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Abstract

An optimization method is proposed to solve a multi-dimensional black-box problem based on the pro-

jection onto a special 1-dimensional space. A univariate function on this space exists such that its optima

corresponds to the optima of the original multi-dimensional problem. Based on sensitivity analysis, we

provide useful properties of the function and geometric intuition on the conservation of the optima. A

transformation matrix can be recursively applied to obtain this 1-dimensional function and transform

back to the original n-dimensional space. A two-step iterative algorithm is also proposed to find the

optima. The preliminary theoretical development shows promise to use this approach to effectively solve

multi-dimensional black-box problems. The method is applied on 17 box-constrained test problems to

demonstrate its effectiveness.
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Introduction

Many practical engineering problems are high-

dimensional, computationally expensive, and may not

have explicit functional forms/expressions. Examples

include optimization of process operations described

by high-fidelity models such as computational fluid

dynamics, partial differential equations (Boukouvala

et al., 2015) and flowsheet simulation (Caballero and

Grossmann, 2008). The algebraic form of the objective

function in these problems is unavailable and these can

be referred as black-box problems (Nuchitprasittichai

and Cremaschi (2011), Eason and Biegler (2016)).

Although detailed process models have been useful for

combining atomistic scale to process scale (Hasan et al.,

2013), the computational costs of using gradient based

solvers are high. As a result, there has been a growing

interest in derivative-free optimization (DFO), both in

theoretical advancements (Powell (2006), Conn et al.

(2009), Wild and Shoemaker (2013)) and applications

(Henao and Maravelias (2011), First et al. (2014)).
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It is assumed in DFO that evaluation of a black-box

function is possible but expensive. One goal in solving

these problems is to find the optimum using as few

function evaluations as possible.

In spite of significant efforts in the past, the applica-

tion of DFO methods has been limited to small dimen-

sions because the problem complexity increases with in-

crease in the number of variables (Rios and Sahinidis,

2013). Current strategies to handle high dimensional

problems include reducing design space, screening signif-

icant variables, decomposing into smaller sub-problems

and mapping (Shan and Wang, 2010). Mapping and

decomposition have been reported as promising ways

to tackle high-dimensional black-box problems. How-

ever, no previous work examined the possibility of map-

ping an optimization problem from the original high-

dimensional space to a single dimension while preserving

the optima.

This paper uses a projection of the original optimiza-

tion problem to convert it into a univariate problem. By

doing so, the problem size and complexity can be re-

duced simultaneously. We also show that the convexity,



concavity and twice-continuous differentiability proper-

ties of the original function hold true for the projected

1-dimensional function. Based on projection, we pro-

vide a novel algorithm to solve the following black-box

problem:

P1 : min
x

f(x)

s.t. xi ∈ [xi
L, xi

U ] ∀i ∈ {1, . . . , n}
(1)

where x ∈ Rn, and f (x ) : Rn → R is assumed to be

twice-continuously differentiable black-box function.

The paper is organized as follows. We first provide

the idea of projection and intuition on conservation of

optima. Next, we present the properties of the projected

function. The algorithm is then presented followed by

computational results and concluding remarks.

Main Idea

We add an auxiliary variable t to P1 and re-define

P1 as P2 as follows:

P2 : min
x,t

f(x)

s.t.

n∑
i=1

xi = t (2)

xi ∈ [xi
L, xi

U ] ∀i ∈ {1, . . . , n}

t ∈ [

n∑
i=1

xLi ,

n∑
i=1

xUi ]

Remark 1. Problem P2 is equivalent to P1 in a sense

that both have same feasible, local and global optima

sets because adding the auxiliary variable t does not

alter the problem.

Therefore, we can also write P1 as P3 as follows:

P3 : min
t

F (t)

s.t. F (t) =

min
x

f(x)

s.t.
∑n
i=1 xi = t

xi ∈ [xi
L, xi

U ]

 (3)

t ∈ [

n∑
i=1

xLi ,

n∑
i=1

xUi ]

where, t ∈ T ⊂ R and F(t) is the 1-dimensional pro-

jected function.

Proposition 1. min
x

f(x) = min
t

F (t)

Proof. P3 ⇔ P2, P2⇔ P1. Hence, P3 ⇔ P1

Geometrically, it can be interpreted as follows. If

the samples (x, f) in the n-dimensional space is pro-

jected onto 1-dimension (t, f), multiple function values

will be obtained corresponding to a particular t. Choos-

ing the minimum of these values for each t results in

a univariate function (F (t)) and optimizing this uni-

variate function is equivalent to optimizing the original

n-dimensional problem. This is illustrated in Figure 1

using 2-dimensional Branin function (Figure 1 (a)). Fig-

ure 1(b) is obtained by projecting all f values on t. The

function has 3 minima and they can be observed in Fig-

ure 1(c) as well. If the exact points on F (t) (shown by

the red curve) can be obtained, the original problem is

essentially reduced to univariate problem. Note that re-

gardless of the problem dimension, a univariate function

similar to that shown in Figure 1(c) always exists.

The problem P1 can be solved by decomposing into

two sub-problems: solve the lower level problem for x

for each t (P4) and then solve the upper level problem

for t (P5). We explicitly define the two sub-problems as

follows:

P4 : F (t) = min
x

f(x)

s.t. g
(1)
i := xLi − xi ≤ 0 (4)

g
(2)
i := xi − xUi ≤ 0

h1 :=

n∑
i=1

xi = t

P5 : min
t

F (t)

s.t. t ∈ [tL, tU ]
(5)

Solving P5 involves optimizing a trivial 1-

dimensional black-box function. Since obtaining

analytical expression of F (t) is not possible for black-

box problems, the idea is to solve P4 at each sampled t.

In this work, we solve the two problems exactly using

trust-region methods discussed in Algorithm section.

In order to guarantee convergence of the univariate

function to the original optima, it is critical to determine

when the function is twice continuously differentiable.

It is also important to find a strategy that provides a

good initial guess to solve P4. The answer to these vital

questions are provided in the next section.

Theoretical Developments

We realize that the lower level sub-problem (P4) can

be interpreted as a parametric problem in t and there-

fore, we can utilize the optimal value function properties



Figure 1. (a) Branin function (Global minima:

f(xopt) = 0.397887 at xopt = (−π, 12.275), (π, 12.275),

(9.42478, 2.475)), (b) Projection on t-space, (c) Illustrat-

ing the minima of projection.

discussed in Fiacco (1984) for general nonlinear para-

metric problems.

Properties of the projected function F(t)

We list important properties of F (t):

Property 1. F(t) is continuous if f(x) is continuous.

Property 2. F(t) is convex (concave) if f(x) is convex

(concave).

Property 3. Assume that KKT conditions, Second

Order Sufficient Condition (SOSC), Linear Indepen-

dence Constraint Qualification (LICQ) and Strict Com-

plementarity Slackness (SCS) hold true at x̄p (optima

corresponding to t = tp) with the associated Lagrange

multipliers ν̄1, ν̄2 and λ̄, then in the neighborhood of tp,

F (t) is twice continuously differnentiable.

Property 4. F (tL) = f(xL), F (tU ) = f(xU )

While Property 4 is trivial to prove, Property 1, 2,

3 can be shown through the works of Hogan (1973),

Fiacco and Kyparisis (1986) and Fiacco (1984) respec-

tively. Note that Property 3 will not hold whenever the

assumptions are violated and convergence may not be

guaranteed.

Obtaining the initial guess to solve P4

Theorem 1. (Fiacco (1984))

Suppose assumptions of Property 3 hold true, then (i)

x̄p is a local minimizer and the Lagrange multipliers are

unique (ii) there exists a once continuously differentiable

vector function y =[x(t), ν1(t), ν2(t), λ(t)] such that x(t)

satisfies the KKT conditions of P4 at t in the neighbor-

hood of tp:

dy(t)

dt
= M−1N where (6)

M =

∇2L ∇g(1)1 · · · ∇g(1)n ∇g(2)1 · · · ∇g(2)n ∇h1

−ν(1)1 ∇T g
(1)
1 −g(1)1

...
. . .

−ν(1)n ∇T g
(1)
n −g(1)n

−ν(2)1 ∇T g
(2)
1 −g(2)1

...
. . .

−ν(2)n ∇T g
(2)
n −g(2)n 0

∇Th1 · · · 0


N =

[
∇2
txL,−ν

(1)
1 ∇Tt g

(1)
1 , . . .− ν(2)n ∇Tt g

(2)
n ,∇Tt h1

]T
A first order Taylor series approximation can be used

to obtain the optimal solution at a point tp+1 in the

neighborhood of tp by (Fiacco (1984)):
x(tp+1)

ν(1)(tp+1)

ν(2)(tp+1)

λ(tp+1)

 =


x̄p

ν̄p
(1)

ν̄p
(2)

λ̄p

 + M̄−1N̄(tp+1 − tp) (7)

Theorem 1 has been used to obtain analytical solutions

for mp-QPs (Dua et al., 2002). In the case of classical

nonlinear programming, where the Hessian and the Ja-

cobian are analytically available, Theorem 1 in conjunc-

tion with first-order approximation can yield an exact

optimum in the neighborhood of tp. Property 4 and Eq.

7 give a powerful tool to approximate F(t) starting from

the lower bound (tL) without performing optimization.

In other words, there exists a projection/map given by

Theorem 1 which can convert the n-dimensional opti-

mization problem to a 1-dimensional problem.

Note that Eq. 7 requires the Hessian and the La-

grange multipliers corresponding to x̄p. In the paradigm

of derivative-free optimization, obtaining an analytical

expression for the Hessian is not possible and using fi-

nite difference is computationally expensive. A class of

fully-quadratic models (Conn et al., 2009), approximat-

ing the Hessian of the original function f , can be con-

structed but that requires evaluations to the order of n2.

Additionally, the result is applicable for parameters in

the neighborhood of tp and taking small steps in t may



not be practical. Nevertheless, Eq. 7 provides a good

initial guess for a trust-region method that converges to

the optimum, x̄p.

DFO Algorithm

The idea is to partition t into Mt segments and ob-

tain a finite number of samples along t (t1, . . . , tMt+1)

and the corresponding F (t) (F (t1), . . ., F (tMt+1)) and

transform back the optima of the univariate function, t∗

to the original space, x∗.

The algorithm has two components:

a) An inner loop - finds optima (F (tp), x̄p) of P4 at

the sampled parameter value tp with starting point x0,p

using an n-dimensional surrogate model ,

b) An outer loop - utilizes function values F obtained

from the inner loop to train a 1-dimensional surrogate

model and obtain t∗.

Solving P4 (Inner Loop)

The steps of algorithm described in Bajaj and Hasan

(2016) are followed to obtain x̄p, given an initial guess

x0,p. Instead of using the derivative of the penalty func-

tion as the criticality measure, we solve Eq. 8 and

stop when both the KKT error (defined by Eq. 8) ,

εt,p =
∑n
i SPi + SNi and the accuracy of the surrogate

model εf,p are less than their respective tolerances, εt

and εf .

The following linear program is solved to check

whether a point xc,p is an optima of P4 and determine

the Lagrange multipliers that satisfy the KKT condi-

tions:

min
SPi,SNi,

ν(1),ν(2),λ

n∑
i=1

SPi + SNi (8)

s.t.
∂fr

∂xi
+ λ− ν(1)i + ν

(2)
i = SPi − SNi

ν(1)(xL − xc,p) = 0, ν(2)(xc,p − xU ) = 0,

ν(1), ν(2) ≥ 0, xL ≤ xc,p ≤ xU

where fr : Rn → R represents a surrogate model of f .

The satisfaction of above equation is not sufficient to

guarantee optimality since the surrogate model may

be inaccurate. Therefore, xc,p has to satisfy the KKT

conditions and the surrogate model needs to be accurate

in the current trust region ∆k,p in order to guarantee

convergence to the actual optima x̄p. When both

these conditions are satisfied, xc,p is the optima of P4

i.e. xc,p = x̄p. The Lagrange multipliers are recorded

and the Hessian of the surrogate model is used as an

estimate of the Hessian of the original function. Since

this procedure provides only an estimate of Hessian

and multipliers and a large step size is used, applying

Eq. 7 may not give the exact optima,x̄p+1. But still, it

gives a good initial guess (x0,p+1) for an algorithm that

converges to local optima (x̄p+1).

Cubic radial basis function is used as the surrogate

model since it has been shown to satisfy the fully-linear

property (Wild and Shoemaker (2013)). We use global

optimization solver ANTIGONE (Misener and Floudas,

2014) while optimizing fr.

Solving P5 (Outer loop)

(i) Initialize the algorithm by splitting the entire t do-

main into Mt segments such that t1 = tl and tMt+1 = tu.

(ii) Use the inner loop algorithm for each t ∈
{t1, · · · , tp, · · · tMt+1} to obtain a set of values

{F (t1), · · ·F (tp), · · ·F (tMt+1)} and record the optima

{x̄1, · · · , x̄p, · · · x̄Mt+1}.
(iii) Construct a single dimensional surrogate model us-

ing the samples obtained above (Assumption of fully-

linear property will hold due to Theorem 1 and Theo-

rem 3).

(iv) Estimate the root mean squared error εl,o.

(v) Globally optimize F r(t) to obtain td and use the in-

ner loop algorithm to obtain the optimum x̄d.

(vi) If εl,o ≤ εf and ∇F r(td) ≤ εt, t
∗ = td and x∗ = x̄d,

STOP. Else, go to step (vii).

(vii) If F (td) ≤ F (tl), set xl+1 = xd and increase the

trust region ∆l+1 = σ2∆l.

(viii) Else set xl+1 = xl and decrease the trust region

∆l+1 = σ1∆l.

(ix) Use the previously obtained Lp points in ∆l+1 and

divide the new domain into Mt−Lp segments and go to

step (ii).

Computational Results

The proposed optimization algorithm is applied on

a test suite of 17 problems from literature (Rios and

Sahinidis (2013) and Wild and Shoemaker (2013)).

All the test problems are box-constrained nonconvex

problems. It is assumed that only function evaluation

at a desired sample point is possible. The parameter

values: η0, σ1, σ2, εt, εf ,Mt are chosen to be 0.25, 0.5,

3, 0.1, 0.01 and 20 respectively. The maximum number

of function evaluations, Nmax are limited to 2500. The



Table 1. Summary of results

Problem Nvar fopt Np
eval N

ASA
eval N

DD
eval N

DE
eval N

NEW
eval

Branin 2 0.3978 281 25171 133 1128 32

Hartman 3 3 -3.862 576 - - - -

Shekel 5 4 -10.153 665 25381 2531 25001 15

Shekel 7 4 -10.402 1004 - - - -

Shekel 10 4 -10.5364 803 - - - -

Ex8.1.1 2 -2.021 234 2515 91 1685 91

Schwefel 5 0 501 2551 2423 59 183

Camel 6 2 -1.031 441 2517 193 2098 40

Camel 1 2 -1.031 527 2517 1291 2251 35

Hs 5 2 -1.913 307 2517 121 554 33

Hs 045 5 1 1350 25511 246 2891 1641

Himmelp1 2 -62.053 244 2514 142 1428 34

Powell 4 0 25002 25381 3541 5431 379

Kowalik 4 3.07E-4 822 2521 1583 786 195

Hatfldc 4 0 2347 25381 7941 8281 1372

Hartman 6 6 -3.322 25002 25511 1559 12141 127

Trigono 5 0 25002 - - - -

results of the test problems are given in Table 1. Col-

umn 1 lists test problems; column 2 gives the number

of variables, Nvar; column 3 lists the global optima of

each problem, fopt; column 4 provides the number of

evaluations taken by our proposed method to converge

to the optimal solution. The columns 5, 6, 7, 8 and 9

record the number of evaluations taken by other meth-

ods, namely the Adaptive Simulated Annealing (ASA),

DAKOTA/DIRECT (DD), DAKOTA/EA (DE), TOM-

LAB/GLCCLUSTER (TG) and NEWUOA (NEW),

respectively. The results of the other methods are taken

from http://archimedes.cheme.cmu.edu/?q=dfocomp,

where Rios and Sahinidis (2013) compared 22 solvers

by giving 10 runs with different initial guesses for each

test problem. The numbers reported in Table 1 is the

minimum of the number of evaluations taken to achieve

the best solution in 10 runs.

In all the problems, the proposed algorithm either

converges to the global optima or is very close to it

given the budget of function evaluations. The proposed

method performs better in terms of number of eval-

uations and number of problems converging to global

optima compared to ASA. In 7 out of 13 problems,

DD performs better; while in 4 of the problems, our

method gives a better objective function value and in 2

1Optima was not obtained
2Maximum evaluations allowed

of the problems, we perform better in terms of number

of evaluations relative to DD. Compared to DE, overall,

our method achieve superior results, while NEWUOA

seems to perform better. However, performance of all

the solvers except DD compared in this paper depends

heavily on the initial guess provided. For instance, in one

of the runs of NEWUOA on “hatfldc”, the solver con-

verges to f(x∗) = 1.56×109, while the optimum function

value is 0. This work proposed a method which is invari-

ant to initial guess. We also cover the entire domain in

a specific direction and increase chances of identifying

the global optima.

We have noticed that the majority of the evaluations

are spent in the inner loop (refining F (t)) because the

initial guess provided might not be “close enough”. We

note that, even though it is theoretically possible to ob-

tain the optimum, x̄p+1 corresponding to tp+1 using x̄p,

it requires the Hessian and the multiplier information,

and the step size to be small. It remains to be examined

if the number of evaluations needed to provide better

Hessian and multiplier estimates would offset the func-

tion calls required in the inner loop.

Concluding remarks

We proposed a novel method to optimize an n-

dimensional problem by projecting on a special 1-

dimensional space and showed that the optima of a spe-

cial 1-dimensional function corresponds to the optima of

the original function. We then showed that, using results

from sensitivity analysis literature, the 1-dimensional

function can be approximated. A two-step trust-region

based algorithm was proposed where we iteratively used

n-dimensional and 1-dimensional surrogate models to

converge to a KKT point. The efficacy of the method

was illustrated by successfully applying on 17 noncon-

vex test problems. Further investigation is needed for the

inner loop algorithm to reduce the overall evaluations.

This work provides a unique perspective to solve

black-box problems. The framework is generic and can

be extended to constrained black-box problems. In the

constrained case, Theorem 1 can still be used to pro-

vide initial guess and inner loop can be replaced by an

alternate algorithm such as filter technique (Eason and

Biegler (2016)) to handle black-box constraints.
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