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Abstract

We consider the problem of allocating long-term delivery time windows to customers in the context of

vehicle routing operations. Once the time windows have been assigned, the distributor must attempt to

meet them on a daily basis as well as possible. Given that operational parameters, such as customer de-

mands or travel times, vary from day to day, assigning time windows in a way that minimizes the expected

routing costs is non-trivial. This problem can be modeled as a two-stage stochastic program where the

time window assignments constitute first-stage decisions and the optimal vehicle routes constitute second-

stage decisions that depend on the realizations of the uncertain parameters. We show that a sampled

deterministic equivalent of this stochastic model can be reduced to a variant of a large class of problems

known as Consistent Vehicle Routing Problems in the literature. We adapt an algorithmic framework we

had previously developed for the latter class of problems and solve to guaranteed optimality instances

of the former. Our approach is highly competitive when compared to the previous state-of-the-art as it

achieves the fastest computation time on all literature benchmark instances. Moreover, and in contrast

to existing approaches, we can readily incorporate uncertainty in customer presence and travel times.
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Introduction

The delivery (or pickup) of goods within a scheduled

time window is widespread in several real world distribu-

tion networks. In many industries, these time windows

are mutually agreed upon by the distributor and cus-

tomer through long-term delivery contracts. For exam-

ple, it is very common that deliveries are always made on

the same day of the week and at about the same time of

the day for an entire year. This is crucial for efficient in-

ventory management as well as scheduling of personnel.

Examples of applications where such operations are typ-

ical include among others vendor-managed maritime in-

ventory routing (Zhang et al., 2015), online retail (Spliet

and Gabor, 2015), attended home delivery (Agatz et al.,

2011) and courier services (Jabali et al., 2015).

Once a time window has been agreed upon and com-

municated to the customer, the distributor must at-

tempt to meet these time windows as well as possible
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on an operational (e.g., daily) basis. The actual vehicle

routes on any given day are obtained through the so-

lution of a (capacitated) Vehicle Routing Problem with

Time Windows (VRPTW) using parameter values (e.g.,

customer demands) that are realized on the day of de-

livery. This operational-level information is not known

with certainty at the tactical planning stage when the

time windows are to be decided. However, companies of-

ten have large amounts of historical data which can be

used to obtain forecasts of different parameter scenarios

(e.g., as perturbations from the nominal values). It is

possible to take advantage of this information to gener-

ate better risk-averse solutions. Indeed, failure to take

into account this information at the planning stage and

utilizing nominal forecast values can lead to situations

where the routing costs are unacceptably high.

The Time Window Assignment Vehicle Routing

Problem (TWAVRP), was first introduced by Spliet and

Gabor (2015). The authors considered the problem of

assigning time windows of pre-specified width within



some exogenous time windows (for e.g., arising from

hours-of-work regulations) to a set of known customers

under demand uncertainty. They assumed that a finite

set of scenarios, each describing a realization of demand

for every customer, is given with known probability of

occurrence. They formulated the problem of designing

time windows as well as vehicle routes satisfying these

time windows for each of the postulated scenarios such

that the expected routing costs are minimized, and de-

signed a branch-price-and-cut algorithm that could solve

instances with 25 customers and 3 scenarios to optimal-

ity. A similar approach was followed in Spliet and De-

saulniers (2015), with the difference that the time win-

dows were selected from a discrete set of a priori con-

structed windows.

Jabali et al. (2015) considered the assignment of time

windows under deterministic customer demands and un-

certain travel times in order to determine a single rout-

ing plan to be executed unchanged on each day of the

year. They developed a Tabu Search heuristic method to

design routes and a linear program to determine the op-

timal time windows under the assumption that at most

one arc will be disrupted on each vehicle route. Their

objective was to minimize the sum of traveling costs and

expected overtime and tardiness penalty costs. Finally,

in the context of e-commerce, Agatz et al. (2011) consid-

ered the problem of designing a discrete set of time win-

dows (instead of just one) to offer to potential customers

in different zip code areas under customer and demand

uncertainty. They do not incorporate a detailed rout-

ing model but instead choose to estimate the expected

routing costs using continuous approximation methods

and aggregate-level routing models.

Seemingly different from the above problems and mo-

tivated in the context of operational level planning, the

Consistent Vehicle Routing Problem (ConVRP) (Groër

et al., 2009) aims to design minimum cost vehicle routes

over a finite, multi-day horizon to serve a set of cus-

tomers with known demands. The goal is to design

routes that are consistent over time; this translates to

satisfying any of the following requirements each time

service is provided to a customer: (i) arrival-time consis-

tency, wherein the customer should be visited at roughly

the same time during the day, (ii) person-oriented con-

sistency, in which the customer should be visited by the

same driver, and whenever applicable, (iii) delivery con-

sistency, for which a customer should receive roughly

the same quantity of goods. We refer the reader to the

survey by Kovacs et al. (2014) for an overview of this

problem and its applications.

For the purposes of this study, we only need to focus

on the ConVRP with the arrival-time consistency re-

quirement (i). In this problem, every customer must be

visited at roughly the same time on each day for which

service is requested. The exact time of service is a de-

cision variable but the difference between the earliest

and the latest arrival times at each customer location

must differ by no more than some pre-specified constant

bound. Exact algorithms for the single-vehicle variant

of the arrival-time ConVRP (a.k.a., Consistent Travel-

ing Salesman Problem) were proposed by Subramanyam

and Gounaris (2016a,b), and the authors were able to

address to guaranteed optimality realistic instances con-

taining up to 100 customers that require service over a

5-day horizon. Notably, the algorithm described in the

second reference allows also for route duration limits and

the option for a vehicle to idle en route.

In this paper, we show that the deterministic equiv-

alent of any TWAVRP instance can be reduced to an

instance of the arrival-time ConVRP. This has two con-

sequences: (i) any algorithm developed for the latter

can be used to obtain solutions for the former, and

(ii) in the context of strategic time window allocation,

a larger subset of parameters can be addressed under

uncertainty, since the scope of the ConVRP is wider.

Furthermore, we extend the exact algorithm of Subra-

manyam and Gounaris (2016b) developed for the Con-

sistent Traveling Salesman Problem to the TWAVRP

and solve benchmark instances to guaranteed optimal-

ity. A computational study shows that our proposed ap-

proach strongly outperforms the existing state-of-the-art

method of Spliet and Gabor (2015) and can be readily

extended to handle the case of uncertain customers.

Problem Definition

Let G = (V,A) denote a complete directed graph

with nodes V = {0, 1, . . . , n} and arcs A = {(i, j) ∈
V × V : i 6= j}. Node 0 ∈ V represents the unique de-

pot, and each node i ∈ V \{0} corresponds to a customer

with demand qi ∈ R+. The depot has operating time

windows [e0, `0] and is equipped with an unlimited num-

ber of homogeneous vehicles of capacity Q.1 Each ve-

hicle incurs a transportation cost cij ∈ R+ and a travel

time tij ∈ R+ if it traverses the arc (i, j) ∈ A. Service

times si ∈ R+ can be incorporated in the travel times

1Although this exposition is in line with existing literature,

our approach can readily address the limited fleet case.



via the operation tij ← tij + si for all (i, j) ∈ A. For

notational convenience, we refer to the set of customers

V \ {0} as VC .

A set of routes R = (R1, . . . , Rm) represents a par-

tition of the customer set VC into m ≥ 1 vehicle routes.

Here, Rk = (Rk,1, . . . , Rk,nk
) represents the kth vehicle

route, Rk,l the lth customer and nk the number of cus-

tomers visited by vehicle k. We assume that each cus-

tomer must be visited exactly once by a single vehicle,

i.e, split deliveries are not allowed. The cost of a route is

evaluated as c(R) =
∑m

k=1

∑nk

l=0 cRk,l,Rk,l+1
, where we

define Rk,0 = Rk,nk+1 = 0, for all k ∈ K = {1, . . . ,m},
i.e., each route starts and ends at the depot.

Let wi ∈ R+ denote the pre-specified width of the

time window to be assigned to customer i ∈ VC . The

decision-maker must then decide the starting time xi ∈
[ei, `i] of the time window [xi, xi + wi] to be allocated

to customer i ∈ VC .2 A route set R = (R1, . . . , Rm) is

feasible under a fixed time window assignment [x, x +

w] and under a specific demand realization q, if (i) all

capacity constraints are satisfied, i.e.,
∑

i∈Rk
qi ≤ Q

for all k ∈ K, and (ii) all time window constraints are

satisfied, i.e., there exists a vector of arrival times, a ∈
Rn

+, that satisfies the following linear system:

aRk,1
≥ e0 + t0,Rk,1

∀ k ∈ K (1)

aRk,l+1
− aRk,l

≥ tRk,l,Rk,l+1
∀ l ∈ {1, . . . , nk},∀ k (2)

aRk,nk
≤ `0 − tRk,nk

,0 ∀ k ∈ K (3)

a ∈ [x, x+ w] (4)

Observe that, by this definition, if a vehicle arrives at

customer location i ∈ VC at a time earlier than xi, then

it is allowed to wait until xi. However, arriving later

than xi +wi is not permitted. We denote by R(x, q) the

set of all feasible route sets for a given demand realiza-

tion q and a fixed time window assignment [x, x + w].

Note that we suppress the dependence on parameters

other than q because we assume for now that only q is

uncertain.

If the probability distribution P of the uncertain de-

mand vector q is known, then the goal of the TWAVRP

is to design a vector of time windows [x, x+w] such that

the expected cost of the associated routing instance is

minimized:

2[ei, `i + wi] is the exogenous time window associated with

i ∈ VC . If no such time windows are applicable, we can set

ei = 0 and li to an appropriately large value.

min
x∈[e,`]

EP [VRPTW(x, q)] (5)

where VRPTW(x, q) = min
R∈R(x,q)

c (R) (6)

In practice, the exact probability distribution P is

not available or is hard to obtain. Indeed, even if is ex-

actly known, computing the objective function involves

integrating the recourse function VRPTW(x, ·), which is

almost impossible considering that the solution of the

deterministic problem is itself challenging. Instead, we

assume that we are given a finite set of demand scenarios

qs, s ∈ S, along with associated probabilities of occur-

rence ps. In this case, we are interested in optimizing

the deterministic equivalent of problem (5), obtained by

replacing the expectation with a sample average:

min
x∈[e,`]

∑
s∈S

psVRPTW(x, qs) = min
x∈[e,`]

Rs∈R(x,qs)

∑
s∈S

psc (Rs) (7)

We denote by (x, {Rs}s∈S) a feasible solution to prob-

lem (7), i.e, a combination of time window decisions x

and route sets Rs feasible for the VRPTW with demand

vectors qs and time window vector [x, x+ w].

We shall now construct a problem instance of the

arrival-time ConVRP and show that the optimal value

of this problem coincides with the optimal value of (7).

Note that the ConVRP is a multi-period problem. The

set of time periods in our ConVRP instance is S; that

is, each scenario in the TWAVRP corresponds to a time

period in the ConVRP. The set of customer nodes is VC

and the depot node is 0. Each customer i ∈ VC requires

service in every period s ∈ S of the planning horizon,

within a time window [ei, `i +wi] that is common across

periods, and requests demand quantity qsi in each period

s ∈ S. The set of arcs is identical to A, with the ex-

ception that the transportation costs are period-specific:

each vehicle incurs a transportation cost pscij when it

traverses the arc (i, j) ∈ A in time period s ∈ S. The

travel times, service times and vehicle capacities remain

the same as in the TWAVRP.

The maximum allowable arrival-time differential in

our ConVRP instance is customer-specific and is equal

to wi for customer i ∈ VC . Note that this represents

the maximum allowable difference between the earliest

and latest arrival times at location i ∈ VC . More specif-

ically, a set of routes {Rs}s∈S is feasible for the arrival-

time ConVRP if and only if (i) all capacity constraints

are satisfied, i.e.,
∑

i∈Rs
k
qsi ≤ Q for all k ∈ K, s ∈ S

and (ii) all arrival-time consistency constraints are satis-

fied; that is, there exist a vector of time window feasible



arrival-times whose difference at any customer location

is bounded by the maximum allowable value, i.e, there

exist feasible solutions as ∈ Rn
+ to the linear system (1)–

(3), for each s ∈ S, that satisfy the following inequali-

ties:

asi ∈ [ei, `i + wi] ∀ i ∈ VC , ∀ s ∈ S (8)

max
s∈S

asi −min
s∈S

asi ≤ wi ∀ i ∈ VC (9)

We denote by RC the set of all feasible ConVRP routes

{Rs}s∈S as per the above definition. The cost of a fea-

sible solution is evaluated as the sum of transportation

costs across all time periods
∑

s∈S p
sc(Rs). The arrival-

time ConVRP can now be stated as follows:

min
{Rs}s∈S∈RC

∑
s∈S

psc (Rs) (10)

Algorithmic Framework

Observe that every feasible solution (x, {Rs}s∈S) to

problem (7) corresponds to a feasible solution {Rs}s∈S
in problem (10). Moreover, it can be shown that for

every feasible solution {Rs}s∈S in problem (10), there

exists some x ∈ [e, `] such that (x, {Rs}s∈S) is feasible

in problem (7). Therefore, since the objective functions

of the two problems are identical, the two statements to-

gether imply that the optimal solutions of problems (7)

and (10) coincide.

Thus, we can solve the deterministic equivalent of

any TWAVRP instance by reducing it to an equivalent

arrival-time ConVRP instance. We remark that the so-

lution of the corresponding ConVRP instance does not

give us the time window assignments x explicitly. Nev-

ertheless, it can be easily computed post-optimization.

Indeed, if {Rs}s∈S is feasible in problem (10), then by

definition, there exists a vector of arrival-times {as}s∈S
that is feasible for the system of linear inequalities con-

sisting of (1)–(3), imposed for each s ∈ S and (8)–(9).

Using any such vector of arrival-times, we can com-

pute the explicit time window assignments by setting

xi = min{`i,mins∈S a
s
i}, for each i ∈ VC . It is not dif-

ficult to show that the corresponding vector of arrival

times would satisfy as ∈ [x, x+ w] for each s ∈ S.

Note that in the most general case, the ConVRP al-

lows for the possibility that not all customers require

service in all time periods and that travel and service

times may differ from one time period to the other.

Translated in the context of a TWAVRP, this allows for

the possibility to consider uncertainty in the existence

of customer orders by constructing scenarios where dif-

ferent subsets of customers have been removed from the

graph G. Furthermore, it allows for the possibility to

consider uncertainty in travel times by constructing sce-

narios which represent perturbations from their nominal

values. While these observations enable the simultane-

ous consideration of uncertainty in all of these parame-

ters, it should be mentioned that doing so may come at

the cost of an explosion in the number of scenarios that

have to be considered.

In our computational experiments, we adapt the de-

composition algorithm of Subramanyam and Gounaris

(2016b), developed for the Consistent Traveling Sales-

man Problem, to solve our reduced TWAVRP instances

to optimality. We shall now briefly summarize the main

ingredients of the algorithm, translated into our context.

The algorithm uses a branch-and-bound tree search to

implicitly enforce the scenario-linking constraints (9) by

solving within each node a set of separable VRPTW in-

stances. The tree is initialized with the original problem

instance where only the exogenous time windows (8) are

enforced. The following linear program is then solved to

check if the optimal node solution {Rs}s∈S is feasible in

problem (10):

min
d∈R,a

d (11)

s.t. d ≥ max
s∈S

asi −min
s∈S

asi − wi ∀ i ∈ VC (12)

as ∈ Rn; Eq. (1)− (3), (8) ∀ s ∈ S (13)

If the optimal solution of this linear program satisfies

d∗ ≤ 0, then {Rs}s∈S is a feasible solution for prob-

lem (10). Otherwise, if d∗ > 0, there is at least one

customer i ∈ VC which violates its corresponding con-

straint (9): maxs∈S a
s∗
i −mins∈S a

s∗
i > wi. In this case,

the algorithm creates two new nodes by using the dis-

junction (14) with β = (maxs∈S a
s∗
i + mins∈S a

s∗
i )/2 as

a branching rule.

Observe that for every feasible solution {Rs}s∈S in

problem (10), there exists an arrival-time vector {as}s∈S
which satisfies the following disjunctive constraints:

[asi ≥ β − wi/2 ∀ s ∈ S] ∨ [asi ≤ β + wi/2 ∀ s ∈ S]

∀ β ∈ R, ∀ i ∈ VC
(14)

Since the expressions within each disjunct in (14) apply

for all scenarios simultaneously, each node of the branch-

and-bound tree corresponds to solving a set of separable

VRPTW instances, which is advantageous from a nu-

merical point of view. In our implementation, we use

the branch-and-cut algorithm proposed by Kallehauge



et al. (2007) for the solution of these instances. Note

that, although we did not pursue it in this work, the

solution of these VRPTW instances can be conducted

in parallel so as to expedite the overall algorithm.

Computational Results

We implemented our algorithm in C++. The runs

were conducted on a single-core of an Intel Xeon

2.8 GHz processor and the C Callable Library of

CPLEX 12.6 was used to implement the branch-and-cut

based VRPTW algorithms of Kallehauge et al. (2007).

In the implementation of these branch-and-cut algo-

rithms, all CPLEX-generated cuts were disabled.

We tested our algorithmic framework on the set of

40 benchmark instances proposed by Spliet and Ga-

bor (2015). This benchmark set contains instances

with 10, 15, 20, and 25 customers (10 instances each).

Each instance consists of three scenarios (representing

low, medium, and high demand realizations) with equal

probabilities of occurrence. The instances are inspired

by a Dutch retail chain and we refer the reader to that

paper for further details.

We now present a comparison of our method with

the branch-price-and-cut method presented in Spliet and

Gabor (2015). Their algorithm was implemented on

an Intel Core i5-2450M CPU 2.5 GHz processor using

CPLEX 12.4. In order to make a fair comparison, we

use the same CPU time limit of 1 hour. In Tables 1

and 2, we summarize the performance of the two algo-

rithms across the entire dataset of 40 instances.

Table 1. Summary of computational results of our de-

composition algorithm.

Proven Optimal Residual Gap

n # t (sec) # % No UB

10 10 1.3 0 – 0

15 9 17.8 1 0.49 0

20 10 2.8 0 – 0

25 8 61.0 2 0.21 0

All 37 18.6 3 0.30 0

For each of the two approaches, we report the number

of instances (out of 10) for which optimality was proved

as well as the computational time required, averaged

across the same instances. For those instances which

could not be solved within the imposed time limit, we

report the average residual gap defined as ub−lb
ub ×100%,

Table 2. Summary of results of the branch-price-and-cut

algorithm of Spliet and Gabor (2015).

Proven Optimal Residual Gap

n # t (sec) # % No UB

10 10 25.4 0 – 0

15 8 83.6 1 0.25 1

20 8 83.6 1 0.25 1

25 5 792.4 0 – 5

All 31 188.0 2 0.25 7

where ub is the global upper bound and lb is the global

lower bound of the branch-and-bound tree, whenever

ub < +∞ (i.e., an incumbent solution was found during

the search process). The last column reports the number

of instances for which a feasible solution could not be

found in the imposed time limit.

Our algorithm is able to prove the optimality of

37/40 instances utilizing an average computation time

of 18.6 seconds; of these instances, 6 were unsolved by

the best previous method. Moreover, for the considered

dataset, our approach always finds a feasible solution

within the first ten seconds and the optimal solution

within the first minute; the remaining time is spent try-

ing to close the optimality gap. The new algorithm thus

strongly outperforms the existing method, solving more

problems and achieving the fastest computation time in

almost all instances. These results showcase that the

solution of TWAVRP instances via their reduction to

equivalent ConVRP instances is also promising from a

computational standpoint.

Conclusions

The strategic allocation of delivery time windows to

customers is an important problem that arises in the

context of vehicle routing operations. These long-term

decisions can significantly impact daily operations: the

distributor must strive to meet them as well as possible,

since failure to do so may result in significant economic

and reputational repercussions. In this regard, it is im-

portant to recognize and incorporate at the planning

stage the inherent uncertainty in parameters like cus-

tomer demands and travel times, whose actual values

will be realized only on the day of operation.

In this paper, we studied the Time Window Assign-

ment Vehicle Routing Problem, which can be modeled

as a two-stage stochastic program where the time win-



dow assignments constitute first-stage decisions and the

actual daily vehicle routes constitute second-stage deci-

sions. We showed that a sampled deterministic equiva-

lent of this stochastic model can be reduced to a well-

studied class of Consistent Vehicle Routing Problems

with arrival-time consistency requirements. We adapted

an exact algorithm for the latter class of problems and

solved to guaranteed optimality TWAVRP benchmark

literature instances that considered demand uncertainty.

In addition to being numerically superior to the existing

state-of-the-art method, our approach enjoys the benefit

of being able to readily incorporate uncertainty in other

parameters like customer presence and travel times. The

precise incorporation of these uncertain parameters and

the consideration of other time window assignment poli-

cies (see, e.g., Spliet and Desaulniers (2015); Agatz et al.

(2011)) remains to be investigated in the future.
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