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Abstract

The mathematical models representing the dynamic behaviour of any combination of physical, chemical

and biological processing plants, requires a large number of equations even if the process is of relative low

complexity. Constructing and maintaining these models require a considerable effort. Close inspection

though reveals that many of the equations are structurally the same and appear mostly in duplications.

Avoiding all duplications and exploiting the aspects of ontologies for knowledge representation and util-

ising graphs to capture the structure of the plant, both the construction as well as maintenance becomes

much more straightforward by handling the complexity in the form of indexing instead of writing a large

number of equations. This paper presents the design decisions of an ontology-based modelling tool that

produce compact and executable code.
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Introduction

Modelling is a key activity in modern chemical engi-
neering, and models are used in many of the core activi-
ties such as design, control, optimisation and simulation.
A complete and proper process model is able to predict
the process behaviour, which means that models can re-
place expensive experiments. However, the model has
to be of reliable quality. Whilst this implies savings,
the modelling also requires resources. The construction
of the models is often done by a modelling specialist
and intricately designed for a special purpose. Also, the
model equations are commonly located in different parts
of the overall code and difficult to locate. Most models
are not well documented, making the interpretation of
results and maintenance of a model a troublesome task.
We are constructing a generic modelling tool that gen-
erates executable model code for essentially any target
language. The model code is generated with emphasis
on being well-documented, flexible and reusable.

This contribution builds on a generic approach to
modelling, with the objectives of (i) generating inter-

nally consistent models (Preisig, 2010), (ii) generate
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complete models: all necessary elements are included:
integration, differential, transport, transposition and
closure equations, (iii) canonical representation involv-
ing a minimum of structural elements and a simple lan-
guage for representation of equations and (iv) proved
parser and compiler. The latter, to be easily config-
urable for any output language. These objectives are
met by formulating networks that again consists of net-
works that consist of small building blocks. The build-
ing blocks, which we refer to as primary models, are
complete and compact models containing attributes and
equations to describe a selected part of a process. Pri-
mary models can be connected to other primary models
describing other parts of a process. This composes net-
works consisting of primary models and networks, which
are the models we generate using our tools.

This approach to modelling is in alignment with the
suggestions for modelling tools presented by (Foss et al.,
1998), which emphasises on a structured approach to
modelling. Our modelling tool is analogous to but more
fundamental than, the work by (Fedorova et al., 2015)
and MOSAIC (Kraus et al.,, 2014), which formulate
model templates, while our approach extract primary
models from an ontology, hence it is more related to the
work by (Brandt et al., 2008).



Network view

The development of an ontology-based modelling
tool requires a proper structuring of process models.
A key aspect is thereby that the complete description
of a process model is organised under three specified
meta sections, namely, structure, behaviour and typing
(Preisig and Elve, 2016). The first section, structure,
The be-

haviour section defines the role of each entity, in other

defines structural entities and their relations.

words, it describes how an entity behaves and how it is
affected by or the effect it has on other entities. The
last section is typing, which defines the separation of

quantities based on the captured attributes.

The modelling methodology used in the modelling
tool involves capturing the behaviour of a set of enti-
ties that interact with each other in a structure. We,
therefore take the view of considering any model to be
a network represented by a directed graph in which the
nodes represent capacities, and the arcs represent inter-
actions of quantities that characterise these capacities.
The characterising quantities are termed states and the
interactions are quantities that affect the states. The di-
rectionality of the arcs provides the reference coordinate
for the respective interaction. The state is the attribute
that we want to model. We derive the states from defin-
ing tokens. The term token is taken from the analogy
of Petri-nets, where tokens are what moves around in
the graph, allowing for an abstraction beyond physical
systems. The network with its tokens lives in a frame,
which in the case of dynamic systems is time and space.
Networks may represent different types of systems and
are thus specialised accordingly. For example, facilitate

for physical and control systems.

In order to capture the behaviour of complex models,
we generate networks of primary models with a set of se-
lected attributes described by the typing section of the
ontology. These networks communicate, hence we get
a network of networks interacting on every layer. The
ontology uses hierarchical trees for network definitions,
meaning that we first formulate a shared ontology for
all networks, and then start refining the shared ontol-
ogy after a set of rules for the different networks using
the meta sections structure, behaviour and typing. The
result of this refinement is that the knowledge extracted
from the ontology is tailored to a specific domain for a
particular network, but does still have shared attributes
that open for interaction with other types of networks.

This implements an inheritance mechanism.

For the domain specific tailoring of the ontology, the
first refinement is the separation of a network for con-
trol and a network the physical components. These net-
works may again be further refined, such as for physical
systems that consist of different phases, each of which
again can be subdivided into further refined networks.
The rule for a network definition is that within each net-
work a specific set of tokens is captured and modelled.
To handle the interaction between two networks we in-
troduce a connection network, which serves the purpose
of converting a set of tokens from one network to a set
of tokens represented in the other network. Refinement
of networks within specific phases open for multi-scale
modelling by allowing for properties of a phase to be de-
scribed on a lower level with a refined set of tokens. For a
controlled physical process, the process model typically
comprises of three types of networks, namely, the phys-
ical network, the control network and the connection

network that handle interactions between two networks.

The physical network

The physical network represents the process itself
with its internal chemistry and biology. The nature of
the physical network is described in (Preisig, 2010) and
illustrated in fig. 1. The construction of the physical
network starts at the integrator, in which the differen-
tial state is integrated over time for ODEs and time
and space for PDEs. The intensive properties are func-
tions of the states given by the thermodynamic relations.
These are thus state variable transformations, which are
illustrated by the red box of fig. 1. Some of these inten-
sive properties are responsible for driving the transport
between connected pairs of capacities, which primarily
are the temperature, the pressure and the chemical po-
tential for which the Bond-graph theory introduced the
term “effort variables” (Breedveld et al., 1991).

Following the route in fig. 1, the quantities labelled,
y, are the effort variables and other quantities required
to compute the transport and the transposition, which
are modelled in the two green boxes in the feedback
loop of the physical network. The transport box uses
the effort variables and provides equations for the trans-
portation of tokens. Tokens may also be converted into
other tokens and those are modelled in the lower green
box named transposition, which represents the internal
changes in capacities, such as phase changes and chem-
ical reactions. The yellow box connects the transport
and the transposition equations together and yields the

differential balance equations.
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Figure 1. Illustration of a physical network connected
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state variable transformations

to a control network. The measurement in the physical

network is converted into a signal comprehensible in the control network as an input to a control structure. The

output from the controller is converted into a valve position in the transport equations in the physical network.

Control network

Control is implemented as a signal processing net-
work.The feedback control system illustrated in fig. 1,
which could be replaced by any other scheme such as
model-predictive control systems, receives a set of mea-
surements from the physical network as signals, which
are compared to a defined set-points. Based on the com-
parison the control action is determined, which is a sig-

nal representing valve manipulation.

Connection network

The connection network has access to the properties
of the two connected networks and converts tokens of
one network to corresponding tokens of the other net-
work. In fig. 1 the connection network converts the to-
ken value of the quantity being measured to a token
signal, and back again converts the controller output to
a variable representing the valve position in the trans-
port laws. The connection network thus converts and
broadcasts a variable from one network to another and
make the variable understandable for the other network.

Variables and equations

Once the structure of the model is established, the
behaviour for the primary models can be given. The
behaviour provides the link from the network represen-
tation to the variables and equations assigned to the
various boxes in fig. 1. The assignment to the boxes de-
termines where the variable can be used. For example,
a variable describing the mass transport is assigned to
the transport box. Equations describing transport are
indirect functions of the states of the two connected ca-
pacities. The intermediate variable associated with the
indirect function is the result of a state variable trans-
The
information required for definition of the behaviour is

formation that belongs to the red box in fig. 1.

captured by a small meta-language made for represent-

ing variables and equations.

Index set operations
To ensure correctness of the model, and at the same

time keep the number of calculations to a minimum, we



equip each variable with indexing sets. For example,
all variables are indexed with the network they belong
to. Variables may, in addition, be associated with an
arc or a node and within the node or arc, they can be
assigned to a specific token. The mathematical repre-
sentation is a state-space model of the tokens in the
nodes. Consequently, the state is indexed with network
and tokens in the nodes, and the transport is indexed
with network and tokens in the arcs. Different mech-
anisms of transportation generate a subset of arcs for
each mechanism. For mass systems some of the nodes
might allow for chemical reactions, while some might
not. Therefore, the transposition variables are indexed
with reactive nodes, hence they will only be calculated
for nodes with reactions. This leads to compact vec-
tors and matrices, thereby reducing computational and
storage costs. Using index sets require mapping proce-
dures for defining subsets and special set operators for
handling the mathematical operations required to for-
mulate the modelling equations.

The mapping keep a reference from the global set to
the defined subset given as attribute in primary mod-
els. For example, if a model consist of total five arcs
described by the global arc set, A, then a subset of the
arc set only containing two arcs that involve volumetric
flow, AY, can be formulated by assigning a subset of the

global set as described in eq. (1).

A={a,bcde}, A ={ae}C A (1)

This definition generates a reference of the subset into
the superset, hence it reduces the space for which an
equation using that subset has to be calculated. A vari-
able indexed with .4 will only be calculated for the two
arcs in that set, while a variable indexed with A will be
Combi-

nations of index sets are formulated as the Kronecker-

calculated for the five arcs in the global set.

product of two sets. For example, the combination of
arcs and species, AS represents the species transported
by each arc with the directionality included. A vari-
able with more than one index set, such as matrices and
tensors, separate the different index sets with a comma.
The index sets are reflected into every variable.

The mathematical operators that handle the indexed
objects are equivalent to matrix operations but with an
additional twist. We define in total three ”set-sensitive”
multiplication operators. All of them process the phys-
ical units like a generic multiplication, the difference is
in the index handling, which is handled analogously to

Einstein notation for matrices.

e cxpand — the space is expanded to the maximal
space given the two sets of indices. The symbol

for the expansion product is a dot: .
e reduce — one of the components of the space is elim-

inated, the space shrinks by the indicated dimen-
s

sion. The symbol for the reduction is: %, with the

S above the star determine over which dimension

the reduction takes place.
e block expansion — The block operations expand to

the maximal space defined by block operations.
This product is often referred to as the Khatri-Rao

product. The symbol for the block expansion is: ®
These operators are, in addition to the rest of the in-

dex handling, included in the meta-language used for
equations. A variable defined using the meta-language
inherit the index sets through the calculations thus en-

sure structural correctness.

Units

Quantities are differentiated by two attributes that
together span the essential parameters needed to for-
malise the structures of quantities, namely the kind and
the magnitude. The kind attribute of a quantity iden-
tifies the observable property quantified, for example,
length, force, frequency, etc., while the magnitude of
the quantity expresses its relative size compared to other
quantities of the same kind. For the modelling tool, we
use the seven basic SI units to describe the kind and
we represent them only by integer exponents for units,
which are also the quantities being stored. The units of

variables are calculated when defining the equations.

Equations

We look at a set of model equations as a circuit of
interconnected process variables and equations that fit
into the scheme presented in fig. 1. For the physical net-
work, the decomposition starts with the states, which
then are used to define the state variable transforma-
tions. The state variable transformations primarily pro-
vide the effort variables that are used in the transport
equations, which in turn provide the flow used in bal-
ance equations, which again are used to describe state
equations. This decomposition is formulated a bipar-
tite graph consisting of two types of vertices, namely
variables and equations that are connected with edges.
Figure 2 illustrates the behavioural decomposition of a

diffusive mass transport equation described by eq. (2).

(2)

1 44 g represents diffusive transport rate of moles, and
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Figure 2. The equation structure given in eq. (2).
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The circular nodes represent variables and the square pink nodes

represent the equations. The variable calculated by an equation is placed above the equation and the variables used

in the equation are placed below. The colours of the variables assign different behaviour.

representing the diffusive transport. Eﬁf 45,408 is the
incidence matrix of the species in nodes with diffusion
and species transported in arcs with diffusion and p NS
is the chemical potential for every species in the respec-
tive nodes. The transport equation is composed of pro-
cess variables describing the basic phenomena and the
mathematical set operators. Each process variable may
be defined by more than one equation, which again is
represented using different process variables. For exam-
ple the chemical potential in fig. 2, can either be calcu-
lated as a state derivative of enthalpy and amount, or it
can be calculated from a reference value and the change
of temperature and composition. The outcome is two
alternative paths of equations for calculating the same
property. Which of the alternatives is finally used in the
model has to be decided by the user.

This described behavioural decomposition is recur-
sively repeated until all variables are defined and fit
into the structure illustrated in fig. 1. By giving initial
conditions and selecting alternative equation paths the
equation circuit is trimmed down from a cyclic graph
to a tree, which is included into the primary models.
The resulting equation tree together with the structural
knowledge represented by the networks of the nodes and

the arcs will ensure that the model is well defined and

Primary model

complete.

Figure 3. The specialised contents of primary models

Primary model definition

The primary models are the building blocks used for
generating the complete model. They contain the de-
tailed knowledge of process quantities and the equations.
An illustration of the contents of a primary model is il-
lustrated in fig. 3.

The primary model requires behaviour knowledge for
the tokens and what state, transport, transposition or
closure equations applies, which also exposes the vari-
ables being used in the equation. The relevant index
sets and the mappings are stored as structural knowl-
edge, and the typing is stored to describe the attributes
that determine how the modelling object will be handled

mathematically.
Case study — model of a dynamic flash tank

The following highlights the application of primary
models in the modelling tool by the means of a case
study of a controlled dynamic flash tank. The tank has
an inlet and two outlets, each with a valve. There are
two phases in the tank: a liquid that is kept at a con-
stant level and a gas phase that is kept at a constant
pressure. The feed into the tank is a mixture of two
liquid components. The valve in the drain is used to
control the liquid level in the tank by manipulating the
liquid flow whilst the valve in the outlet controls the

pressure by manipulating the gas flow.

Model decomposition

The model for the flash involves two physical net-
works representing the liquid and the gas phase, a con-
trol network for representing both the liquid controller
and the pressure controller. In addition, there are three
connection networks, one for the conversion of species
from the liquid to the gas phase, one to handle the mea-
surement conversion from the gas phase over to the con-



trol network and a connection network for doing the to-
ken conversion from the liquid phase over to the control
network and back again. This network information is

illustrated in Figure 4. The model for the flash involves

gas

liq | gas

liquid .—-ﬁ—»

gas | control

liq | control

control ._

Figure 4. The network of networks for the dynamic flash

three volumetric flows connected to reservoirs (F,D,0).
The mass flow between the liquid (L) and the gas phase
(G) is diffusive. The level controller receives a set-point
from a source (LS) and measures the level in the liquid
phase and returns a valve position in the volumetric flow
to the drain (D). The pressure controller (PC) measures
the pressure in the gas phase, compare the measurement
with a set-point it receives from a source (PS) and re-
turns a valve position to limit the volumetric flow from

the gas phase to the outlet.

Results

The complete model describes a controlled dynamic
flash tank. The implementation of this model is sum-
marised in Table 1. Notice how few equations are being
used compared to the number of index mappings. For
more complex systems consisting of dynamic flashes, the
number of equations will not increase. It is only the in-

dex sets that grow in size, but not in complexity.

Table 1. Summary of the implementation of the dynamic

flash tank in the modelling tool

Description Number
Networks: 6
Nodes: 14
Arcs: 15
Shared variables: 2
Physical variables: 71
Control variables: 10
Index mappings: 22
Model equations: 23
Control equation: 3

Conclusions

This paper presents a multi-network approach for the
representation of generic models applied to the repre-
sentation of controlled physical-chemical-biological pro-
cesses. The approach uses a directed graph for repre-
senting the structural elements of the model and uses
a bipartite equation/variable graph for the representa-
tion of the mathematical relations. The equations are
formulated starting with the states and adding succes-
sively the closure, the transport and transposition and
definition of the state differentials to ensure correctness
in both structural elements of the index sets and the
units. Both units and index sets are generated as part
of the equation definition for each variable derived from
the state variables. The structure and equations are put
together in primary models that can be handled individ-
ually. This generic modelling procedure was applied to
a case study of a controlled dynamic flash. The result
from the case study involves a rather large number of
variables and mappings of sets, but the total number of
model equations is only 23. With dynamic flashes being
the dominating component of all liquid/gas processes,
it is only those 23 equations that capture the heart of
the description. All the structural complexity is mapped
into the index sets.
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