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Abstract 

The total sales of biopharmaceuticals have been steadily increasing for decades with growing approval of 
new drug products, especially for monoclonal antibodies. This trend motivates the development of 
deeper understanding and advancement of biopharmaceutical manufacturing operations. This article 
describes opportunities, needs, and challenges in process control and operations for biopharmaceutical 
manufacturing associated with continuous operations, process data analytics, and novel bioseparations. 
Challenges and opportunities in continuous operations are described for (1) microscale technologies for 
high-speed continuous process development, (2) the design of plug-and-play modular unit operations 
with integrated process monitoring and control systems to facilitate straightforward deployment in the 
laboratory, (3) dynamic models for unit operations and entire biopharmaceutical manufacturing plants to 
support process development and plant-wide control, and (4) easy-to-use model-based control 
technologies for optimizing startup, changeover, and shutdown aided with real-time process analytical 
technology (PAT). A challenge is the derivation of process monitoring and control techniques that are 
able to simultaneously address the uncertainties, nonlinearities, time delays, nonminimum phase 
behavior, constraints, spatial distributions, and mixed continuous-discrete operations that arise in 
biopharmaceutical operations. New process data analytics and grey-box modeling methods are needed to 
deal with the heterogeneity and tensorial dimensionality of much of the most promising PAT for the 
measurement of biopharmaceutical data. Novel bioseparations as discussed as a potential cost-effective 
unit operation, with a detailed discussion of challenges for the widespread application of crystallization 
to therapeutic proteins. 
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Biopharmaceuticals, which are also widely known as 
biologics or biologic drugs, are products derived from 
biological organisms for treating or preventing diseases. 
The global sales of biopharmaceuticals, which have 
continually increased for many years, was ~$300 billion in 

2014, and is projected to reach ~$450 billion by 2019 
(Deloitte, 2016). Over 30% of the drugs in the drug 
pipeline are biopharmaceuticals (Informa, 2016), with 
hundreds of approved products on the market and over 
7000 medicines in development (PhRMA, 2016). The rate 



  
 
of biopharmaceuticals approval has remained relatively 
steady, with monoclonal antibodies (mAbs) accounting for 
an increasing proportion of the approvals (Walsh, 2014). 

Monoclonal antibodies (mAbs) were the highest 
selling class of biopharmaceuticals with ~1,500 drugs in 
the product pipeline in 2016 (Informa, 2016).  This class is 
of particular interest due to their specific action and 
reduced immunogenicity. With continued growth in sales 
of existing mAb products and a growing pipeline of mAb 
product candidates being developed, the total sales of mAb 
products and all biopharmaceuticals will continue to 
increase in the coming years (Ecker et al., 2015). The 
development of mAbs is expected to grow further as more 
diseases are understood at molecular and cellular levels. 

Traditional biopharmaceutical manufacturing 
processes comprise a similar sequence of unit operations 
that are divided into two main parts: upstream and 
downstream. The upstream unit operations typically 
include cell culture and harvest steps, and the downstream 
consists of purification with multiple steps of 
chromatography, filtration, and diafiltration. For example, 
Figure 1 shows a process flow diagram for a typical 
platform used for the production of mAbs (see Kelley, 
2009; Shukla and Thömmes, 2010; and citations therein 
for the figure and more details than the summary provided 
here). The upstream process starts with cell culture, which 
is fed inoculum prepared and expanded from a cell bank to 
a series of batch bioreactors of successfully larger volume 
for expansion of the cells and finally to the production 
bioreactor for protein expression. Then cells and cell 
debris are removed by centrifugation followed by depth 
and membrane filtration (for proteins that are secreted by 
the cells into the surrounding solution, that latter “harvest” 
steps are skipped).  

The downstream process for mAbs begins its capture 
mAb by protein A affinity chromatography. Protein A 
affinity chromatography provides >98% purity in a single 
step with high binding affinity and specificity of protein A 
ligand to the Fc region of mAbs. The products bind to the 
stationary phase while impurities, such as host cell proteins 
and DNA, pass through at neutral pH. The products are 
then eluted from the adsorbents at low pH, which 
inactivates viruses. Next, two polishing chromatographic 
steps are typically used for further removal of impurities. 
Protein A affinity chromatography is unable to remove 
aggregates and product variants due to their chemical 
similarity with the derived protein, and introduces leached 
protein A as a new impurity. The most commonly used 
steps are cation exchange (CEX) chromatography and 
anion exchange (AEX) chromatography. CEX 
chromatography uses resin with negatively charged groups 
to bind the products during the loading step, then elutes the 
products by increasing pH or conductivity. AEX 
chromatography uses resin with positively charged groups 
and typically run in flow-through mode due to the high pI 
of mAbs, which is often >8. The operating conditions are 
chosen to allow the products to flow through while the 
impurities bind to the resin. A viral filtration step is then 

used to ensure viral safety by a sized-based virus removal. 
A subsequent step of ultrafiltration/diafiltration (UF/DF) 
formulates and concentrates the product for last step of the 
process.  

Process control engineers have an important role to 
play in biopharmaceutical manufacturing, and this article 
describes its opportunities, needs, and challenges in 
process control and operations. The next section introduces 
three trends in biopharmaceutical manufacturing that are 
described in more detail in subsequent sections. A section 
on process data analytics discusses challenges in dealing 
with high-dimensional and heterogeneous data, and the 
potential for “grey-box” models that supplement first-
principles models with data-based models. Another section 
discusses a recent trend towards continuous-flow 
operations, and how this development opens many 
opportunities for mathematical modeling and process 
simulation and model-based design, control, and 
optimization. A section on novel bioseparations primarily 
discusses crystallization as a non-chromatographic method 
for the purification of proteins from a large number of 
other components in solution. The challenges of 
crystallizing mAbs and other large-molecule therapeutic 
proteins are described along with potential control 
approaches for biopharmaceutical crystallization. The 
article ends with a summary and some closing comments. 
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Figure 1. Process flow diagram for a typical production 

platform for mAbs. 

Trends in Biopharmaceutical Manufacturing 

The continued growth of biologics motivates 
developing a deeper understanding and advancement of 
biopharmaceutical manufacturing operations. This growth 
has increased interest in the application of process 
analytical technology (PAT), which is “a system for 
designing, analyzing, and controlling manufacturing 
through timely measurements (i.e., during processing) of 
critical quality and performance attributes of raw and in-
process materials and processes, with the goal of ensuring 
final product quality” (FDA, 2004). On-line measurements 



  

of critical quality attributes (CQAs) provide much more 
data on the multivariable interactions and dynamics, with 
the potential towards increased process understanding. 
Depending on the degree of process understanding, the 
data have been used to construct first-principles and data-
based models for each biopharmaceutical unit operation. 
The constructed models and real-time process monitoring 
enable the implementation of advanced control algorithms 
for producing products of higher quality. The consistent 
product quality achieved by the real-time measurements 
and advanced control strategy enable PAT to be viewed as 
mode for implementing quality by design (QbD) approach 
promoted by regulatory agencies (e.g., see FDA, 2009; 
Rathore, 2009; Rathore and Winkle, 2009; and citations 
therein).  

The inherent complexity of biological molecules and 
processes creates challenges for the application of PAT to 
biopharmaceutical manufacturing, but the number and 
variety of high-tech instruments being developed ensure 
growing successful application (Read et al., 2009a). Due to 
their similar sequence of unit operations and shared CQAs 
of concern in this industry, single successful applications 
can be quickly moved to the manufacturing operations 
being developed for other biologic drug compounds 
throughout a company, and throughout the industry. This 
high degree of leveraging an advance in PAT is especially 
applicable for mAbs because, not only are a standard 
process flow diagram and equipment implemented for their 
production, this process platform enables applying data 
from one product to the other (Read et al., 2009b). 

In addition to moving towards increasing online data 
collection and the construction of models, another trend in 
the biopharmaceutical manufacturing industry is to 
transition of many of processes from batch to continuous 
operation. This batch-to-continuous transition mirrors the 
recent trend for chemically derived pharmaceutical 
manufacturing (aka “small-molecule drugs”), driven by the 
goal of reducing manufacturing costs and increasing 
flexibility and quality (e.g., see Jiang and Braatz, 2016, 
and citations therein). Continuous perfusion bioreactors 
have been implemented in commercial biopharmaceutical 
manufacturing processes for decades (Konstantinov and 
Cooney, 2015). In contrast, although continuous 
downstream processes have been investigated in academia 
for decades, their application in the biopharmaceuticals 
industry has been limited. Industrial interest has increased 
in the last five years, and may lead to end-to-end 
continuous biopharmaceutical manufacturing (e.g., Lu et 
al., 2015; 2016). The increased data provided by PAT, and 
associated feedforward and feedback controls systems, will 
be key to providing reliable long-term continuous 
operations (Konstantinov and Cooney, 2015). The 
continuous manufacturing processes provide new process 
control problems to address, to handle the propagation of 
impurities and other disturbances caused by tight 
integration of continuous unit operations. Plant-wide 
control strategies that optimize the overall process 
operations, which have been demonstrated for small-

molecule pharmaceuticals (Lakerveld et al., 2013; 2015), 
have promise for application to biopharmaceuticals. 

Another area of interest in biopharmaceutical 
manufacturing is the invention of new designs for 
downstream processes, namely, the protein separations. 
Such a development, if successful, would be a major shift 
in the way that biopharmaceuticals are manufactured. Such 
developments would likely involve new processes to 
control, with crystallization being one of the more 
promising proposed technologies. 

The next three sections describe each of these three 
topical areas in more detail: process data analytics, 
continuous operations, and novel bioseparations. 

Process Data Analytics 

Using High-Dimensional and Heterogeneous Data 

Biopharmaceutical manufacturing data are often 
heterogeneous in both time scale and data type (Charaniya 
et al., 2008). For example, some measurements in a 
bioreactor can be performed continuously on-line such as 
dissolved oxygen, optical density, and pH. Other 
measurements are performed off-line, such as the 
distribution of oligosaccharides (glycans) attached to the 
proteins, usually at non-periodic, asynchronous intervals. 
Many process monitoring and control algorithms such as 
differential geometric methods are not well suited for 
heterogeneous data collected over varying sampling time 
intervals, and require revisions to be suitable for 
biopharmaceutical manufacturing applications. 

Biopharmaceutical manufacturing studies that 
consider the handling of heterogeneous data have focused 
on the bioreactor. This focus is because, for most products 
and cell lines, bioreactors generate numerous compounds 
that are so closely related to the desired biologic drug 
compound that they are not removable by existing 
downstream separations technologies. Charaniya et al. 
(2010) and Le et al. (2012) have used kernel-based 
methods to integrate the various data types. These papers 
use a similarity kernel, which is an exponential 
transformation of the Euclidean distance, for the different 
bioreactor runs. Dynamic time warping (DTW) has also 
been investigated as a methodology for handling time 
heterogeneity (Ündey et al., 2002). DTW finds a nonlinear 
mapping to minimize the distance between two 
multivariate time series with certain event constraints, such 
as the beginning and end of a batch. González-Martínez et 
al. (2013) used information from the results of time-
warping for process monitoring and fault classification. 

A further complication with biopharmaceutical 
manufacturing data is the need for a higher degree of 
dimensionality reduction. This problem is most extreme 
when using state-of-the-art sensor technologies that employ 
spectral images, in which each sensor reading is a third- or 
fourth-order tensor. Because production runs can take 
many hours and are costly, the analyst may not have access 
to many replicates of the high-dimensional datasets, which 
complicates dimensionality reduction and subset learning. 



  
 
Some approaches have been proposed to achieve this goal, 
employing such methods as hierarchical clustering 
(Charaniya et al., 2010) and greedy algorithms (Le et al., 
2012). 

A challenge in biopharmaceutical manufacturing is 
both high complexity of proteins and the close similarity of 
variants to the desired protein(s). These variants can 
include a very large number of combinations of different 
amino acid sequences, disulfide linkages, and 
glycosylation structures. Other subtle differences can 
include oxidation and/or deamidation of single sites on a 
complex protein. While some success has been seen in 
leveraging techniques from the machine learning 
community (e.g., as discussed by Severson et al., 2015), 
there are opportunities in the development of algorithms 
specially designed to handle the particularities of 
biopharmaceutical data. 

Supplementing First-Principles with Data-based Models 

First-principles models employ well-developed 
process understanding in the form of conservation 
equations, reaction mechanisms, and constitutive relations 
such as Fick’s diffusion law. First-principles models and 
reliable monitoring of physical parameters, such as UV 
absorbance, pH, conductivity, and pressure, have enabled 
the control of individual process units (Konstantinov and 
Cooney, 2015). As one example, Karst et al. (2016) fed at-
line high-performance liquid chromatography (HPLC) 
measurements of the harvest concentration subsequent to 
the bioreactor to a mechanistic model of a capture 
chromatography unit to optimize buffer consumption and 
productivity. Although not explicitly modeled in the study, 
stable production led to consistent measurements of 
aggregates, clipped forms, charge isoforms, and n-linked 
glycosylation for their system. More recently, it has been 
argued that significant value can be obtained by 
constructing first-principles models where possible—or 
black-box models where necessary—that integrate multiple 
unit operations, even for entire biopharmaceutical 
manufacturing (Lu et al., 2015; Severson et al., 2015). The 
value of such plant-wide models has been thoroughly 
demonstrated experimentally for both chemically and 
biologically derived drug manufacturing plants (Mascia et 
al., 2013; Severson et al., 2015; Lakerveld et al., 2015). 

Statistical methods such as principal component 
analysis (PCA) and partial least squares (PLS) have been 
used to monitor process operations in biopharmaceutical 
manufacturing applications for years (Vaidyanathan et al., 
2001; Wold et al., 2006; Kirdar et al., 2007). Certain 
attributes that may indicate product quality—such as 
aggregates, post-translational modifications, and n-
glycosylation—cannot be measured directly, and are not 
well-characterized by PCA and PLS. Furthermore, some of 
the quality attributes are determined via biological 
processes that are not fully understood and first-principles 
models are not yet available (Read et al., 2009a). 
Advanced real-time sensor development could enable the 

large quantities of data needed to thoroughly evaluate 
potential hypothesized mechanisms and improve process 
understanding. Model-based experimental design 
methodologies and algorithms are available for carrying 
out such studies to generate process understanding and 
associated first-principles models, even for complex 
multiscale systems (e.g., see Braatz et al., 2006, and 
citations therein). 

Until first-principles models become available for 
some of the more challenging biological reactions, there is 
an opportunity to build “grey-box” models using data to 
inform process monitoring and control decisions. Grey-box 
models are in between first-principles models (based on 
detailed process understanding) and black-box models, 
which are based on statistical correlations observed in 
experimental data (e.g., see Pearson and Pottmann, 2000; 
Togkalidou et al., 2004; Overgaard et al., 2005; and 
citations therein). Most grey-box modeling approaches 
combine first-principles models and black-box models to 
generate predictions that are more complete and/or 
accurate than either separate model type. One grey-box 
modeling strategy is to use a first-principles model to 
predict some states while using surrogate measurements to 
act as indicators of product quality for states that cannot be 
modeled using existing first-principles understanding (a 
“parallel” approach). Other grey-box strategies are to (1) 
define the nonlinear input-output behavior using first-
principles equations or a basis function expansion fit to a 
simulation of first-principles equations and to use black-
box models for describing the dynamics (e.g., Pearson and 
Pottmann, 2000), (2) use first-principles equations to 
define the model structure but replace unknown kinetic 
relationships by apparent relationships described by 
nonlinear basis function expansions (an “embedded” 
approach, e.g., van Can et al, 1997), or (3) replace the true 
system output in least-squares identification of a first-
principles model with a surrogate measurement that closely 
tracks the true systems output (a “surrogate output” 
approach, e.g., Togkalidou et al., 2004). 

Recent advances have been made in representing some 
phenomena that long seemed inaccessible to first-
principles modeling. An example is the work of Villiger et 
al. (2016) on the first-principles modeling of n-linked 
glycosylation. In their work, the mechanistic glycosylation 
model of del Val et al. (2011) is combined with an 
unstructured cell culture model to predict the evolution of 
glycan profiles and used to make decisions about feeding 
policies. As first-principles models become available for 
more of the complex phenomena that arise in 
biopharmaceutical manufacturing processes, predictive 
accuracy will increase, enabling process monitoring and 
control with improved performance. 

Continuous Operations 

Classically, chemically and biologically derived 
pharmaceuticals were manufactured in a series of batch 
processes. Increased attention has been towards 



  

transitioning to continuous operations, where “continuous” 
can refer to (1) a unit operation with the capability of 
operating under continuous flow and minimal holdup 
volume, or (2) a manufacturing plant with integrated 
continuous-flow unit operations with minimal hold volume 
in between (Konstantinov and Cooney, 2015; and citations 
therein). Operating under continuous flow enables: (1) 
higher process flexibility, consistency, and volumetric 
capacity; (2) lower equipment cost and operational 
complexity; and (3) tighter specifications on product 
quality (Jungbauer, 2013; Croughan et al., 2015; Jiang et 
al., 2015; and citations therein).  

For small-molecule pharmaceuticals, an example of 
this trend is in purification. Purification processes are 
traditionally carried out in batch or semi-batch 
crystallizers, with a typical objective being to control the 
molecular purity, size, and shape of the product crystals. 
The degree of control that is needed depends on whether 
the crystallization is for an intermediate or for inclusion 
into the final pharmaceutical product, and the type of drug 
product. Many investigations have considered the effect of 
the process operations and seed crystal size distribution on 
the size distribution of product crystals generate in batch or 
semibatch processes; however, vastly improved control is 
obtainable in continuous crystallization, especially in terms 
of producing crystals of a narrower and more precisely 
controlled crystal size distribution (e.g., Myerson et al., 
2015; Jiang et al., 2015abc; Jiang and Braatz, 2016; and 
citations therein). 

With the rapid increase in market share and the drive 
to improve product quality with lower costs, industry and 
academia are increasingly investigating continuous-flow 
biopharmaceutical manufacturing processes (Konstantinov 
and Cooney, 2015; Jiang and Braatz, 2016; and citations 
therein) Progress has been made on unit operations for 
both upstream and downstream processes, including cell 
culture, centrifugation, filtration, and chromatography 
(Jungbauer, 2013; and citations therein). Ideas with 
prototypes for both hybrid systems (partially continuous) 
and fully integrated continuous processes (from media to 
drug substance) are available for further development 
(Konstantinov and Cooney, 2015). From existing 
publications (Konstantinov and Cooney, 2015; Jiang and 
Braatz, 2016; and citations therein) and the authors’ 
perspectives, the challenges and future trends of 
continuous biopharmaceutical manufacturing operations 
include: 

• Further understanding and optimization of each unit 
operation and component, such as cell culture media 
(Konstantinov and Cooney, 2015; and citations therein) 

• Microscale technologies for high-speed continuous 
process development 

• Availability of plug-and-play modular unit operations 
with integrated process control and monitoring systems 

to facilitate straightforward deployment in the laboratory 
(including single-use technology) 

• Dynamic mathematical models for unit operations and 
entire biopharmaceutical manufacturing plants to support 
process development and plant-wide control 

• Easy-to-use model-based control technologies for 
optimizing startup, changeover, and shutdown aided with 
real-time process analytical technology 

To address these challenges, we propose several 
guidelines for constructing a virtual plant with modeling 
and control. First, first-principles models should be 
constructed wherever possible, with empirical or grey-box 
models used where necessary (see the Process Data 
Analytics section for a more detailed discussion of data-
driven models and the associated challenges). Second, the 
highest complexity models should be used in the invention 
and optimization of process designs and process 
development. Such models should include computational 
fluid dynamics simulation of multiphase flow of 
bioreactors including momentum and multicomponent 
material balances of bubble and liquid phases including 
gas-liquid mass transfer relations, and first-principles 
models of chromatography columns and membrane 
filtration units. Third, lower complexity models of unit 
operations can be used to design most of the closed-loop 
control systems, and integrated to form a plant-wide model 
that is run in parallel with process operations, for process 
control and quality and equipment condition monitoring.  

A continuous biopharmaceutical manufacturing 
platform (Integrated and Scalable Cyto-Technology, or 
InSCyT) (Lu et al., 2015; 2016) is being developed with 
these guidelines in mind. As an example of the 
specification of fidelity for such models, consider the 
continuous generation of liquid solutions needed for 
chromatography and polishing membrane unit operations. 
The unit operations require liquid solutions of tightly 
controlled pH and conductivity for optimal operation. The 
nonlinear phase equilibria can be complex, with high 
sensitivity to uncertainties in model parameters (Lu et al., 
2016). The mixing in an initially designed tank was shown 
to be poor by running computational fluid dynamics, so the 
tank was replaced by two in-line static micromixers (Jiang 
et al., 2015ab) operating in series with continuous feed of 
inlet streams of multiple buffers and base in aqueous 
solution. This configuration is a fairly well-accepted 
approach to process intensification that creates fast mixing 
with simple dynamics. The mixing dynamics in each 
micromixer were described using a five tanks-in-series 
model. To improve the closed-loop performance and fast 
response time, the pH was modeled using the well-known 
reaction-invariant approach (Figure 2), which enables most 
of the nonlinearity to be represented algebraically. Model-
based nonlinear control was designed to address the 
nonlinearities during the feedback controller design 
(Figure 3). An adaptive control approach, described by Lu 
et al. (2016), was developed to increase the robustness of 



  
 
the closed-loop system to uncertainties in the pKa of the 
large number of ionizable groups for the molecules in the 
liquid feed solutions. 
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Figure 2. The pH and conductivity for inline mixing of 

liquid solutions in downstream biopharmaceutical 

manufacturing operations are nonlinear algebraic 

functions of the reaction invariants, which are computed 

from conservation equations. Adapted from Lu et al. 

(2015). 
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Figure 3. Performance comparison between PID 

controllers without and with the reaction-invariant 

method. Adapted from Lu et al. (2016). 

Plant-wide simulation can guide the selection of the 
control strategy for each CQA, the design of startup, 
changeover, and shutdown operations, and the design of 
control systems that ensure that the CQAs of the drug 
product are insensitive to model uncertainties and 
disturbances while directly addressing all nonlinearities, 
time delays, non-minimum phase behavior, and constraints, 
as well as spatially distributed and mixed continuous-
discrete character of the operations of some of the units. 
Most existing process monitoring and control theory 
cannot address much of these phenomena that occur in 
continuous biopharmaceutical manufacturing operations. 
Process models range in complexity from the 
aforementioned reaction-invariant multiple-tanks-in-series 
differential-algebraic models of base addition to static 

micromixers to control pH, to parabolic partial differential 
equations for the chromatography columns, to multiphase 
computational fluid dynamics for simulating bubble 
dynamics and shear stresses on cells in bioreactors to 
determine bioreactor internal geometries and mixing 
speeds. Better ways are still needed to design the real-time 
control systems that are implementable online. One awy to 
design such control systems is to exploit specific 
information on the underlying phenomena. For example, 
we have designed process control system designs for 
specific biopharmaceutical unit operations that include 
open-loop schedules, multi-level split-range control, and 
nonlinear model-based adaptive control by using a variety 
of techniques. A blending of distinct design strategies and 
theoretical approaches with a strong dose of 
nonconservative uncertainty analysis (e.g., Kim et al., 
2013; Streif et al., 2016) has been effective for such 
nonlinear dynamical systems (Lu et al., 2015; 2016). 

Novel Bioseparations 

The currently dominant method for bioseparation is 
packed-bed chromatography, due to its high resolution. 
Chromatography for high-dose biopharmaceuticals is 
expensive, however, even when using operational 
improvements such as periodic countercurrent continuous 
chromatography (Bryntesson et al., 2011). When scaling 
manufacturing processes from bench-scale to production, it 
is generally desirable for the operating cost to scale sub-
linearly with the material throughput. The method of 
purification via chromatography columns has operating 
costs that scale linearly with throughput, roughly the cost 
of resin divided by the number of times that the resin can 
be reused. As production demand will continue to increase, 
the operating costs of chromatography will rise 
proportionally. Also, the increased product titers that are 
being achieved with modern bioreactors also makes several 
non-chromatography separation methods more attractive 
(Zydney, 2016), such as countercurrent multi-stage 
aqueous two-phase extraction (Goja et al., 2013; 
Eggersgluess et al., 2014), precipitation (Hammerschmidt 
et al., 2014), and crystallization, which is discussed in 
more detail below. These latter three processes have been 
operated in continuous mode (Zydney, 2016). 

Crystallization as a Non-Chromatographic Method for 

Bioseparations 

Crystallization from liquid solution has proved to be 
an effective and inexpensive industrial operation for 
inorganic and organic molecules to achieve adequate purity 
and production in large quantities. This purification 
method has costs that scale sub-linearly with throughput 
because the costs scale with the volume of the solution. 
The improved cost-effectiveness is why crystallization is 
heavily used for the purification of small-molecule 
pharmaceutical compounds, that is, for amino acids, active 
pharmaceutical ingredients, and intermediates. 

Crystallization is already used for the production-scale 
purification of some therapeutic proteins, the most 



  

successful being insulin for the treatment of diabetes. Eli 
Lilly & Company first introduced the crystallization 
method for pancreatic insulin, and have been 
manufacturing insulin using this process for over thirty 
years (Jackson, 1973). After insulin is extracted from the 
pancreas by the usual aqueous phosphoric acid-alcohol 
process, the aqueous insulin-containing solution is added 
about 0.2 to 1.0 M alkali metal hydroxide at room 
temperature until a pH of 8.2 is attained. Crystallization 
takes about ¼ to 72 hours, depending upon quality and 
quantity of the starting material. The crystallized insulin is 
removed by decantation or filtration from mother liquor. 

The insulin manufactured by Eli Lilly & Company 
today is called insulin lispro, which is a fast-acting insulin 
analogue also produced with a crystallization step (see 
Figure 4 for the flow diagram for the process) (Baker and 
Roberts, 1997). After proinsulin is produced from 
fermentation of Escherichia Coli and separated from the 
cells by centrifugation and filtration, insulin lispro is 
liberated from proinsulin by treating with trypsin and 
carboxypeptidase B. Then the mixture is purified using a 
number of chromatographic steps and lastly crystallized. 
For crystallization, the solution with 20 g/L protein, 37.5 
mM NaCl, 0.75 M acetic acid, and 0.3% v/v phenol is 
raised to approximately pH 9 with 10% NaOH solution at 
5°C. Well-defined crystals are obtained after 24 hours of 
gentle agitation. 

Challenges for the Crystallization of Large-Molecule 

Therapeutic Proteins 

While crystallization is already used for the 
production-scale purification of some therapeutic proteins 
as mentioned above, research and development are needed 
to develop a crystallization technology effective for mAbs 
and other large-molecule therapeutic proteins. One of the 
challenges in developing production-scale crystallization 
for the purification of large-molecule therapeutic proteins 
is that conditions must be found that produce reproducible 
crystallization using pharmaceutical-grade buffers and 
precipitants. Another challenge is that many of these 
proteins are easily denatured by pH variation, changes in 
temperature, addition of precipitants, and agitation. 
Characterizing the operating conditions and designing 
molecular additives that maximize process efficiency, 
protein stability, and protein yield while minimizing 
protein denaturation and aggregation is necessary to 
resolve these challenges. 

The systematic approach to the solution would be 
constructing phase equilibrium model to characterize 
multidimensional solubility surfaces. The driving force for 
crystallization is supersaturation, which is rigorously 
defined in terms of chemical potential but is nearly always 
replaced by the ratio of the solution concentration to the 
solubility, this ratio minus one, or the solution 
concentration minus the solubility to avoid the time and 
expensive in constructing a non-ideal phase equilibrium 
model for computing the chemical potential. Regardless of 
the specific definition of supersaturation used, information 
on the solubility is needed to determine supersaturation. 

An example is the work of Ahamed et al. (2007) on 
applying first-principles models to calculate the phase 
diagram for mAb. Their work used the osmotic second 
virial coefficient (B22), the parameter measuring solution 
non-ideality due to solute-solute interactions, to derive the 
generalized protein phase diagram. 

A third challenge is that such proteins have orders-of-
magnitude slower nucleation and growth rates, typically on 
the order of many hours to days, compared to small-
molecule pharmaceuticals. Proteolytic degradation by 
proteases or denaturation may occur during this period, 
reducing the overall yield or quality of the product. This 
challenge may be addressed by using continuous-flow 
crystallizers designed to operate at high crystal surface 
area, to reduce the potential for protein denaturation and 
degradation by proteases. First-principles models based on 
population balances for crystal size distribution will be 
useful for the design of optimal crystallizer configurations. 

 

Figure 4. Flow diagram for the production of 

insulin lispro from fermentation broth using 

crystallization (Baker and Roberts, 1997). 

Control of Biopharmaceutical Crystallization 

Depending on how much the process is understood, 
the control of the biopharmaceutical crystallization can 
either take (1) first-principles approach or (2) the direct 
design approach (see Figure 5 for flowchart for both 
approaches) (Fujiwara et al., 2005; Nagy and Braatz, 2007; 
2012; Simon et al., 2015; and citations therein). The first-
principles approach controls the crystallization by 
optimizing objective function related to the crystal size 
distribution by using a first-principles model. With optimal 
experimental design and experimental data collection, the 
parameters for the models can be estimated and the best 
kinetic mechanism can be selected. The remaining 
uncertainties in the model parameters and structures can be 
assessed with modern robustness analysis methods (see 
Streif et al., 2016, and citations therein). Robust 
optimization can be handled with the worst-case objective 
(which is also known as min-max approach) as well as a 
weighted sum of the mean of the objectives for nominal 
performance and its variance for robustness. This first-
principles approach was applied by Rawlings et al. (1993) 
and Miller and Rawlings (1994) to inorganic 
crystallization and Togkalidou et al. (2004) to 
pharmaceutical crystallization. In the latter work, 
experimental design and data collection were used for 
parameter estimation and model selection on expressions 



  
 
for the supersaturation and the nucleation rate. Then, with 
the constructed model, batch operating procedures were 
designed to minimize nucleation and maximize the 
sharpness of the crystal size distribution. 

For biopharmaceutical crystallization, especially for 
the case of large-molecule therapeutic proteins, 
constructing first-principles model may be time consuming 
due to the very slow nucleation and growth rates. When 
first-principles models and the crystallization kinetics are 
too expensive to constructed, the more efficient direct 
design approach can be taken (Fujiwara et al., 2005, and 
citations therein). This approach uses feedback control to 
follow a setpoint supersaturation curve in the 
experimentally determined metastable zone, which is 
region between the solubility curve and the metastable 
limit. Concentration control (C-control), also referred to as 
supersaturation control, implements direct design 
approach by manipulating the temperature (for cooling 
crystallization) and/or solvent addition (for antisolvent 
crystallization) to meet the setpoint supersaturation 
calculated by the solution concentration measurement and 
previously measured saturation concentration. This direct 
design approach has been recently applied by Simone et al. 
(2015) on a biopharmaceutical product. Their work 
showed that C-control gave narrow and larger crystals 
compared to simple linear cooling, which is a classical 
crystallization technique. 

 

Figure 5. Flowchart for the first-principles and 

direct design approaches for crystallization 

control. 

Conclusion 

This article describes opportunities and challenges for 
the manufacturing of biopharmaceuticals from the 
perspective of chemical process control. One of the trends 
in the field is towards increased PAT, especially with the 
goal towards online sensor technologies. Characteristics of 
biopharmaceutical data such as heterogeneity in time scale 
and data type and tensorial dimensionality provide 
challenges for developing effective process data analytics 
methods. Existing proposed methods for heterogeneous 
data handling and dimensionality reduction were 
summarized. While some unit operations are well 
described by first-principles model, the lack of 

understanding required to construct first-principles models 
for some complex biological mechanisms motivates the 
construction of grey-box models, which combine process 
understanding and data analytics to improve the accuracy 
of predictions needed for process monitoring and control 
decisions. Various strategies in grey-box modeling for 
biomanufacturing processes were described. 

Another major trend is the move in academia and 
industry towards continuous unit operations, which would 
greatly increase the application of more advanced process 
monitoring and control systems. Continuous manufacturing 
would be facilitated by (1) microscale technologies for 
high-speed continuous process development, (2) plug-and-
play modular unit operations with integrated process 
control and monitoring systems, (3) dynamic models for 
unit operations and entire biopharmaceutical 
manufacturing plants to support process development and 
plant-wide control, and (4) industry-implementable model-
based control technologies for optimizing startup, 
changeover, and shutdown. The article argues for more 
powerful control theories, which can explicitly address 
uncertainties, nonlinearities, time delays, nonminimum 
phase behavior, manipulated and output variable 
constraints, spatial distributions, and mixed continuous-
discrete operations. Some successes have been achieved in 
the combination of multiple systems and control theories 
with robustness analyses. 

Increases in demand for the production of 
biopharmaceuticals and in product titers in modern 
cultivations motivate the development of novel 
bioseparation methods to replace chromatography. 
Crystallization is a cost-efficient unit operation that is 
already extensively applied to chemically derived 
pharmaceuticals and to some biopharmaceuticals such as 
insulin. Some challenges and potential solutions for the 
application of crystallization to large-molecule therapeutics 
proteins such as mAbs were described. Furthermore, 
process control approaches applicable to 
biopharmaceutical crystallization were summarized that 
can be selected depending on the degree of the process 
understanding. 

The field of biopharmaceutical manufacturing is in a 
state of flux right now as it further matures. Emerging 
technologies and market demands are driving companies to 
reconsider their manufacturing strategies and scales. As a 
result, there are new opportunities for chemical and 
process control engineers to make impactful contributions. 
Such contributions will only come from respecting the 
challenges associated with these biologically-derived 
complex processes, and working closely with experimental 
groups in academia or industry that are responsible for the 
unit operations, own the systems and control problems, and 
can implement proposed solutions. 
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