∧ EF(si = 1)) i ∈ 1 . . . ns
All operating modes are reachable. AG(EF(sj = 1)) j ∈ J
Operating modes are mutually exclusive. AG(

∑
j∈J

sj = 1)

Relevant logic. EF(si 6= si
′) i ∈ 1 . . . ns

• All assignments are to elementary Boolean or numeric
variables.

• There are no loops (other than the PLC’s loop over the
entire program).

• There are no jumps (i.e., the program is a single routine).

That is, the ST program is a sequence of assignments, along
with conditional branching.

Every variable that is assigned a value is an output of the
program. Any variable that is not assigned a value anywhere
in the program is an input. The output variables are the values
that the control logic sets in order to influence the behavior of
the plant. Variables that are not assigned values anywhere in
the program are assumed to be readings from the plant, and
therefore act as inputs to the PLC logic.

Example 1 (a simple PLC program). Consider the ST pro-
gram:

s1 := ABS(z1 - z2) > 0;
s2 := s3 OR r1;
s3 := s2 AND r2;

which produces the model:

x = (z1, z2, s1, s2, s3, τ)
T ∈ R2 × {0, 1}3 × [0, T ] =: X

F (x) =

 Fz(z)
0
1



G(x) =


zs+

∣∣∣∣∣∣ ∃r ∈ ρ(z) :
s1+ = r3
s2+ = s3 ∨ r1
s3+ = s2+ ∧ r2


0



ρ(z) =

 {0, 1}
{0, 1}

|z1 − z2| > 0


D = {x | τ = T}

C = X \D

The expressions ρ1 = {0, 1} and ρ2 = {0, 1} indicate the ρ1
and ρ2 are external inputs to the program, and might either
be 0 or 1, regardless of the continuous state z. We have not
explicitly defined the continuous dynamics Fz , and there are
no continuous control variables u. Note that the implicit defi-
nition of gs that arises when the assignment of one variable
depends on a previous assignment in the program (as shown
above for s3+, which depends on s2+) can always be con-
verted to an explicit definition; this is described in more detail

in Rausch and Krogh (1998) and Park and Barton (2000). In
this example, the term s3

+ = s2
+ ∧ r2 would be replaced

with s3+ = (s3 ∨ r1) ∧ r2.

4 Formal Analysis

4.1 Abstraction as a Labeled Transition System

In order to analyze the automation logic of an SHCSH as
in Eq. (1), we rely on the deterministic finite labeled transition
system (LTS; refer to Section A.1):

(S,R,∆) (2)

where:

S = {0, 1}ns

R = {0, 1}nr

∆ = {(s, r, s+) | s+ = gs(r, s)}

As described by Rawlings et al. (2015), the LTS in Eq. (2) is
an abstraction of the (nondeterministic, infinite-state) system
that represents the behavior ofH. The abstraction models the
response of the discrete logic to any of the possible sequences
of inputs. The result is that the abstraction overapproximates
the behavior of the closed-loop system; in the actual system,
whether or not a particular sequence of inputs can occur de-
pends on the continuous dynamics.

4.2 Verification

Given an SHCS and its LTS abstraction, it is possible to
directly verify certain classes of specifications by analyzing
the LTS. One such class of specifications is ACTL, which is
described in Section A.2. For a specification that is not con-
tained in this class, such as a CTL specification that includes
E, verification of the LTS abstraction does not imply verifi-
cation of the SHCS. This includes even simple reachability
requirements such as EF(p).

Of the PITs defined in Table 1, the requirement that the op-
erating modes be mutually exclusive is an ACTL specification.
Therefore, it is eligible for verification using the abstraction.
In addition, the negation of a relevant logic specification,
¬EF(si 6= si

′) ≡ AG(si = si
′), is an ACTL specification.

Verifying AG(si = si
′) guarantees that the logic removed

from si
′ is irrelevant. The other specifications all include

both invariance and reachability, so they cannot directly be
verified by applying model checking to the LTS abstraction.

Algorithm 1 is a simplified version of the standard
abstraction-based approach for verifying ACTL specifications
in hybrid systems, applied to SHCSs (Chutinan and Krogh



2001; Clarke et al. 2003). If the verification fails, we do not
attempt to refine the abstraction, as in Chutinan and Krogh
(2001) and Clarke et al. (2003), or interpret the counterex-
ample, as in Probst et al. (1997). Refinement of the model
requires a detailed model of the hybrid dynamics, which is
often difficult to obtain and computationally costly to ana-
lyze for large industrial systems. Manual inspection of the
counterexample amounts to informal abstraction refinement,
which is difficult for the same reasons, and does not have the
benefit of being algorithmically sound.

Algorithm 1: Verification of ACTL specifications.
Input :SHCSH and ACTL specification θ
Output :‘‘H satisfies θ’’ or ‘‘Unknown’’
(S,R,∆)← LTS abstraction ofH as in Eq. (2)
if (S,R,∆) satisfies θ then

return ‘‘H satisfies θ’’
else

return ‘‘Unknown’’

Example 2 (ACTL specification verified). Consider the oper-
ating sequence depicted in Figure 1, which shows the desired
paths through a set of operating modes. This behavior is

s1

s2a s2b

s3a s3b

s4

r1 ∧ sa r1 ∧ sb

r1 ∧ sa

r1 ∧ sb

r1 ∧ sb

r1 ∧ sa

r1 r1

r1

Figure 1. Sequence between operating modes.

enforced by the following automation logic:

s = (s1, s2a, s2b, s3a, s3b, s4, sa, sb)
T

r =

(
r1
ra

)

∆ =



(s, r, s+)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1
+ = (s1 ∧ ¬r1) ∨ (s4 ∧ r1)

s2a
+ = (s2a ∧ ¬r1)

∨(s1 ∧ r1 ∧ sa+)
s2b

+ = (s2b ∧ ¬r1)
∨(s1 ∧ r1 ∧ sb+)

s3a
+ = (s3a ∧ ¬r1)

∨((s2a ∨ s2b) ∧ r1 ∧ sa+)
s3b

+ = (s3b ∧ ¬r1)
∨((s2a ∨ s2b) ∧ r1 ∧ sb+)

s4
+ = (s4 ∧ ¬r1)

∨((s3a ∨ s3b) ∧ r1)
sa

+ = ¬(s4 ∧ r1)
∧((s1 ∧ r1 ∧ ra) ∨ sa)

sb
+ = ¬(s4 ∧ r1)

∧((s1 ∧ r1 ∧ ¬ra) ∨ sb)


s(0) = (1, 0, 0, 0, 0, 0, 0, 0, 0)

T

In this simple example, the inputs do not relate to the con-
tinuous state of the process (r1 and ra are operator inputs to
advance to the next operating mode and select ‘‘recipe a’’,
respectively), so the discrete part of the automation system is
decoupled from any continuous dynamics. The PIT for mutu-
ally exclusive operating modes in this example is the speci-

fication AG

(∑
J

(sj) = 1

)
, where J = {1, 2a, 2b, 3a, 3b, 4},

which is verified by Algorithm 1.
Note that the states described by ((s2a∨s2b)∧sa∧sb) are

stable according to the definition in Park and Barton (1997),
but lead to states in which (s3a ∧ s3b) holds, which violates
mutual exclusivity. As a result, implicit model checking does
not verify the specification, even though it is satisfied. The
reason is that implicit model checking does not examine paths,
starting in the initial state, consisting only of reachable states.
The states in which ((s2a ∨ s2b) ∧ sa ∧ sb) holds are not
reachable, so the fact that they lead to bad states does not
actually impact the specification. If sb is replaced by ¬sa in
the assignment logic for variables s2b and s3b in the control
program, then the system’s behavior is unchanged, but im-
plicit model checking correctly verifies the specification. This
highlights the conservative nature of implicit model checking,
which is what allows for the reduction in computational effort
required.

4.3 Falsification

Falsification of a class of specifications that combine
invariance and reachability (CIR) in SHCSs is described
in Rawlings (2016). These specifications have the form

AG

∧
i∈I

pi ∧
∧
j∈J

EF (pj)





where the pi and pj do not contain any additional temporal
operators (i.e., they are composed of atomic propositions
and Boolean operators; refer to Section A.2). In addition
to CIR specifications, any specification that is the negation
of an ACTL specification can be falsified by verifying the
ACTL specification. Consider the specification EF(p), which
is equivalent to ¬AG(¬p); falsifying EF(p) is equivalent to
verifying AG(¬p) using Algorithm 1.

The PITs in Table 1 that are CIR specifications are the
requirement to avoid variable locks, and the requirement that
all operating modes remain reachable. In addition, negating
the relevant logic specification results in AG(si = si

′), which
is also a CIR specification. Falsifying AG(si = si

′) amounts
to verifying the original relevant logic specification. Each
of these CIR specifications can be falsified by applying the
results from Rawlings (2016).

Algorithm 2 is a simplified version of the method in Rawl-
ings (2016) that does not include any reachability search in
the hybrid system. In Algorithm 2, SupervisorSynthesis is
the standard supervisor synthesis algorithm from supervisory
control (see Section A.4), which computes the maximally-
permissive supervisor, given an LTS, a set of controllable
events, and a specification; the expression Γ/(S,R,∆) rep-
resents the closed-loop system in which the supervisor, Γ, is
controlling (S,R,∆) by disabling events. The continuous
dynamics and any unmodeled discrete dynamics impact the
sequences of inputs that can occur in the same way that a
supervisor disables events in supervisory control (refer to
Section A.4). An event r is disabled in state s of the LTS
abstraction if there is no solution to the original SHCS that
produces r ∈ ρ(z) while the discrete part of the state is equal
to s. To account for this, we treat each of the input readings
r ∈ R in the LTS abstraction as a controllable event, meaning
that it is possible that r is prevented from occurring in a state
s by some unmodeled behavior of the original SHCS. Thus,
we set Rc = R when analyzing the LTS in order to explore
not only all possible sequences of inputs that might occur,
but also all possible restrictions thereupon that the hybrid
dynamics might impose. As with Algorithm 1, we omit the
further analysis that involves the continuous dynamics, which
is included in Rawlings (2016).

Algorithm 2: Falsification of CIR specifications (sim-
plified).

Input :SHCSH and CIR specification θ
Output :‘‘H does not satisfy θ’’ or ‘‘Unknown’’
(S,R,∆)← LTS abstraction ofH as in Eq. (2)
Rc ← R
Γ← SupervisorSynthesis((S,R,∆), Rc, θ)
if Γ/(S,R,∆) does not satisfy θ then

return ‘‘H does not satisfy θ’’
else

return ‘‘Unknown’’

Example 3 (CIR specification falsified). Consider a batch
reactor with the sequence of four operating modes shown in
Figure 2. and the reaction A→ B. The corresponding SHCS

Reset Heat React Cool
NA ≥ NA(0) T ≥ Th NB ≥ 0.99NA(0)

T ≤ Tc

Figure 2. Operating mode sequence for a batch reaction.

produces the LTS abstraction:

s = (s1, s2, s3, s4, s5, s6, s7, s8)
T

r = (r1, r2, r3, r4, r5)
T

∆ =



(s, r, s+)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1
+ = s5 ∧ r1

s2
+ = s6 ∧ r2

s3
+ = s7 ∧ r3

s4
+ = s8 ∧ r4

s5
+ = (s5 ∧ ¬(r5 ∧ s1+))

∨(s6 ∧ s2+ ∧ r5)
s6

+ = (s2 ∧ ¬(r5 ∧ s2+))
∨(s7 ∧ s3+ ∧ r5)

s7
+ = (s3 ∧ ¬(r5 ∧ s3+))

∨(s8 ∧ s4+ ∧ r5)
s8

+ = (s4 ∧ ¬(r5 ∧ s4+))
∨(s5 ∧ s1+ ∧ r5 ∧ s2+)


s(0) = (0, 0, 0, 0, 0, 0, 0, 1)

T

with the relationship between the LTS variables and Figure 2
shown in Table 2.

Table 2. Description of the variables in Example 3.

Variable Meaning
s1 reactor is cool
s2 reaction is complete
s3 reactor is hot
s4 reactor can be reset
s5 ‘‘Cool’’ mode is active
s6 ‘‘React’’ mode is active
s7 ‘‘Heat’’ mode is active
s8 ‘‘Reset’’ mode is active
r1 T ≤ Tc
r2 NB ≥ 0.99NA(0)
r3 T ≥ Th
r4 NA ≥ NA(0)
r5 operator selected the next mode

The specification AG(EF(s5)∧EF(s6)∧EF(s7)∧EF(s8))
comes from the PIT that each of the operating modes should
always be reachable. The specification is a CIR specifica-
tion, so Algorithm 2 can be applied to check whether the
SHCS violates it. Applying Algorithm 2 indicates that the
specification is violated. This is explained by the condition
to move from s5 = 1 (‘‘Cool’’) to s8 = 1 (‘‘Reset’’), which
requires that s2 = 1 (‘‘Reacted’’). The variable s2 is only
set in the ‘‘React’’ mode, so it is always 0 in the ‘‘Cool’’
mode; this prevent the system from returning to the ‘‘Reset’’



mode after completing the reaction. Note that all the operat-
ing modes are reachable from the initial state, s(0), and the
problem is that they do not always remain reachable. Thus,
detecting this behavior requires analyzing a CIR specification
that combines invariance and reachability. Finally, the result
from Algorithm 2 guarantees that the SHCS does not meet
the specification, regardless of the continuous dynamics.

5 Mitigating the State-Explosion Problem

To gain the performance benefit of cone-of-influence
(COI) reduction (described in Section A.3) when analyzing
systems in which all of the model variables appear in the COI,
abstraction can be applied. Removing a variable’s transition
logic and replacing it with a free input to the model results in
an abstraction. More importantly, breaking the connection to
the variables that appeared in the transition logic potentially
allows for COI reduction. Because the reduced model is an
abstraction, the same theoretical results apply as discussed
in Section 4: ACTL specifications can be verified, and CIR
specifications can be falsified.

Example 4 (CIR falsified after simplification). Consider the
system from Example 3, and the LTS:

s = (s1, s2, s5, s6, s7, s8)
T

r = (r1, r2, r5, r6, r7)
T

∆ =



(s, r, s+)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s1
+ = s5 ∧ r1

s2
+ = s6 ∧ r2

s5
+ = (s5 ∧ ¬(r5 ∧ s1+))

∨(s6 ∧ s2+ ∧ r5)
s6

+ = (s2 ∧ ¬(r5 ∧ s2+))
∨(s7 ∧ r6 ∧ r5)

s7
+ = (r6 ∧ ¬(r5 ∧ r6))

∨(s8 ∧ r7 ∧ r5)
s8

+ = (r7 ∧ ¬(r5 ∧ r7))
∨(s5 ∧ s1+ ∧ r5 ∧ s2+)


s(0) = (0, 0, 0, 0, 0, 1)

T

in which state variables s3 and s4 from Example 3 have
been replaced by inputs r6 and r7, respectively, and the
inputs that only impacted s3 and s4 have been removed.
This further abstraction of the model reduces the compu-
tational effort required for analysis, as the original system
has 8 state variables and 5 input variables, while the re-
duced system has 6 state variables and 5 input variables.
More importantly, the same result (that the specification
AG(EF(s5) ∧ EF(s6) ∧ EF(s7) ∧ EF(s8)) is violated) is still
proven by applying Algorithm 2 to the reduced model.

6 Implementation

The methods that are presented in this paper have been
implemented in a pair of software tools, st2smv1 and

1https://pypi.python.org/pypi/st2smv

SynthSMV2, both of which are open source and freely avail-
able for academic and commercial use.

The first tool, st2smv, converts PLC programs written in
Structured Text to formal models, as described in Section 3.
It also includes options to generate some of the PITs from
Section 2.2, handle certain function blocks such as delay
timers, and compute abstractions that enable COI reduction
as in Section 5.

The second tool, SynthSMV, analyzes the models pro-
duced by st2smv. SynthSMV is a modified version of the
model checking solver NuSMV (version 2.6.0). The modifi-
cations made in SynthSMV implement supervisor synthesis
on top of the efficient symbolic algorithms used in NuSMV
for model checking. This allows for falsification of CIR spec-
ifications as in Section 4.3 in addition to verification as in
Section 4.2, which is done using the model checking algo-
rithms already present in NuSMV.

7 Case Study

We now apply our approach to two control systems which
were provided by The Dow Chemical Company. Table 3
provides some basic details related to the size and complexity
of the two systems. The first system, ‘‘Unit A’’, is a batch
wash tank, and the second, ‘‘Unit B’’, is a batch reactor.
The large number of discrete variables, in comparison to the
relatively simple continuous control design (exhibited by the
small number of PID loops), demonstrates the complexity of
the discrete logic in a typical industrial control and automation
system.

Table 3. Overview of the case study problem size. The
columns list the number of PID loops, the number of discrete
variables, the number of variables that represent operating
modes, and the average size of the cone of influence of the
variables.

Name PIDs Variables Modes COI
Unit A 5 236 22 570
Unit B 8 752 53 2462

To address the large problem size (for both Unit A and
Unit B), we apply abstraction as in Section 5. There are
many approaches for computing efficient abstractions of both
discrete and hybrid systems, which are beyond the scope of
this work. We apply the following abstraction procedure
(which is implemented in st2smv) for each specification, to
limit the size of the COI rooted at the set of variables that
appear in the specification:

1. Set a limit on the number of state variables to include in
the model.

2. Starting at 0, increment the COI search depth until the
number of variables included in the COI exceeds the
limit.

3. Replace each state variable that entered the COI at the
previous search level with an input variable.

2https://bitbucket.org/blakecraw/synthsmv

https://pypi.python.org/pypi/st2smv
https://bitbucket.org/blakecraw/synthsmv


The variable lock and relevant logic PITs were applied
for each of the discrete control variables in each system for
various COI size targets. The performance is summarized in
Table 4. The state-explosion problem appears as the rapid
increase in solution time as the COI size is allowed to increase.
For each of the two systems, the largest target COI size listed
represents roughly the largest value for which the methods in
this paper could be applied. Comparing this limit (150) to the
average original COI size in the two systems in Table 3, it is
clear that COI reduction, made possible by analyzing abstract
models, is critically important when it comes to analyzing the
closed-loop behavior of industrial-scale systems.

Table 4. Abstraction and runtime information when applying
the PITs to the case study. Each column lists the average value
computed over the system variables. The columns list the
target COI size when computing simplifying abstractions, the
number of variables that were abstracted away, the resulting
COI size after abstraction, and the time taken to analyze the
PITs for each variable.

Name COI Target Abstr. var. COI Time/var. (s)
Unit A 25 8.7 16.2 5.9
Unit A 50 16.4 37.0 7.8
Unit A 100 22.3 83.5 17.2
Unit A 150 27.1 125.9 43.8
Unit B 25 16.3 27.1 16.4
Unit B 50 16.4 28.7 15.7
Unit B 100 36.2 69.4 21.3
Unit B 150 42.2 111.5 56.0

The results of applying the PITs to the sample systems
are shown in Table 5. As expected, increasing the allowed
COI size produces more conclusive results, at the expense
of the increased execution time shown in Table 4. In both
systems, each type of specification successfully detects the
corresponding behavior, which supports the claim that the
PITs described in Section 2.2 are relevant to industrial chem-
ical plant automation systems. The trend of being able to
prove more properties of the system behavior as the COI limit
increases is expected to continue past the current COI limit of
150.

Table 5. PIT results from the case study. The columns list the
number of results detected of each type.

Name COI Target Lock Irrelevant Relevant
Unit A 25 5 2 0
Unit A 50 8 12 0
Unit A 100 15 41 1
Unit A 150 15 44 2
Unit B 25 10 6 1
Unit B 50 10 8 1
Unit B 100 10 31 3
Unit B 150 10 50 4

The 5 variable locks detected in Unit A with the COI
target set to 25 and the 10 in Unit B were the result of vari-
ables with assignment logic consisting of a single Boolean
literal (TRUE or FALSE); this behavior was intended. The
additional variable locks detected in Unit A for larger COI

values and the instances of irrelevant and relevant logic, on
the other hand, were not caused by such trivial dynamics. The
detected behavior did not represent errors in the system, but
this does indicate that detecting certain properties of the sys-
tem’s behavior requires a more detailed model of the system
dynamics. Due to the proprietary nature of the control code,
we have omitted the actual control logic.

8 Summary

In this paper, we have demonstrated the application of
formal methods to analyze chemical plant automation systems.
These systems are characterized by complex discrete logic
which, coupled with continuous process dynamics, creates
a large-scale hybrid dynamical system. Such systems are
currently beyond the reach of systematic design tools, so
instead we settled for proving certain aspects of the closed-
loop behavior. To achieve this, we relied on automatically-
generated process-independent tests (PITs) that involve both
invariance and reachability requirements to obtain a high-
level summary of a given control system. These PITs yielded
promising results when applied to a case study consisting of
two industrial automation systems, each from a batch process.

To address the state-explosion problem, which is the main
difficulty in analyzing large-scale discrete systems, we com-
bined symbolic algorithms for both model checking and su-
pervisor synthesis with abstractions that enable COI reduction.
This technique allowed our approach to scale to systems that
could not be addressed using symbolic methods alone, with
the trade off being that only a subset of the system’s properties
will be provable using an abstract model. Being able to easily
scale a theoretically sound method to arbitrarily large systems
is critically important, as neither failing for systems over a
given size nor reporting false positives is desirable.

There are some promising directions in which this work
can be extended. We applied a very simple technique to sim-
plify the models and allow COI reduction; more sophisticated
techniques could produce abstractions for which more of the
system properties can be proven without increasing the size
of the reduced model. The set of PITs we provided is by no
means an exhaustive list of all the requirements that a plant
automation system should meet; there remain opportunities
both in developing more PITs, and in developing process-
dependent tests that target particular aspects of a process’s
behavior.

9 Acknowledgements

Funding for this work was provided by The Dow Chemical
Company and Industrial Learning Systems, Inc.

A Background Material on Discrete Event and Hybrid
Systems

A.1 Discrete Event Systems (DES)

A DES is a system with a discrete state space that evolves
by making discrete transitions in response to a sequence of
events (Cassandras and Lafortune 2008). A DES can be



modeled by the labeled transition system (LTS), (S,R,∆),
where S is the state space, R is the set of event labels, and
∆ ⊆ S × R × S is the set of transitions. When a DES is in
state s and an event labeled r occurs, it makes a transition to
a new state, s+, such that (s, r, s+) ∈ ∆.

A.2 Computation Tree Logic (CTL)

The branching-time temporal logic CTL was introduced
by Clarke and Emerson (1982). Two of the properties that
can be described in CTL are invariance and reachability.
The specification AG(p) is an invariance specification, which
requires that the system never leave the set of states in which p
holds. The specification EF(p) is a reachability specification,
which requires that the system be able to reach the set of
states in which p holds. Invariance and reachability are logical
duals, i.e., AG(p) ⇐⇒ ¬EF(¬p). In addition to temporal
properties such as AG and EF, atomic propositions describe
fundamental (atomic) properties of a system’s state, and the
Boolean operators ∧, ∨, and ¬ can be used to combine and
modify CTL formulas.

The universal fragment of CTL, called ACTL, is obtained
by excluding the existential path quantifier, E. This assumes
that the formulas are in positive normal form, meaning that
the temporal operators are not directly negated (i.e., ¬AG(p)
is first converted to EF(¬p), which is clearly not an ACTL
formula). ACTL is interesting primarily because if an ACTL
formula is verified in an abstraction of a system, then it is
guaranteed to hold in the actual system also (Clarke et al.
1994).

A.3 Model Checking

The objective of model checking is to determine whether
a given model meets a temporal logic specification (Clarke
et al. 1999). For a CTL specification, this is achieved by first
computing the set of all states that satisfy the specification,
then checking whether the initial state of the system is in-
cluded in that set. If the specification holds in the system’s
initial state, then the model itself satisfies the specification; if
not, then the model violates the specification.

The state-explosion problem, mentioned in Section 1.2, is
specifically that the number of states in a DES can grow ex-
ponentially with the number of interacting components. One
of the most successful methods for overcoming this problem
is the use of binary decision diagrams (BDDs) to represent
the model symbolically (Bryant 1986; McMillan 1992). An-
other technique to avoid the state-explosion problem is to
consider only the components of a system that influence a
given specification. That is, the model is built using only the
state variables that appear in the specification, and the vari-
ables that (directly or indirectly) influence the value assigned
to those state variables. In systems that contain multiple dis-
connected groups of variables, this cone-of-influence (COI)
reduction can drastically improve the performance compared
to the naïve approach (Clarke et al. 1999). However, for
systems in which all the variable influence each other, COI
reduction has no effect.

A.4 Supervisory Control

While the goal in model checking is to determine whether
a DES meets a requirement, the goal in supervisory control is
to modify the behavior of a DES to ensure that it does meet the
requirement (Ramadge and Wonham 1987). Informally, given
a DES modeled by the LTS (S,R,∆), a set of controllable
eventsRc ⊆ R, and a specification θ, the supervisor synthesis
problem is to compute a strategy for disabling events in Rc

such that the modified DES satisfies θ. Supervisory control
suffers from the same state-explosion problem as does model
checking, but benefits from the same BDD-based symbolic
algorithms.

A.5 Hybrid Dynamical Systems (HDS)

Systems that combine continuous and discrete dynam-
ics are called hybrid dynamical systems, or simply hybrid
systems. The following model represents a general hybrid
system (Goebel et al. 2012): x ∈ C ẋ ∈ F (x)

x ∈D x+ ∈G(x)
(3)

where x is the state, F is the flow map, G is the jump map,
C is the flow set, and D is the jump set. The state varies
continuously (flows) subject to the differential inclusion ẋ ∈
F (x) when x ∈ C, and changes value discretely (jumps)
subject to x+ ∈ G(x) when x ∈ D. The class of systems that
can be modeled in the form of Eq. (3) includes other common
classes of hybrid systems, such as hybrid automata, sample-
and-hold control systems, and the mixed logical dynamical
(MLD) systems proposed by Bemporad and Morari (1999).
The main difficulty in analyzing the behavior of HDSs is
that the reachability problem is only decidable for a severely
restricted class of systems (Henzinger et al. 1995).
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