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Abstract 

In this paper we first provide a brief overview on latent variables modeling methods for process data 

analytics and the related objectives to distill desirable components or features from a mixture of measured 

variables. These methods are then extended to modeling high dimensional time series data to extract the 

most dynamic latent variables one after another, which are referred to as principal time series, with the 

current values being best predicted from the past values of themselves or a different set of variables. We 

show how real process data are efficiently and effectively modeled using these dynamic methods to extract 

features in process operations and control, leading to new perspectives on how industrial process data can 

be indispensable for data-driven process operations and control.  

1 Introduction   
 

The available massive amount of data has prompted many disciplines and industries to reexamine their 

traditional paradigms and views, such as statistics, management science, econometrics, computer science, 

and engineering. As a result, a new discipline known as data science is forming to derive knowledge and 

information from massive data. Several examples have shown that the possession of huge amount of data 

has tremendous advantage when combined with effective analytics and superior computing power to distill 

knowledge from data. The Google’s flu prediction is such an example (Ginsberg et al., 2009), which could 

predict the spread of the winter flu outbreak in 2009 in the United States and down to the states level. 

Google took 50 million most common searches and compared them to the Center for Disease Control (CDC) 

data on the spread of winter flu from 2003 to 2008. Google’s data processing power screened through 150 

million models to discover 45 features with a mathematical model that had high correlation to the data from 

CDC. In addition, Google could predict nearly in real time, while CDC’s data took weeks to compile. While 

this data analytic approach is entirely new to chemical engineers, the functionality of the models is known 

as inferential sensors and practiced in process systems engineering (Tham, 1991; Qin and McAvoy, 1992). 

 

Process operation data are usually massive and high dimensional due to the complexity of the process and 

control. The process measurement and process analytical technologies (PAT) range from conventional 

process sensors such as temperature and flow-rate to concentrations, spectra, and images. Although process 

operations data are high dimensional, the measurement vector space is far from being fully excited due to 

process operation requirements and physical constraints. For these data traditional regression methods such 

as least squares fail to yield reliable answers due to  

 High colinearity among the measurement data that leads to ill-conditioning or numerical 

problems. 

 Even though the numerical problems can be circumvented by using techniques like pseudo-

inverse, the statistical properties of the models are poor such as inflated variance.  
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 Regularization methods such as ridge regression can be used and tuned to achieve reliable 

prediction models by trading-off bias and variance, which basically shrinks the magnitudes of the 

model parameters. However, these models are not easily interpretable, whereas an important 

purpose of data modeling is interpretability.     

 

The high dimensional data, whether normal or abnormal, are often driven or excited by a few dominant 

factors that propagate to all measurements via the process units, controls, and operations. To analyze these 

data effectively, latent variables methods (LVM), including principal component analysis (PCA), projection 

to latent structures (PLS), and canonical correlation analysis (CCA) are preferred. For brevity of the paper, 

we will not provide a historical perspective of the latent variable methods in process applications. Interested 

readers should refer to the work of MacGregor and Koutoudi (1995), Wise and Gallagher (1996), and Qin 

(2003). 

 

In this section we review the traditional latent variable methods that are the basis for extending to dynamic 

and nonlinear analytics tools. First we give the context in which the process and quality data are collected 

and monitored. Then we illustrate the objectives of each LVM and comment on their advantages and 

shortcomings. Lastly we give an analogy of the latent-variable modeling that extract component by 

component to that of a distillation process that separates chemical components from a mixture of solutions.  

 

In the remainder of this paper we offer a brief introduction to the essence of latent variable analytics in 

Section 2. We then present dynamic latent variable methods for the modeling of time series data for 

prediction, decision-making, and feature analysis in Section 3. The methods are demonstrated in Section 4 

on a real process data set to extract principal time series that are best predicted by its past and are easily 

used to visualize features hidden in the original data. In the end of the paper we encourage an open mindset 

towards embracing the power of new machine learning techniques that have enjoyed tremendous 

development in the last 20 years.  

 

2 Data Analytics Using Latent Variables  

 

2.1 Process, Data, and Monitoring  

 

The process and quality data considered for process data analytics can be illustrated Figure 1, where the 

hierarchical data structure is shown. At the bottom level are the equipment sensor measurements that can 

be in milliseconds. At the process level are regularly sampled process control data. The product quality 

measurements come in all forms and often irregularly sampled. The top level is the customer feedback data 

that can go from customer service channels to social network complaints. The advantages of the latent 

structure modeling methods, such as PCA and PLS, are that they can be used to detect abnormal changes 

in process operations from real time data due to the dimension-reduction capability, ease of visualization, 

and ease of interpretation. The related fault diagnosis methods have been intensively studied and applied 

successfully in many industrial processes, e.g. chemicals, iron and steel, polymers, and semiconductor 

manufacturing. 

 

Process data are often categorized into process input, process output, quality output, and indirect (e.g., 

vibration signals and images) types of data, as shown in Figure 1. The typical procedure of the multivariate 

process data analytics is 

 Collection of (clean) normal data with good coverage of the operating regions  

 Fault data cases can be useful, but not required a priori  

 Latent structure methods (PCA, PLS, etc.) to model the data 

 Fault detection indices and control limits, such as the Hotelling T-square and the squared 

prediction error indices 
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 Fault diagnosis and troubleshooting, such as reconstruction-based fault identification and 

contribution analysis.   
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Figure 1. Process and quality data collected under a process and control hierarchy. 

 

2.2 Latent Variable Methods 

 

The objective of PCA is, from a number of data observations, to represent a number of typically correlated 

variables with a reduced number of latent variables that are most representative for the original variables. 

Without any prior requirement it is natural to extract the latent variables such that they capture the largest 

variation in the original data and, therefore, the residuals will be minimal. The extracted latent variables 

(LV) or principal components (PC) can be easily visualized with low dimensional plots or interpreted with 

physical understanding of the process behind the observed data. From the latent variables point of view, the 

measured data are merely various observations that are driven by the underlying latent variables which are 

not directly measured.  

 

Let x denote a sample vector of M variables. Assuming that there are N samples for each variable, a data 

matrix X is composed with N rows (observations) and M columns (variables) as follows 

 
For convenience the variables are usually scaled to zero mean and unit variance. Principal component 

analysis extracts a direction or subspace of the largest variance in the M dimensional measurement space. 

For an arbitrary vector direction 𝐩 ∈ ℜ𝑀, such that ‖𝐩‖ = 1, the projection of X on to this direction is 𝐭 =
𝐗𝐩. The PCA objective is to maximize the variance along this direction, that is,  

 

max  𝐭𝑇𝐭 = 𝐩𝑇𝐗𝑇𝐗𝐩 

The solution to the above problem with ‖𝐩‖ = 1 as a constraint can be obtained using a Lagrange multiplier 

as follows 

  

𝐗𝑇𝐗𝐩 = 𝐩  
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which implies that p is the eigenvector corresponding to the largest eigenvalue of the covariance matrix of 

X. The vector p is known as the loading vector for the first principal component.  After the first component 

is extracted and removed from the data matrix, the same eigen-decomposition procedure is iterated on the 

residual,  

 
The data matrix, being the first one in the iteration, is decomposed as follows.  

 

𝐗 = ∑ 𝐭𝑖𝐩𝑖
𝑇

𝑙

𝑖=1

+ 𝐗𝑙+1 

If the data matrix X contains highly correlated columns, it will take fewer components than M to leave little 

variance in the residuals. The variance of the extracted PC scores, 𝐭𝑖., corresponding to the eigenvalues  in 

descending order of magnitude. This is analogous to separating a more volatile chemical component from 

a mixture of less volatile ones in a distillation process.   

 

Partial least-squares methods find a latent structure between data matrices, X and Y, collected from input 

variables and output variables, such that the respective score vectors  

 

 
have maximized covariance. Mathematically this is expressed as    

 

 
subject to the constraint that the weighting vectors w and q have unit norm, 

 
The solution to this problem can also be achieved by using Lagrange multipliers, which lead to an eigen-

problem related to the two data matrices. Deflations and iterations are necessary to extract all significant 

latent variables one after another.  

 

Due to the use of a covariance objective function in PLS, it usually requires multiple latent variables even 

to predict a single output variable in Y. One arguable advantage of needing multiple LVs is that the method 

exploits the variance of the input while trying to predict the output. This is, nevertheless, trying to achieve 

two objectives at once, which can sometimes compromise both objectives. For instance, there is usually a 

significant portion of the latent variable subspace that is orthogonal or irrelevant to the output, although 

that subspace contains significant variability of the input data. This is the motivation of several subsequent 

efforts to develop orthogonalized PLS (Sun et al., 2009) and concurrent PLS methods (Qin and Zheng, 

2013). 

 

An alternative objective is the canonical correlation analysis (CCA) objective developed by Hotelling (1936) 

to maximize the correlation between two sets of  latent vectors t and u,  

 
which is also the cosine of the angle between the latent vectors. The solution to this problem is an eigen-

vector solution of . An advantage of the CCA method is that it has maximized 

efficiency in predicting the output Y using variations in X. For the single output case, CCA requires only 
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one latent variable to extract all variations in the input data to predict or interpret the output. However, due 

to the inverses of the covariance matrices involved in the CCA solution, it is sensitive to colinearity among 

the variables. Some form of regularization is necessary to make the method insensitive to collinear data. 

Another issue is that CCA has no attention to the input variances, other than the portion that is useful in 

predicting the output. This makes CCA incapable of exploiting the input variance structure. The recently 

developed concurrent CCA (Zhu et al., 2016) combines CCA and PCA to achieve two objectives 

concurrently, this is, to exploit the variance structure of the input while predicting the output efficiently.  

 

The aforementioned methods all exploit latent structured relations among the variables that are linear and 

static. They form the foundation for extensions to nonlinear or dynamic latent structure modeling. Since all 

methods have clear objectives factor by factor, they are analogous and can be interpreted as distilling needed 

components from data one after another, with respective objectives and intentions.  

 

 

3 Dynamic Data Distillation Using Latent Variables  

 

The vast amount of process data are collected in the form of time series with regular sampling intervals. 

These data are often collected at the process level and the equipment level, making the sampling intervals 

very high, from seconds to milliseconds. Dynamics or time correlations are inevitable among the data and 

they are useful for prediction and interpretation. Given the fact that the large dimensional time series data 

are both cross-correlated and auto-correlated over time, it is necessary to develop dynamic versions of the 

latent variables methods such as PCA, PLS and CCA, such that the variables’ current data are best predicted 

by the past data of themselves or other variables, using a reduced number of dynamic latent variables. The 

extracted data for these dynamic latent variables are referred to as principal time series, with reduced 

dimensions, which can be best predicted from the past data of themselves or another set of variables. 

 

3.1 PCA with Dynamic Latent Variables 

 

In this subsection, dynamic-inner principal component analysis (DiPCA) is presented to build most 

dynamic relations of the inner latent variables. DiPCA extracts one or more latent variables that are linear 

combinations of the original variables and have maximized auto-covariance. In other words, the current 

values of these latent variables are in a sense best predictable from their past values. In the complement, 

the residuals after extracting the most predictable latent variables from the data will be least predictable 

and, in the limiting case, tend to be white noise. The method overcomes drawbacks of existing dynamic 

PCA methods that perform static PCA on simply augments time lagged data (e.g., Ku et al. 1995). 

 

The advantages of the DiPCA algorithm that extracts principal time series are that i) the dynamic 

components can be predicted from their past data as known information, so that the uncertainty is the 

prediction errors only; ii) the extracted dynamic components can reveal useful dynamic features for data 

interpretation and diagnosis, which are otherwise difficult to observe from the original data; and iii) the 

prediction errors after all dynamics are effectively extracted, can be further modeled as static data with the 

static PCA method (Dong and Qin, 2016).  

 

In general, we wish to extract dynamics in a latent variable 𝑡𝑘 so that the current value can be predicted 

from its past, for instance, as follows, 

 

with the latent variable as a linear combination of the original variables . The prediction from 

the dynamic inner model is   
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where  and w are constrained to be unit norm without loss of generality.  The objective 

of the dynamic inner PCA algorithm is to maximize the covariance between the extracted data and the 

prediction, that is 

 
For a number of observations, Dong and Qin (2016) reformulate the above objective in matrix notation as 

follows.   

 

 
 

The complete DiPCA algorithm is given in Appendix A, while more detail about the DiPCA properties can 

be found in Dong and Qin (2016). With the objective of maximizing the covariance between the latent 

variable and its prediction from the past, DiPCA performs dynamic data distillation from all measured data 

such that the extracted dynamic components co-varies the most with its past. The prediction errors of the 

data after the first predicted component are then used to extract the second most co-varying latent 

component, until all significant dynamic components are extracted. This procedure is analogous to a multi-

stage binary distillation process, with each stage separating a most dynamic co-varying component from 

the rest. After all components are extracted, the prediction errors are essentially un-autocorrelated. Figure 

2 illustrates how DiPCA distills dynamic latent components one after another, with the objective to 

maximize the covariance of the component with the prediction from its past. High dimensional time series 

data are considered as a mixture of a number of dynamic latent components, which are not measured directly, 

and static variations. DiPCA distills the multi-dimensional data into dynamic components in descending 

order of covariance.    
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Figure 2. DiPCA is a process of distilling dynamic latent components one after another, with the objective 

to maximize the covariance of the component with the prediction from its past.   

 

 

This DiPCA can also be viewed as a whitening filter applied to the data. After all DiPCA components are 

extracted, the prediction errors are essentially white as virtually all the dynamic relationships in data are 

extracted. An important notion of this whitening filter is that it has a reduced number of latent variables 

compared to the number of variables in that data, and is appropriate for modeling the common case of 

highly collinear data from real world problems. This solution is different from a full dimensional vectored 

autoregressive model that requires to invert a covariance matrix that can be ill-conditioned with highly 

correlated data. Furthermore, the DiPCA latent variables have a clear objective and can provide useful 

features for data based interpretation, visualization, and diagnosis.   

  

3.2 PLS with Dynamic Latent Variables 

 

The PLS algorithm performs regression with inter-related variables by projecting to a lower dimensional 

latent space one dimension at a time. This resembles a version of conjugate gradient methods for the linear 

regression problem. This approach not only avoids direct inversion of a potentially ill-conditioned matrix 

in ordinary least squares, it also provides a way to tradeoff between the model prediction variance and bias 

by selecting an appropriate number of latent variables less than the number of input variables.  

 

The objective of PLS only focuses on static relations in the input and output data. In the case that dynamic 

relationships exist between the input and output data, PLS will leave the dynamics unmodeled. To build a 

dynamic PLS model, the objective should be changed to aim at extracting a dynamic latent relation as 

follows, 

 
with the latent variables related to original variables as follows 

 
For each factor, the inner model prediction should be 
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The dynamic inner PLS (DiPLS) algorithm from Dong and Qin (2015) maximizes the covariance between 

the latent scores 𝑢𝑘 and its prediction as follows, 

 
This objective contains clearly latent dynamics, while remaining outer projections of the input and output 

data to the latent variable dimension. For the special case of s = 0, DiPLS reduces to the static PLS. 

 

For a number of observations of input and output data we form the following data matrices 

 
The objective of DiPLS can be represented as 

 
Lagrange multipliers are used to solve this optimization problem, which yields the DiPLS 

algorithm (Dong and Qin, 2015) as given in Appendix B.  
 

3.3 DiCCA with Dynamic Latent Variables 

 

The DiPCA and DiPLS algorithms build inherent dynamics in the latent variables and give explicit 

projections from the data space to the latent space. However, the objective functions that maximize the 

covariance do not necessarily lead to a principal time series that can be best predicted by its past values. To 

obtain a principal time series that can be best predicted from its past values, some form of least squares 

objective should be minimized, such as, 

 

min 𝐽 = ‖𝐮 − 𝑏𝐭‖2 = ‖𝐘𝐪 − 𝑏𝐗𝐰‖2 
This objective, of course, does not have a minimum unless the weights are somehow restricted in the norm.  

By restricting ‖𝐘𝐪‖2 = 1 and ‖𝐗𝐰‖2 = 1, we have the following Theorem. 

 

[Theorem 1] The least squares objective, min 𝐽 = ‖𝐘𝐪 − 𝑏𝐗𝐰‖2  reduces to the CCA objective, 

max 𝐽 =
𝐪𝑇𝐘𝑇𝐗𝐰

‖𝐘𝐪‖‖𝐗𝐰‖
, if ‖𝐘𝐪‖2 = 1 and ‖𝐗𝐰‖2 = 1. 

 

The proof of the theorem is straightforward by using Lagrange multipliers, which is omitted here. Therefore, 

to achieve a truly most predictive time series from the past data of itself or another latent variable, DiPCA 

and DiPLS should use the CCA objective that maximizes the correlation instead of the covariance. This 

modification leads to a dynamic inner CCA (DiCCA) algorithm, which simply replaces the covariance 

objective in DiPCA and DiPLS with a correlation objective. between The principal time series is best 

predicted from the past values of itself or a latent variable derived from another set of variables. It is 

straightforward to solve the maximization problem by using Lagrange multipliers to derive the DiCCA 

algorithm, which applies to both dynamic PCA and dynamic PLS problems.  
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4 Case Demonstration Using Real Process Data  

 

Figure 3 shows a process schematic diagram from the Eastman Chemical Company, USA. Eastman 

Chemical has identified a need to diagnose a common oscillation with a period around two hours (320 

samples/cycle). Five process variables are selected that have strong oscillations (Yuan and Qin, 2014), 

which are used here to demonstrate how the dynamic data and features can be modeled using DiPCA and 

DiCCA and compared to PCA.  

 
 

Figure 3. Process schematic diagram from the Eastman Chemical Company 

 

4.1 DiPCA Results 

 

Using DiPCA on the five process variables leads to five dynamic PCs as shown in Figure 4. The auto-

regression order of the dynamics is chosen to be 21, which makes the prediction errors of the dynamic 

principal components essentially white. Figure 5 depicts the auto-correlation and cross-autocorrelation for 

the five dynamic PCs. It is clear that the first two PCs are very oscillatory, while the third one is still 

somewhat oscillatory and co-varies with the first two PCs. To visualize how the DiPCA model predicts the 

PCs, the first two DiPCA PCs and the predictions from their past scores are shown in Figure 6. The circular 

shape shows the co-varying oscillations at the same frequency. 
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Figure 4. Plots of five dynamic principal components using DiPCA 

  

 
Figure 5. Auto-correlation and cross-autocorrelation for five DiPCA PCs. 
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Figure 6. The first two DiPCA PCs and the predictions from their past scores using DiPCA. The circular 

shape shows covarying oscillations at the same frequency.  

 

4.2 DiCCA Results 

 

Next, DiCCA is used to model the five process variables, which leads to five dynamic PCs as shown in 

Figure 7. The order of the dynamics is chosen as 22, which is chosen such that the errors predicted with the 

dynamic PCs are essentially white. Figure 8 depicts the auto-correlation and cross-autocorrelation for the 

five DiCCA PCs. It is clear that the first two PCs are very oscillatory, while the third one is little correlated 

to the first two PCs.  

 

To visualize how the DiCCA model predicts the PCs, the first two DiCCA PCs and the predictions from 

their past scores are shown in Figure 9. While the big circular shape shows co-varying oscillations at the 

same frequency, there is a clear smaller oscillation with higher frequency that is best captured by the second 

PC. This feature is not observed at all using DiPCA analysis. The DiCCA scatterplot has clear ups and 

downs on top of the circular shape, indicating that there is another high frequency oscillation component. 

This frequency is more likely caused by the valve stiction, since the bigger oscillation of 320 points per 

cycle (about two hours) seems to be too large a period to be caused by a valve stiction. The fact that DiCCA 

detects a new feature makes it better than DiPCA in extracting dynamic features. 
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Figure 7. Plots of five dynamic principal components using DiCCA 

 

 
Figure 8. Auto-correlation and cross-autocorrelation for five DiCCA PCs. The third PC is little correlated 

to the first two PCs 
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Figure 9. The first two DiCCA PCs and the predictions from their past scores. The big circular shape 

shows co-varying oscillations at the same frequency. In addition, there is a smaller oscillation with higher 

frequency due to the second PC. 

 

4.3 Comparison of DiPCA, DiCCA and PCA Results 

 

To illustrate the efficiency and effectiveness of DiPCA and DiCCA in extracting dynamics in the data, we 

compare their models to the results from standard PCA. Figure 10 depicts the predicted 𝑅2 values of each 

LV of the DiPCA and DiCCA models in the top row, while the percent variances captured by each LV of 

DiPCA, DiCCA, and PCA are shown in the bottom row. PCA is not a predictive model so it does not have 

predicted  𝑅2 values to show. As can be seen, the predicted  𝑅2 values for the first two LVs of DiPCA and 

DiCCA model are very close to one, showing that the periodic latent variables are nearly perfectly predicted 

by their past values. The predicted  𝑅2 values for the third to fifth LVs of DiPCA and DiCCA are different; 

the predicted  𝑅2 values from DiCCA model are higher than those from the DiPCA model. Furthermore, 

the predicted  𝑅2 values from DiCCA have clearly a descending order, while those from DiPCA do not. 

The results are the natural outcome of the DiCCA objective to minimize the prediction errors in a least 

squares sense.  

 

The percent variances captured by each LV of DiPCA, DiCCA, and PCA are also different. The DiCCA 

model ranks the LVs in the order of descending predictability from their past values, as shown by the 

predicted  𝑅2 values, and it does not rank the LVs by the percent variance captured. The PCA focuses on 

maximizing the variance captured each LV only and has no attention to predicting its values using the past. 

In this case study, due to the high predicted  𝑅2 values of the first two DiPCA LVs, the 𝑡𝑘 and its prediction 

𝑡̂𝑘 are nearly identical, making the DiPCA objective close to the PCA objective for these LVs. Therefore, 
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the percent variance captured by these two LVs of DiPCA and PCA are similar. However, this is not 

generally true, and the two models are intrinsically different.  

 

 

 
Figure 10. The predicted 𝑅2 values of the DiPCA and DiCCA models and the percent variances captured 

by DiPCA, DiCCA, and PCA vs. the number of LVs. 

  

 
Figure 11. The loadings of the DiPCA, DiCCA, and PCA models vs. the LVs. 

 

To further examine the difference among the DiPCA, DiCCA, and PCA models, their loadings vs. the LVs 

are shown in Figure 11. The DiCCA loadings clearly point out that Variables 4 and 3 dominate the first LV, 

while Variables 2 and 5 dominate the second LV, which has superimposed higher frequency oscillations. 
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The first two loadings from the DiCCA and PCA models are similar in this specific example, but they do 

not give the selectivity of variables as DiCCA does.  

 

The fact that DiCCA and DiPCA has explicit loadings specific to each variable is another advantage of 

these methods over the traditional dynamic PCA method that simply augments a time-lagged matrix from 

the original data matrix (Ku et al., 1995). This feature makes the proposed new methods superior in 

interpretability.  

 

 

5 Summary 

 

Process data analytics have been applied in chemical process operations for decades. However, with the 

development of advanced analytics in other sectors of industries and business operations, there appears to 

be much more room to grow. While physical and chemical sciences develop principles based on which 

mechanistic models are established for process understanding, data analytics provide real and up-to-date 

information that reflects changes in the operation, and provide a reliable source of information to 

characterize uncertainty and diagnose emerging situations.  

 

Prediction, visualization, and interpretation using latent variables are powerful to deal with massive, high 

dimensional and highly correlated data. The goal of data analytics is to turn data into knowledge and support 

effective decision-making. Nonlinear and robust methods in statistical machine learning are new ways to 

use messy and complex data, which goes beyond a traditional mindset. To make best use of machine 

learning to extract knowledge from massive data, the practitioners should familiarize themselves with data 

science tools (e.g., Hinton, G. E. and R. Salakhutdinov, 2006; Jordan, M.I. et al., 2013; Keogh, E., and S. 

Kasetty, 2002) and merge them into existing tools that are proven effective.  

 

 

 

  

http://dl.acm.org/author_page.cfm?id=81100209161&coll=DL&dl=ACM&trk=0&cfid=342567910&cftoken=74525788
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Appendix A. DiPCA Algorithm. 
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Appendix B. DiPLS Algorithm. 
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