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Abstract

This paper highlights our recent work on the integration of operational safety considerations with process

control via Lyapunov-based model predictive control to form a framework termed safety-LMPC. Specif-

ically, we review the formulation of the safety-LMPC optimization problem, including the time-varying

safety-based constraints that guarantee closed-loop stability and recursive feasibility. When the objective

function of the safety-LMPC takes a standard tracking form, the safety-based constraints can enhance

the rate at which the closed-loop state approaches the steady-state. When an economics-based objective

function is used (safety-LEMPC), the resulting controller can drive the process state between various

safe regions of operation and maintain the state there while continuously optimizing process economics.

Because it is possible that significant computation delay may result when computing control actions for

large-scale nonlinear processes, a distributed model predictive controller with safety-based constraints can

be used to improve the computation time with respect to the centralized safety-LMPC.
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Introduction

Process safety is critical in the chemical and petrochem-

ical industries. In these industries, two important meth-

ods for protecting against unsafe scenarios are improv-

ing process inherent safety (i.e., the innate safeness of

the process based on its chemistry and physics) and

designing effective control systems (Crowl and Louvar

(2011)). Leveson and Stephanopoulos (2014) have ar-

gued that process safety and feedback control can be

combined in one framework. However, the traditional

single-input/single-output feedback control loop lacks

many of the capabilities that a process control system

should have to ensure process safety such as the ability

to account for process input and state constraints.

In the last several decades, modern control tech-

niques have been developed that can enhance process

safety. For instance, tracking model predictive control
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(MPC), which is widely adopted in industry, is a control

strategy that dictates driving and keeping the process

state at the optimal steady-state while taking restric-

tions on process inputs and states into account (e.g.,

Leveson and Stephanopoulos (2014); Qin and Badg-

well (2003)). Several research works have consequently

focused on incorporating safety considerations within

model predictive control (Carson et al. (2013)). Over

the past decades, a form of MPC termed Lyapunov-

based MPC (LMPC) (Mhaskar et al. (2006)) has gained

attention because of its guaranteed closed-loop stability

properties. However, the rate at which the LMPC drives

the closed-loop state toward the equilibrium using the

quadratic objective function and Lyapunov-based con-

straints alone may not be fast enough to ensure process

safety or this rate may not be readily quantitatively-

determined through the penalty terms on the cost func-

tion.

Another form of MPC termed economic model pre-

dictive control (EMPC), which dictates time-varying op-



eration to integrate process economics with process con-

trol, provides a unique framework for integrating oper-

ational safety considerations and feedback control be-

cause it uses a general cost function in its formula-

tion which can be formulated to incorporate both safety

and economics considerations for the process (Angeli

et al. (2012); Ellis et al. (2014)). Motivated by this,

our recent work (Albalawi et al. (2016)) has developed

Lyapunov-based EMPC (LEMPC) schemes with safety-

based constraints termed safety-LEMPC that guarantee

safe operation of a class of nonlinear process systems by

varying the allowable region of operation. Both safety-

LMPC and safety-LEMPC can be implemented with a

distributed model predictive control (DMPC) architec-

ture to improve the real-time computation time of the

MPC algorithm (Christofides et al. (2011); Scattolini

(2009)). In this work, we will outline our recent re-

sults on the integration of safety-based constraints into

LMPC and LEMPC.

Class of Nonlinear Process Systems

We consider nonlinear process systems with the fol-

lowing state-space description:

ẋ = f(x, u, w) (1)

where x ∈ Rn is the state of the system, and u ∈ Rm

and w ∈ Rw are the control (manipulated) input vector

and the disturbance vector, respectively. The admis-

sible input values are restricted to be in m nonempty

convex sets Ui ⊆ R, i = 1, . . . ,m. We assume that f

is a locally Lipschitz vector function of its arguments

with f(0, 0, 0) = 0. We further assume w is bounded

within the set W := {w ∈ Rw : |w| ≤ θ, θ > 0}.

We also constrain the class of nonlinear systems of Eq.

1 to a class of stabilizable nonlinear systems. Specifi-

cally, we assume the existence of a sufficiently smooth

Lyapunov function V (x) and a Lyapunov-based con-

troller h(x) = [h1(x) · · · hm(x)]T such that the nominal

(w(t) ≡ 0) closed-loop system of Eq. 1 for u = h(x) is

asymptotically stable (V̇ is negative definite in a region

around the origin). The largest level set of V where V̇

is negative is termed the stability region Ωρ.

Implementation Strategy of Safety-Based MPC

In industry, safety is typically implemented through

a hierarchy of independent layers. The lowest layer (i.e.,

the first line of defense before higher layers are acti-

vated) of the safety hierarchy is process control, which

contributes to safety by controlling key variables like

pressure, temperature and ratios of flows to combus-

tion processes (e.g., Marlin (2012)). Though effective

process control can prevent many unsafe situations, it

may not prevent hazards if very large disturbances oc-

cur or if there are deficiencies in the final control el-

ements (e.g., valve stiction) or sensor faults. For this

reason, additional safety layers such as alarms and pres-

sure relief valves are also added to chemical process sys-

tems that activate when unsafe situations are detected

that cannot be mitigated by the process control system.

Safety Logic

Safety-LMPC
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Figure 1. The implementation strategy of the safety-

LMPC paradigm

Though the traditional process control techniques

that are most widely adopted in the safety hierarchy

such as proportional-integral-derivative (PID) control

loops have successfully prevented many hazards, they

cannot take multi-variable interactions between the pro-

cess components or closed-loop dynamic responses into

account, especially for nonlinear processes. This defi-

ciency in their capabilities can lead to unneeded trig-

gering of safety alarms or process shut-down. There-

fore, integrating safety considerations within a control

design that accounts for multi-variable interactions and

closed-loop process dynamics, such as MPC, can allow

the control system to take proactive actions to prevent

the consequences of abnormal process conditions, pro-

viding greater robustness to the safety hierarchy in the

process control layer and possibly decreasing the fre-

quency with which higher levels of the safety hierarchy

are triggered. It may also be able to account for some of

the issues with sensors and final control elements that

PID-type control loops are incapable of handling be-

cause it incorporates a process model and has flexibility

in the formulation of the constraints. Thus, we propose

that the traditional control techniques in the lowest level



of the safety hierarchy be replaced with a safety-based

MPC formulation (the additional layers of the safety

hierarchy continue to act independently of the process

control layer).

Because safety considerations often take the form

of bounds on process variables, an ideal MPC formu-

lation for incorporating safety-based considerations is

Lyapunov-based model predictive control (LMPC) be-

cause it is a model-based control framework that en-

forces process operation within a specific region of state-

space (the stability region). The safety-based con-

straints are developed to maintain the closed-loop state

within a safe region of operation or to move it to a re-

gion determined by a data processing unit (safety logic

unit) to be more safe. This implementation strategy for

safety-LMPC is shown in Figure 1. After determining

the safest Lyapunov level set Ωρsp
(safety region/safety

level set) for the process to operate within based on data

such as the likelihood of an equipment or software failure

or other unsafe scenario, the safety logic unit communi-

cates the safety set-point ρsp to the safety-LMPC. Sub-

sequently, the safety-LMPC computes control actions

that drive the closed-loop state into Ωρsp
and maintain

process operation there. After the safety-LMPC applies

the control actions to the plant in a sample-and-hold

fashion, the measured process state will be fed back to

both the safety-LMPC for controller robustness and the

safety logic unit so that the safety level set will be re-

evaluated if necessary. One important point to be made

is that the safety level sets into which the safety-LMPC

drives the closed-loop state account for the ability of the

control system, subject to the input constraints, to con-

trol the process state there. The mathematical formu-

lation of the safety-based constraints that achieve these

goals will be discussed in the following sections.

Incorporation of Safety-Based Constraints

Within Tracking MPC

In this section, we present the formulation of safety-

based constraints for LMPC with a tracking (quadratic)

objective function for consistency with the tracking

MPC formulation commonly used in the chemical pro-

cess industries (Albalawi et al. (2017a)). The motiva-

tion for using safety-based constraints in this context is

that these constraints may cause the rate at which the

closed-loop state moves toward the origin when safety

concerns arise to be faster than it would be under the

standard LMPC without safety-based constraints. The

rate of approach to the steady-state under the standard

LMPC is no slower than the worst-case rate at which

h(x) would drive the system to the steady-state when

implemented in sample-and-hold, but otherwise is de-

termined by the weighting matrices Q and R and the

penalties they place on deviations of the states and in-

puts from their steady-state values. This LMPC formu-

lation offers no flexibility to change the rate of approach

to the steady-state when the safety logic unit determines

that the state needs to move to a smaller region of opera-

tion quickly to avoid safety alarms or process shut-down.

The proposed safety-LMPC overcomes these disadvan-

tages and is formulated as follows:

min
u(t),Kc(t)∈S(∆)

∫ tk+N

tk

[x̃(τ)TQx̃(τ) + u(τ)TRu(τ) (2a)

+ φ(ρsp − ρ̃(τ))dτ ]

s.t. ˙̃x(t) = f(x̃(t), u(t), 0) (2b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (2c)

x̃(tk) = x(tk) (2d)

Kc(t) ≥ 0, ∀ t ∈ [tk, tk+N ) (2e)

V (x̃(t)) ≤ ρ̃(t), ∀ t ∈ [tk, tk+N ) (2f)

dρ̃

dt
= Kc(t)(ρsp − ρ̃(t)) (2g)

ρ̃(tk) = V (x(tk)), if x(tk) /∈ Ωρsp

ρ̃(tk) = ρsp, if x(tk) ∈ Ωρsp
(2h)

∂V (x(tk))

∂x
f(x(tk), u(tk), 0)

≤
∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0)

(2i)

where S(∆) is the set of piecewise-constant vector func-

tions with period ∆. The optimization variables are

the piecewise-constant input trajectory u(t) over the

prediction horizon with N sampling periods of length

∆, as well as the piecewise-constant auxiliary variable

Kc(t) that plays a role in the safety-based constraints.

This safety-LMPC formulation contains many of the

standard constraints utilized in MPC (e.g., a nominal

process model for the predicted state x̃ (Eq. 2b), in-

put constraints (Eq. 2c), state feedback (Eq. 2d), and

quadratic terms containing Q and R in the objective

function (Eq. 2a)), but also includes a safety penalty

function φ(·) in the objective function, as well as safety-

based constraints (Eqs. 2e-2h) and a contractive con-

straint (Eq. 2i). The contractive constraint (Eq. 2i) en-

sures that the Lyapunov function value always decreases

between two sampling periods (i.e., the closed-loop state



always moves toward the origin) until the closed-loop

state enters a neighborhood of the origin, but the safety-

based constraints of Eqs. 2e-2h are used to speed the

rate at which the closed-loop state approaches the safety

region when possible. They achieve this due to the

penalty in the objective function on the deviation of the

predicted upper bound of the Lyapunov function (ρ̃(t))

from ρsp. This penalty causes the safety-LMPC to seek

to decrease ρ̃(t). Specifically, ρ̃(t) is decreased by Eq. 2g

if a positive value of Kc(t) is found for which an input

u(t) can be found to decrease x̃(t) at a rate that allows

Eq. 2f to be satisfied at all times for the rate of decrease

of ρ̃ from Eq. 2g. The dynamic constraint of Eq. 2g

allows ρ̃ to be decreased throughout the prediction hori-

zon, and with a significant penalty on (ρsp − ρ̃(t)) in

the objective function, the LMPC will compute values of

u(t) andKc(t) that decrease ρ̃(t) quickly, and thus, move

the predicted state toward Ωρsp
quickly through Eq. 2f.

When the closed-loop state is predicted to move toward

Ωρsp
quickly, the actual closed-loop state may also move

toward Ωρsp
more quickly than if the safety-based con-

straints were not utilized. Once the closed-loop state

enters Ωρsp
, the value of ρ̃ becomes fixed at ρsp, and

the safety-LMPC of Eq. 2 becomes the standard LMPC

design. Thus, process safety is enhanced by this design

because it allows different regions of safe operation to be

determined on-line and allows the controller to respond

to such changes in a way that brings the closed-loop

state into a safe region of operation at a possibly faster

rate than if the safety-based constraints were not in-

corporated. In addition, the safety-LMPC formulation,

with a slight adjustment to the regions that trigger the

use of the different initial values of ρ̃ in Eq. 2h, can be

proven to drive the closed-loop state into Ωρsp
and to

maintain it there (i.e., rigorous closed-loop stability and

feasibility properties exist).

Incorporation of Safety-Based Constraints

Within EMPC

When the stage cost used with safety-LMPC is

an economics-based objective function (to form safety-

LEMPC), two modifications can be made to the safety-

LMPC design of Eq. 2 so that the resulting safety-

LEMPC design promotes time-varying operation within

a safe region of operation (Albalawi et al. (2016)). The

two modifications are that the quadratic term in the

objective function is replaced by a general stage cost

Le(x̃(τ), u(τ)) that reflects the process economics so

that the following objective function is minimized:

∫ tk+N

tk

[Le(x̃(τ), u(τ)) + φ(ρsp − ρ̃(τ))]dτ (3)

Furthermore, to allow time-varying operation within

Ωρsp
rather than driving the process state to the steady-

state, the repeatedly enforced contractive constraint of

Eq. 2i is replaced by a contractive constraint only acti-

vated when the closed-loop state is outside of Ωρsp
:

∂V (x(tk))

∂x
f(x(tk), u(tk), 0) ≤

∂V (x(tk))

∂x
f(x(tk), h(x(tk)), 0),

if x(tk) ∈ Ωρ/Ωρsp

(4)

As for the safety-LMPC, the role of the safety-

based constraints of Eqs. 2e-2h in the safety-

LEMPC is to shrink the region of operation until

the closed-loop state enters the safety region Ωρsp

at a possibly faster rate than that which would be

achieved without such constraints. Rigorous closed-loop

stability and feasibility properties of safety-LEMPC

have been investigated in Albalawi et al. (2016).

Figure 2. Configuration 1 for switching between two dif-

ferent safe regions of operation

Safety Region Changes

The safety-LMPC and safety-LEMPC formulations

of Eqs. 2-4 assume that Ωρsp
is a subset of Ωρ. How-

ever, there maybe scenarios in which the safety logic

unit indicates that regions within the current stability

region Ωρ are no longer safe to operate within, but that

another safety region that is a subset of a different sta-

bility region is appropriate. Therefore, it is necessary

to modify the safety-LMPC or safety-LEMPC formula-

tions in a manner that allows the region of operation



to shift. The manner in which the safety-based MPC

formulation should be modified depends on the config-

uration of the old stability and safety regions (Ωρ1 and

Ωρsp1
respectively) with respect to the newly requested

stability and safety regions (Ωρ2 and Ωρsp2
respectively).

This will be illustrated by presenting two example con-

figurations in the context of the safety-LMPC of Eq. 2,

but it can be readily generalized to safety-LEMPC.

Figure 2 shows one possible configuration (Config-

uration 1) of the two different safe regions of opera-

tion Ωρsp1
and Ωρsp2

. For this configuration, the safety-

LMPC of Eq. 2 will be applied with ρsp = ρsp1 until the

closed-loop state enters Ωρsp1
. At the switching time ts,

the safety logic unit determines that Ωρsp2
is the new

safe region of operation, which is a subset of the sta-

bility region Ωρ2. Therefore, at this time ρsp in the

formulation of Eq. 2 will be changed to ρsp2. Because

the first safety region Ωρsp1
is contained within the sta-

bility region Ωρ2 and the safety-LMPC of Eq. 2 with

ρsp = ρsp2 drives the closed-loop state into Ωρsp2
from

any initial condition in Ωρ2, the safety-LMPC of Eq. 2

is feasible after ts and guarantees that the closed-loop

state will be driven from Ωρsp1
into Ωρsp2

in finite time.

Figure 3 shows a second possible configuration (Con-

figuration 2) of Ωρ1, Ωρsp1
, Ωρ2, and Ωρsp2

. In this case,

Ωρsp1
is not fully within the stability region Ωρ2. To

drive the closed-loop state from any initial condition

within Ωρsp1
into Ωρsp2

after ts, one method is to remove

the contractive constraint from Eq. 2 (formulated with

ρsp = ρsp1) at ts, and to replace it with a terminal region

constraint (e.g., x̃(ts+N ) ∈ Ωρ2
) with a sufficiently long

prediction horizon to drive the closed-loop state into Ωρ2

by the end of the prediction horizon. However, due to

the hard terminal constraint, feasibility of this optimiza-

tion problem is not guaranteed. An alternative method

for attempting the safety region transition is to remove

the contractive constraint from Eq. 2 at ts and to add a

soft constraint (e.g., a penalty on (V (x̃(t))− ρ2)) in the

objective function to encourage the LMPC to compute

control actions that drive the closed-loop state into Ωρ2.

Though this approach would always be feasible, there

is still no guarantee that the state will be driven into

Ωρ2. However, once the state enters Ωρ2, the LMPC

problem of Eq. 2 with ρsp = ρsp2 could be used to drive

the state into Ωρsp2
. These two example configurations

show that the manner in which Ωρ1, Ωρsp1
, Ωρ2, and

Ωρsp2
are related to each other (e.g., how they inter-

sect) determines how the safety-LMPC of Eq. 2 should

be modified at ts to drive the state into the new sta-

bility region, and also whether this can be achieved

while guaranteeing closed-loop stability and feasibility.

Figure 3. Configuration 2 for switching between two dif-

ferent safe regions of operation

Distributed Lyapunov-Based Model Predictive

Control with Safety-Based Constraints

The controller designs described in the prior sections

were developed with a centralized MPC structure. Thus,

significant computation delay may result when comput-

ing control actions for large-scale process systems, which

may affect closed-loop stability and process safety. An

alternative MPC architecture that is intended to im-

prove the computation time of the MPC algorithm is a

distributed MPC (DMPC) architecture. This MPC ar-

chitecture has been investigated for computation time

benefits since it can reduce the number of decision vari-

ables in each of the distributed optimization problems

and may be able to terminate the optimization problems

before the optimal solution is found while maintaining

feasibility and process closed-loop stability (Anderson

et al. (2015)).

Both LMPC and LEMPC formulated with safety-

based constraints can be integrated with a distributed

MPC architecture. An iterative or sequential dis-

tributed control architecture can be used, and the in-

puts may be partitioned between the various optimiza-

tion problems in the distributed structure based on their

impact on process safety. The implementation strategy

of an example distributed LMPC scheme is shown in

Figure 4 for a safety-LEMPC scheme with a sequen-

tial distributed architecture (safety-S-DLEMPC (Albal-

awi et al. (2017b))). The sequential architecture in this

figure consists of two controllers: Safety-S-DLEMPC 1

and Safety-S-DLEMPC 2. The formulation of Safety-

S-DLEMPC 1 is that of the standard safety-LEMPC

design (Eqs. 3, 2b-2h, and 4) except that only j in-



puts (i.e., u1(τ |tk), ..., uj(τ |tk)) and the gain Kc(τ |tk),

τ ∈ [tk, tk+N ), are computed by this controller, with the

remaining inputs set to the values they would take us-

ing the sample-and-hold Lyapunov-based controller h(x)

used in the design of the stability and safety-based con-

straints of Safety-S-DLEMPC 1. If the inputs calcu-

lated by Safety-S-DLEMPC 1 are believed to be those

with the largest impact on safety such that significant

additional optimization with respect to safety is not ex-

pected within Safety-S-DLEMPC 2, the formulation of

Safety-S-DLEMPC 2 can be simplified to that of the

safety-LEMPC with Kc ≡ 0, and it can be used to

improve the process economics by determining optimal

values for uj+1(τ |tk), ..., um(τ |tk)) after receiving from

Safety-S-DLEMPC 1 the values u1(τ |tk), ..., uj(τ |tk).

x(tk)

Safety-S-DLEMPC 1

Safety-S-DLEMPC 2

u1(τ |tk) . . . uj(τ |tk)

u1(tk|tk)

. . .

uj(tk|tk)

. . .

uj+1(tk|tk)

uM(tk|tk)

. . .

Plant

Figure 4. A block diagram of the sequential safety-

DLEMPC scheme
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