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Abstract

In this work, we propose a model that tracks the evolution of Internal energy, Volume, and Molar compo-

sitions in multiphase systems. The long-term objective of this research is to develop physics-based models

for control analysis and design based on thermodynamics. The proposed modeling approach considers

interface transport using a non-equilibrium thermodynamic perspective. It is shown that the proposed

model predicts dynamical trajectories to thermodynamic equilibrium. Numerical simulations based on

the model show the potential of a non-equilibrium approach to model open non-stationary multiphase

systems.
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1 Introduction

Large-scale production processes play a central role in

modern society. The design and operation of energy-

efficient industrial systems is a responsibility to be ac-

knowledged. As consequence of nonlinear phenomena,

industrial thermodynamic processes, such as chemical

reactors or distillation columns, have proved to be dif-

ficult to analyze and control (Skogestad, 1997; Taylor

and Krishna, 2000). Accurate controllers for such sys-

tems are needed to improve operation efficiency. De-

tailed physics-based descriptions are in turn required to

design robust controllers for thermodynamic systems.

Thermodynamic-based formulations have proved

useful to provide physical insights in process engineering

literature. Energy dissipation has been used to charac-

terize interconnected nonlinear systems (Byrnes et al.,

1991). Unfortunately, this energy-based formulations re-

sult limited when applied to chemical systems (Favache

and Dochain, 2009). Nevertheless, dissipation-based

analysis can be extended to include other potentials be-

sides (mechanical) energy. Internal energy (Favache and

Dochain, 2009), entropy (Garćıa-Sandoval et al., 2015),

and affinity (Hoang and Dochain, 2013) are examples of

thermodynamic based properties that have resulted ef-

fective to control chemical systems. While useful, these

contributions are focused on single phase systems (liq-

uid or gaseous). Thermodynamic characterization has

been applied to multiphase processes in the study of dis-

tillation columns (Rosenbrock, 1963; Rouchon and Cr-

eff, 1993; Taylor and Krishna, 2000; Aggarwal and Yd-

stie, 2013). However, these contributions are restricted

to systems at thermodynamic-equilibrium or stationary

operation. A detailed thermodynamic non-equilibrium

model to describe multiphase non-stationary systems is

not available in the literature yet.

In this paper, a non-equilibrium formulation is pre-

sented for non-stationary multiphase thermodynamic

systems. In section two, conservation principles are used

to describe a thermodynamic system with source terms.

In section three, the source terms are used to model the

coupling between two phases far from equilibrium. In

section four, numerical simulations are presented.



2 Thermodynamic system

Atomic interactions define the properties of matter.

When a system is large enough, fluctuating microscopic

properties are averaged and described by macroscopic

states such as temperature, pressure or internal energy

(Callen, 1985). We call a thermodynamic system to a

bounded region of space large enough to be described

by an appropriate set of macroscopic states.

Callen’s first postulate states that c + 2 extensive

variables define all the physical properties of a closed

thermodynamic system with c components: the mole

numbers (n1, . . . , nc); the internal energy (U); and the

volume (V ) (Callen, 1985). To extend for open systems

with convective transport, we propose to add the flow

average velocity (v) to the state description proposed

by Callen. A thermodynamic system described by the

state (U ,V, n1, . . . , nc, v) is denoted by Σ (Figure 1).

Figure 1. Thermodynamic system Σ

2.1 The differential equations

Three conservation principles govern the evolution of a

thermodynamic system: conservation of mass; conser-

vation of total energy; and conservation of momentum

(Bird et al., 2002). If perfect mixing is assumed in Σ,

then we can write:
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Equation (1) accounts for mole conservation of each

component (i = 1, . . . , c). Equation (2) describes

changes in internal energy. Potential energy is assumed

constant inside Σ, then, changes in mechanical energy

are reduced to variations in kinetic energy, Equation (3).

Source terms R(·) acknowledge for non-convective vari-

ations such as chemical reactions or diffusive transport

processes. If compressible flow is considered, the rate at

which mechanical energy is reversibly transformed into

thermal energy is denoted by Ec. If viscous losses are

taken into account, the rate at which mechanical en-

ergy is irreversibly transformed into thermal energy is

denoted by Ev. For incompressible and non-viscous flu-

ids we have Ec = 0 and Ev = 0 (Bird et al., 2002).

The definition of the remaining variables are given in

the following sections and in the Appendix.

2.2 Equations of state and source terms

Temperature, pressure and volume are given by equa-

tions of state. We call this mapping Φ and write:

Φ : Rc+2 → Rc+2
+

(n1, . . . , nc,U) 7→ (P,V, T )
(4)

The R terms depend on composition, concentration,

pressure and temperature. Therefore, we write:

R : Rc+4 → Rc+2

(x1, . . . , xc−1, C, P, T ) 7→ (Rni ,RU ,RE)
(5)

2.3 Degrees of freedom for a thermodynamic system

Equations (1)-(5) constitute an algebraic-differential

system with |E| := 2c + 9 (scalar) functions (Table 1).

The inflow properties (·)in, the heat input Q, and the

outflow area Ω are considered as known inputs:

I := {(Fn1
)in, . . . , (Fnc

)in, Ūin, Pin, V̄in, vin, Q,Ω} (6)

Once the input set I is defined, the unknown variables

sum for |X|=2c+7 (Table 2). Considering the input set

I, the description of Σ has F := |X|-|E| = 2 degrees of

freedom.

Equations #

Molar balances c

Internal Energy 1

Kinetic Energy 1

Volume 1

Pressure 1

Temperature 1

Rni
sources c

Energy R sources 2

Total 2c + 7

Table 1. Equations in the description of Σ.



Variables #

ni c

U 1

v 1

V 1

Rni
c

RU ,RE 2

P 1

T 1

Ec, Ev 2

Total 2c + 9

Table 2. Variables in the description of Σ

3 Interface transport

Inhomogeneities in thermodynamic systems are known

to be the driving forces behind transport pro-

cesses (Callen, 1985; de Groot and Mazur, 1984). Heat

flows as a consequence of temperature differences. Mass

moves because of gradients in chemical potential. Let

us assume that part of the boundary of Σ interacts

with the environment through diffusive transport mech-

anisms. We call this the interface (Figure 2). If temper-

Figure 2. Interface transport

ature and composition vary between the bulk fluid and

the interface, then mass and energy will flow towards (or

from) the interface (Taylor and Krishna, 2000). The net

transport of a property γ (mass or energy) is the sum of

diffusive Jγ , and convective γ̄RnT
components:

Rγ = Jγ(∆x,∆T ) + γ̄RnT
, γ = [ni,U ]′ (7)

The diffusive transport is a function of differences be-

tween the fluid bulk and the interface. The mechanical

energy flux corresponds to the kinetic energy associated

with the total mole flow RnT
(Bird et al., 2002):

RE =

[
1

2
(m̄v2ı ) +

(
P

C

)]
(RnT

). (8)

The interface flow velocity vı is written in terms of RnT

through:

RnT
= Cqı = CvıΩı ⇒ vı = RnT

/CΩı. (9)

The molar mass, pressure and concentration in Equa-

tions (8)-(9) are evaluated as properties in the bulk fluid

in Σ.

3.1 Composite thermodynamic system

We refer to the coupling of two thermodynamic systems

as a composite thermodynamic system (Figure 3). Each

Figure 3. Composite thermodynamic system

chamber is described through Equations (1)-(5). Fol-

lowing the ideas by Taylor and Krishna (1993), and Bird

et al. (2002), the transport processes are described using

the R source terms described by Equations (7)-(9).

3.2 Driving forces in the interface

Inside a composite system (Figure 3) each chamber has

well defined, not necessarily equal, physical properties.

Close to the interface however, these change continu-

ously to match the interface properties (Figure 4).

Figure 4. Driving forces for a composite system

The interface is considered as a third thermodynamic

system Σı in equilibrium. Neither mass nor energy can

accumulate inside the interface sub-system (de Groot

and Mazur, 1984). It follows from equation (7) that:

Rα
ni

= Jαni
+ xαi Rα

nT
, i = 1, . . . , c− 1 (10)

Rβ
ni

= Jβni
+ yβi Rβ

nT
, i = 1, . . . , c− 1 (11)

Since moles cannot accumulate in the interface, then

Rni
:= Rαni

= Rβni
. Because of energy flowing into the



interface is the same as energy flowing from the inter-

face, it follows that:

0 = JαU − J
β
U +

∑c
i=1(H̄

α
i − H̄

β
i )Rni

. (12)

To complete the description of the interface, an equilib-

rium relation of the form:

0 = ψ(xıi, y
ı
i, T

ı, P ı), i = 1, . . . , c (13)

1 =
∑c

1=1 x
ı
i (14)

1 =
∑c

1=1 y
ı
i (15)

is required (Taylor and Krishna, 2000).

3.3 Degrees of freedom in the interface

Equations (10)-(15) constitute an algebraic system with

|E| := 3c+ 1 equations (Table 3). The interface bound-

ary conditions (composition, temperature, pressure, en-

thalpies, and concentration) are given as the bulk prop-

erties of thermodynamic systems Σα and Σβ . We con-

sider these as known inputs for the system (10)-(15):

Iı := {xα1 , . . . , xαc−1, y
β
1 , . . . , y

β
c−1, T

α, T β ,

Pα, P β , H̄i
α
, H̄i

β
Cα, Cβ}. (16)

The remaining unknown variables sum for |X| = 3c+ 2

(Table 4). Considering the input set Iı, the description

of Σı has F := |X|-|E| = 1 degree of freedom.

Equations #

Mass transport 2c-2

Energy conservation 1

Equilibrium c

Summations 2

Total 3c+1

Table 3. Equations in the description of Σı

Variables #

xi c

yıi c

P ı 1

T ı 1

Rni
c

Total 3c+2

Table 4. Variables in the description of Σı

4 The open tank example

We consider an open liquid tank with two non-reacting

chemical species with different volatilities A and B (Fig-

ure 5). The fluid is flowing at velocity v. The inflow

contains A and B. The upper lid of the tank is open,

allowing mass to evaporate and heat to flow towards

the environment. The outer atmosphere is gaseous and

its composition and temperature are fixed. From the

vessel, a single outflow is recovered. Viscous friction is

neglected. The liquid flow is considered incompressible.

Pressure is assumed to be equal in the atmosphere and

inside the liquid bulk. Perfect mixing is considered so

the outflow properties are the same as inside the liquid

bulk.

Figure 5. Open tank system Σ

The dynamical equations (1)-(3) are written as follows:

dA

dt
= (FA)in −

(
A

V

)
(vΩ)− RA (17)

dB

dt
= (FB)in −

(
B

V

)
(vΩ)− RB (18)

dU
dt

= (FU )in −
(
U
V

)
(vΩ) +Q− RU (19)

dEk
dt
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[(
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1

2
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(vΩ)

]
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−
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2
m̄v2

( n
V
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−P dV
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− RE (20)

To write the mapping Φ we assume an ideal liquid mix-

ture with no pressure drop from inflow to outflow, then:

P = Pin, (21)

V = ni

c∑
i=1

v̄i (22)

T = T o +
u−

∑c
i=1 niŪo
C̄v

. (23)



To define the interface properties, diffusive transport is

assumed to be a function of the concentration and tem-

perature variations. Then, equations (10)-(12) are writ-

ten as follows:

RnA
= kACA(xA − xıA) + xA(RnA

+ RnB
) (24)

RnA
= k∞A C

∞
A (yıA − yA) + yA(RnA

+ RnB
) (25)

0 = h(T − T ı)− h∞(T ı − T∞)

−∆H̄
vap
A RnA

−∆H̄
vap
B RnB

(26)

The equilibrium interface conditions are given by:

yıA = κAx
ı
A (27)

yıB = κBx
ı
B (28)

1 = xıA + xıB (29)

1 = yıA + yıB (30)

The source terms RnA
and RnB

are given by the solution

to the algebraic system (24)-(30). The energy transport

sources are written as:

RU = hl(T − T ı) + (Ū + P V̄)Rn (31)

RE =

[
1

2
(m̄u2ı ) +

P

C

]
(Rn), uı =

Rn
CΩı

(32)

Thermodynamic equilibrium is calculated using Mar-

gules and Antoine equations. Details are discussed at

the Appendix.

4.1 Results

A simulation is presented in Figure 6. We considered

component A as methanol and component B as wa-

ter. Thermodynamic parameters are presented after

the references. The initial point of the simulation is far

from equilibrium. At the beginning of the simulation,

methanol (the most volatile component) flows from the

liquid to the atmosphere (RnA
> 0) while water con-

densates from the atmosphere towards the liquid phase

(RnB
> 0). Also, energy flows from the vapor phase

towards the cooler liquid phase (as expected).

After some time, the trajectories converge to thermo-

dynamic equilibrium conditions and interface transport

processes stop. The mechanical energy reaches equilib-

rium faster than any other property. In future work, this

result can be used to predict the pressure inside the tank

as a function of flow velocity if mechanical equilibrium

is assumed from the beginning of the operation.

5 Conclusions and future work

In this article, a general model to describe the evolution

of thermodynamic variables inside a multiphase open
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Figure 6. Dynamic trajectories.

system is proposed. Momentum conservation principles

are used to define kinetic energy variations. Irreversible

interface transport processes, and interface local equilib-

rium conditions are included. The system predicts in-

dividual transport processes between liquid and gaseous

phases for each component. The model also predicts en-

ergy exchange between phases. Equilibrium conditions

are recovered even when the system initial conditions

are set at a non-equilibrium operating point. Simula-

tions can be easily extended to include more than two

components, and to include reactive sources in the molar

balances.

Advanced (passivity based) control strategies for

chemical systems are based on the definition of ther-

modynamic potentials such as internal energy or en-

tropy. The model here presented predicts internal en-

ergy evolution. With some additional considerations,

entropy and entropy production can also be recovered

from the description presented. We consider this work

as the starting point in the design and implementation

of control structures for multiphase systems. Nonlinear

controllers, observers, and estimators are estimated to

be developed in future iterations of this project.
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A Appendix

Nomenclature

γ̄ Molar concentration of property γ

C̄v Molar heat capacity of a mixture at constant volume

Ūo Reference internal energy at temperatureT o

m̄ Molar mass

∆H̄
vap
i Molar enthalpy of vaporization for component i

Fγ Convective flow of property γ

Ωı Interface area

C Concentration

P ı Interface pressure

qı Volumetric interface flow

T ı Interface temperature

vı Interface flow velocity

xıi Liquid molar fraction of component i in the interface

xi Molar fraction of component i in liquid phase

yıi Gas molar fraction of component i in the interface

yi Molar fraction of component i in gas phase

Parameters for Simulation

The liquid-vapor equilibrium calculated through the Mar-

gules activity model for a two component mixture and An-

toine equation:

κi = γiPsi/P
ı, (33)

ln γi = Q− 2∂Q/∂xıi (34)

lnPsi = Ai −Bi/(T ı + Ci) (35)

Q = xıAx
ı
B(ABAx

ı
A +AABx

ı
B). (36)

The values for the required thermodynamic parameters in

the model are reported in Table 5.

Parameter Value

v̄A [m3/mol] 4.051e-5

v̄B [m3/mol] 1.802e-5

C̄vA [J/kg.K] 2.531

C̄vB [J/kg.K] 4.18

ŪoA [J/kg] -118,229

ŪoB [J/kg] 83,906

T o [K] 293.15

∆H̄
vap
A [J/mol] 36e3

∆H̄
vap
B [J/mol] 43e3

[kA, kb] [m/s] [2e-4, 8e-2]

[hl, h∞] [J/s.K] [500, 100]

[A,B,C]A [23.4,3593.4,-34.3]

[A,B,C]B [23.2,3816.4,-46.1]

[AAB , ABA] [0.8517,0.4648]

Table 5. Thermodynamic Parameters


