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Abstract 

The strong increase of the contribution of renewable sources (wind, solar) to the power generation portfolio 

has increased uncertainty in the operation of the grid and has motivated efforts in demand-side 

management. Of particular interest is the demand response (DR) operation of large industrial electricity 

consumers, which is encouraged via (real-)time-varying electricity pricing schemes. For industrial users, 

taking advantage of such price structures calls for far more frequent changes in the production schedule 

than ever before, and requires a close coordination between scheduling decisions, the actions of the control 

system, and the dynamic capabilities of a plant. Crucial to this end are, i) embedding representations of the 

process dynamics in the scheduling calculations and, ii) developing a framework for recomputing the 

scheduling decisions upon the occurrence of process events and faults. In this work, we address the latter 

challenge by proposing a novel closed-loop, moving-horizon approach to production scheduling, whereby 

process dynamics are represented using previously-developed scale-bridging models, and schedule updates 

are triggered by both scheduling-relevant market events and by process events that do not have an explicit 

impact on the schedule execution. We use the DR operation of an industrial-scale air separation unit model 

to demonstrate the successful implementation of these concepts.  
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Introduction

In the modern economy, market conditions can be 

highly variable and can change frequently. For example, the 

electricity market is subject to high variability on both the 

supply side (owing to the rapidly growing incorporation of 

renewables like solar photovoltaics and wind generation), 

and the demand side, where variability –particularly in the 

residential sector- causes significant swings between peak 

and off-peak grid loads. The need to balance power supply 

and demand under such transient conditions has motivated 

grid operators to initiate demand-side management 

programs, whereby users are incentivized to reduce their 

peak time consumption via, e.g., time-varying electricity 

price structures, ranging from dual peak/off-peak tariffs to 

pricing that follows the real-time deregulated market (Miller 

et al., 2008; Zhang et al., 2015).  

In the case of energy-intensive industrial users, of which 

air separation is a prototypical example, demand response 

(DR) operation (and taking advantage of time-dependent 

tariffs) entails increasing production beyond the product 

demand rate during off-peak hours and storing products, 

followed by reducing the production rate and using stored 

products to meet demand at peak times. In this context, 

optimizing the production schedules to maximize DR 

benefits typically entails making frequent changes in 

production rate and/or product grade, over time horizons that 

overlap with the time scale of the dynamic response of the 

plant. Under these circumstances, explicitly accounting for 

process dynamics and dynamic constraints (along with the 

behavior of the process control system) in DR scheduling 

calculations becomes an imperative necessity (Baldea and 

Harjunkoski, 2014).  

The vast majority of current approaches to production 

scheduling (loosely defined as the selection of a sequence of 

production rate targets and product types over a future time 

horizon, typically spanning a few days to a few weeks) 

make use of steady-state process representations. These 

models statically correlate the operating level of the 

production system with a set of economic indicators 

(production rate, energy use, etc.), and capture process 

dynamics in the form of tabulated transition times between a 

(finite) set of system states. A natural approach to explicitly 

accounting for process dynamics entails using a (first-

principles) dynamic model of the process and its control 

system in the scheduling problem formulation. However, 

capturing the entire spectrum of process dynamics, as 

relevant to both product quality and process and safety 

constraints, calls for the use of intricate, detailed dynamic 

models which are inevitably nonlinear and high-

dimensional, rendering the integrated scheduling/control 

problem impossible to solve in a practical amount of time.  

In order to alleviate this difficulty, in our previous work 

we introduced the concept of scale-bridging model –SBM-  



  

 

(Du et al., 2015) as a low-dimensional representation of the 

scheduling-relevant dynamics of a process and its control 

system. Initially derived from first-principles arguments (Du 

et al., 2015), we later showed that SBMs can be successfully 

obtained from historical data collected during routine process 

operations (Pattison et al., 2016a). Subsequently, we 

extended these ideas in the development of a moving-

horizon scheduling framework that allows the schedule to be 

recomputed when new scheduling-relevant information  

(e.g., updated product demand or energy price forecasts) 

becomes available, (Pattison et al., 2016b).  

In this work, we consider another crucial aspect of 

closed-loop scheduling, that is, dealing with process-level 

faults and disturbances, which we define as non-critical, 

detectable events (i.e., with no safety implications, and not 

requiring plant shut-down) that occur at the process level and 

do not have an explicit connection with market conditions as 

was the case above. Rather, their impact on process 

economics is manifest in limiting the plant’s ability to meet a 

subset of production rates or product grades originally part of 

the product wheel.  

We begin with an overview of the technical background 

on scheduling under dynamic constraints, followed by 

introducing the proposed framework. We then illustrate the 

results with a case study where we consider the DR 

operation of an air separation unit subject to faults.  

Background: scheduling under dynamic constraints 

We focus on a class of continuous chemical processes 

having (for simplicity) a single product stream and product 

storage capability. The process and the hierarchy of 

operational decision making are depicted in Figure 1. 
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Figure 1. Hierarchy of operational decision making for a 

single product process with product storage capacity. 

 

The planning layer establishes the long term demand 

forecasts (�̅�) based on contractual agreements and market 

dynamics, while the scheduling layer uses the demand 

forecasts as well as feedstock availability and price forecasts 

to determine an economically optimal production target 

sequence for the process (𝑦𝑝
𝑠𝑝

) over a daily to weekly 

horizon, as well as the utilization of product storage 

(𝛼𝑠𝑝, 𝑦𝑠
𝑠𝑝

). The process control system is then tasked with 

meeting these production targets throughout by adjusting the 

manipulated variables for the process (𝑢𝑝) and storage 

system (𝑢𝑠) while ensuring that the plant operation is stable 

and is meeting strict operational, product quality (�̃�), and 

safety constraints.  

To account for the dynamics of the (day-ahead) 

electricity market, the scheduling horizon must be at least 

two days, and the schedule must be recomputed whenever 

new market information becomes available. The 

corresponding optimization problem, using a dynamic 

model of the process as motivated above, can be expressed 

as:  

min𝑦𝑝
𝑠𝑝

(𝑡) ∫ Φ(𝑝𝑟, 𝑥)𝑑𝑡
𝑇𝑚

0
                                          (1) 

s.t.  𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑚𝑜𝑑𝑒𝑙 

 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑚𝑜𝑑𝑒𝑙  

       𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

       𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

where the price (𝑝𝑟) and demand (�̅�) forecasts are assumed 

to be known for the entire scheduling horizon (𝑇𝑚). The 

objective function (Φ) accounts for the operating costs, and 

the decision variable is the production target sequence 

(𝑦𝑝
𝑠𝑝

). We typically assume that the product storage system 

is described by a transient mass balance model, and x are 

the process states. Additionally, path constraints are 

included to ensure that the process operating limits and 

product quality constraints are satisfied throughout the 

horizon.  

 Problem (1) is an infinite-dimensional dynamic 

optimization, with a highly nonlinear and high-dimensional 

set of dynamic constraints given by the (typically 

differential-algebraic) process model. Obtaining a numerical 

solution entails performing a discretization of the decision 

variables (and process dynamics) over the time horizon of 

interest, resulting in a very large nonlinear optimization 

problem that must be solved in a short time frame to ensure 

that online implementation is possible. Several works have 

attempted this approach, with limited results for industrially 

relevant problems (Bansal, 2003).  

Conversely, the aforementioned SBMs are designed to 

represent explicitly the closed-loop behavior of the process 

and its control system in an input-output form; that is, a 

SBM accepts the outputs of the scheduling layer as inputs 

(notably, production and product grade targets), and outputs 

the time evolution of scheduling-relevant variables, such as 

the production and the product grade, as well as the 

evolution of variables pertaining to operating and safety 

constraints. 

In our recent work (Pattison et al., 2016a), we proposed 

an algorithm for selecting scheduling-relevant variables 

from the plethora of measurements usually available in 

modern chemical plants. We demonstrated that the number 

of scheduling-relevant variables is typically very small 

compared to the number of states in an industrial process. 

We also proposed using system identification techniques to 

obtain SBMS from historical, closed-loop process operating 

data, observing that (routine) production transitions made in 

the past provide a rich dataset resembling system 

identification experiments. Using Hammerstein-Wiener 



  

forms, we showed that the derived data-driven SBMs are 

single-input, multi-output and sparse, therefore lending 

themselves very naturally for use in integrated scheduling 

and control formulations where reduced problem dimensions 

and fast execution are of essence. 

With these models, the production scheduling 

optimization problem becomes: 

min𝑦𝑝
𝑠𝑝(𝑡) ∫ Φ(𝑝𝑟, 𝑤)𝑑𝑡

𝑇𝑚

0
                                          (2) 

s.t.  𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑚𝑜𝑑𝑒𝑙 

 𝑆𝐵𝑀𝑠 (0 = Ψ(𝑦𝑝
𝑠𝑝

, 𝑤, �̇�, �̈�, … )) 

       𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: ℎ̂𝑝(𝑤, 𝑦𝑝
𝑠𝑝

, 𝑡) ≤ 0 

       𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: ℎ̂𝑦(𝑤, �̅�, 𝑡) ≤ 0 

where the low-order scale bridging models (Ψ) predict the 

evolution of the scheduling relevant process variables (𝑤). 

The path constraints are expressed in terms of the SBM and 

the scheduling-relevant variables as ℎ̂𝑝 and ℎ̂𝑦.   

Closed-loop moving horizon scheduling 

The solution of the scheduling problem (2) formulated 

above is optimal in the (idealized) case where the SBMs 

provide perfect predictions of the process dynamics over the 

horizon 𝑇𝑚 and there are no disturbances. However, in 

practice, the process is subject to operational disturbances, 

plant-model mismatch, operational faults, etc. Additionally, 

it is unlikely that the schedule remains optimal when updated 

market condition forecasts (price and product demand) 

become available. As a consequence, we propose a novel 

moving-horizon scheme whereby we “close the scheduling 

loop” based on two sets of criteria, i) market-driven updates, 

which are either periodic (e.g., associated with regular 

changes in price and/or demand forecasts) or event-driven 

(related to unexpected changes in the aforementioned market 

conditions) (Pattison et al., 2016b) and, ii) the occurrence of 

process-driven faults, as reported by a process fault diagnosis 

system (Touretzky et al., submitted), which is assumed to be 

available. A block diagram of the infrastructure supporting 

the proposed framework is given in Figure 2.  
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Figure 2. Closed-loop scheduling framework 

 

The implementation proceeds as follows:  

1) The production target sequence (schedule) is 

computed solving problem (2) for the horizon 𝑇𝑚 

for which accurate forecasts of the feedstock 

availability, price and product demand are available 

2) The control system steers the process to the desired 

targets and handles high frequency disturbances 

3) Measurements of the scheduling-relevant process 

variables are recorded and an observer is used to 

update the states of the SBMs 

4) Market conditions are monitored and process 

measurements are used to detect and isolate 

process faults, triggering rescheduling as relevant 

5) Recompute of the schedule (periodic or event-

triggered), shifting the time horizon and updating 

the states of the SBMs  

6) Return to step 1, repeat at the next update interval 

or scheduling or process event 

In the case of process disturbances, Step 5 above 

typically entails updating the process constraints (ℎ̂𝑝) to 

reflect the impact of process faults (Touretzky and Baldea, 

2016). Moving horizon scheduling also requires that 

concerns related to inventory stabilization be addressed; this 

can be done, e.g., by imposing end-point constraints on 

inventory levels (Pattison et al., 2016b). Process faults can 

be detected using one of many available. We recall that in 

this work we consider faults that are not critical in the sense 

of requiring a process shut-down; rather, they manifest 

themselves in limitations in the process operation, and can 

be captured via updating the process parameters and/or 

operating constraints. 

As an additional remark, we note that when an event-

triggered rescheduling is performed, the time horizon 𝑇𝑚  

can be shortened to reflect the period of time for which 

market data forecasts are available (since their update may 

not coincide with the time of occurrence of the event). 

Case Study: Demand response operation of an air 

separation unit  

We consider the operation of an air separation unit 

(ASU) producing purified nitrogen gas. The process makes 

use of a refrigeration cycle to cool and liquefy the inlet air 

stream and a cryogenic distillation column to separate 

nitrogen from oxygen and argon. The ASU is outfitted with 

a liquefier and a product storage tank to enable DR 

operation. A detailed model of the ASU is based on the 

work of (Cao et al., 2015), and scale-bridging models of the 

Hammerstein-Wiener form have been identified for eight 

selected scheduling-relevant variables (Pattison et al., 

2016a).  

Electricity prices over a six day window in July 2013 

are obtained from, ERCOT, the Texas Independent System 

Operator. We assume that (perfectly accurate) 2-day 

forecasts of the electricity price and product demand are 

available and updated every six hours (see the top of Figure 

3 – the vertical lines indicate the points at which new 

forecasts are available). Thus, the schedule is recomputed 

on a periodic basis every 6 hours. In this case study, we 

assume that the product demand is constant at 20 mol/s and 

impurities in the nitrogen product must remain below 

1900ppm. Additionally, we assume that the process can 

operate within +/- 20% of the nominal capacity. 

To illustrate the implementation of our moving 

horizon, closed-loop scheduling framework, we consider 

two scenarios. First, the nominal case where no fault is 



  

 

present – the results are plotted by the solid black lines in 

Figures 3 & 4. The result, as expected, is overproduction 

and product storage accumulation during the evening hours 

when electricity prices are low, and a reduced production 

rate and consequent storage depletion during the daytime 

when electricity is expensive. The result is a 4.8% savings 

in electricity costs in comparison to a constant production 

rate profile (20 mol/s) over the 4 day time frame. 

The second case (plotted in dashed red lines in Figures 

3 & 4) considers the occurrence and detection of vibrations 

in the operation of the main air compressor of the ASU at 

hour 51, requiring that the upper bound on throughput be 

reduced from +20% to +5% of the nominal capacity. 

Detection of this fault triggers a rescheduling event (this 

occurs between the periodic re-execution points when new 

price and demand forecasts are available), and requires that 

the process operating constraints be updated to reflect the 

fault – specifically, the production target maximum is 

reduced to the nominal value +5%. 

Intuitively, following the detection of the fault and the 

corresponding schedule update, the rate at which the stored 

liquefied product accumulates is considerably reduced due 

to the limitation of the maximum throughput in the 

compressor (bottom of Figure 3). Nevertheless, Figure 4 

shows that in both cases, the strict process operating and 

product quality constraints are met, thereby illustrating the 

benefit of including (and appropriately updating) a dynamic 

process model in the scheduling formulation.  
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Figure 3. Simulation results for nominal and faulty 

operation cases. The fault is detected at hour 51. 
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Figure 4. Operational and product quality constraints 

Conclusions 

In this paper, we propose a moving-horizon production 

scheduling framework with dynamic constraints for 

continuous processes operating under fast-changing market 

conditions. For computational efficiency, the process 

dynamics are representing using our previously-introduced 

sale-bridging models. We close the scheduling loop via, i) 

periodic rescheduling based on regular market condition 

updates and, ii) event-driven rescheduling in the presence of 

both scheduling-level disturbances and process disturbances, 

the latter characterized via a fault diagnosis mechanism. In 

practice, this framework is ideally suited for managing the 

DR operation of energy-intensive processes, whereby it 

enables the optimal exploitation of production capacity and 

product storage facilities to take advantage of time-sensitive 

electricity prices. We illustrate these developments on an 

industrial-scale air separation case study, showing clear 

economic benefits under realistic circumstances when 

process operations are subject to faults.  We expect that these 

results are easily transferable to other systems that are highly 

dependent on the electric grid, as well as to any production 

facilities that operate under market circumstances that 

feature fast and significant fluctuations. 
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