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Abstract

Modern approaches for dynamic optimization trace their inception to Pontryagin’s Maximum Principle 60

years ago. Since then the application of large-scale nonlinear programming strategies has been extended

to deal with challenging real-world process optimization problems. This study discusses and demonstrates

the effectiveness of dynamic optimization on three case studies on real-world chemical processes. In the

first case, we consider the optimal design of runaway reactors, where simulation models may lead to

unbounded profiles for many choices of design and operating conditions. As a result, optimization based

on repeated simulations typically fails, and a simultaneous, equation-based approach must be applied.

Second, we consider optimal operating policies for grade transitions in polymer processes. Modeled as an

optimal control problem, we demonstrate how incorporation of product specification bands leads to multi-

stage formulations that greatly improve process performance and significantly reduce off-grade product.

Third, we consider an optimization strategy for the integration of scheduling and dynamic process op-

eration for general continuous/batch processes. The method introduces a discrete time formulation for

simultaneous optimization of scheduling and operating decisions. Finally, we provide a concise summary

of directions and challenges for future extension of these optimization formulations and solution strategies.
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1 Introduction

The study of dynamic optimization problems origi-

nates from the rich field of the Calculus of Variations,

treated in a number of classical texts including Bliss

[10] and Courant and Hilbert [19]. The evolution of

variational calculus to the more general field of optimal

control stems from Pontryagin’s maximum principle dis-

covered in the 1950s [13, 38]. Optimal control has led

to a broad set of applications ranging from aeronautical

applications [15, 39, 5, 2], robotics [16, 44], and process

control [40]. Here we consider the impact of optimal con-

trol in the design, operation and integration of chemical

process systems. Specifically, reactor design requires the

dynamic optimization of differential-algebraic equation

models to deliver efficient and safe operation within op-
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erating and product constraints. Moreover, dynamic op-

erations occur in both batch and continuous processes.

For the latter case, optimal transitions are needed to

handle the dynamics of product grade changes, cyclic

operations, catalyst deactivation over time, and fouling

of heat transfer surfaces in a production cycle. For batch

processes, optimal operating recipes need to be gener-

ated for dynamic operation of batch units. These batch

units also need to integrate to the overall plant and to

an operating cycle with interactions to other processes

over broader length scales, as well as planning, schedul-

ing and control tasks that span several time scales.

In the next section we introduce the statement of the

dynamic optimization problem and review a number of

approaches to solve this problem, with a focus on the si-

multaneous collocation approach and a summary of its

characteristics and advantages. The next three sections

demonstrate the power of the simultaneous approach on



three real-world examples. Section 3 focuses on optimal

reactor design with runaway reactions. We present an

optimization study on graded bed reactors and demon-

strate why the simultaneous method is successful, while

other methods fail. Section 4 considers dynamic op-

erations of continuous operations and focuses on opti-

mal grade transition of a polymer process with detailed

models for molecular weight distributions. Here the si-

multaneous approach leads to a multi-stage formulation

that leads to signicant reductions in off-spec product and

faster grade transitions. Section 5 considers the integra-

tion of batch processes with the logistics of scheduling

and interactions with other units. Here we present an

optimization study that links the generation of optimal

operating recipes together with a resource task network

formulation for the production of multiple products in

an overall plant. Finally, conclusions and directions for

future work are given in the last section.

2 Dynamic Problem Statement

We consider the optimization problem stated in the

following form:

min Φ(z(tf )) (1a)

s.t.
dz

dt
= f(z(t), y(t), u(t), p),

z(0) = z0(p) (1b)

gE(z(t), y(t), u(t), p) = 0 (1c)

gI(z(t), y(t), u(t), p) ≤ 0 (1d)

hE(z(tf )) = 0, hI(z(tf )) ≤ 0 (1e)

The variables in this optimization problem are the time-

independent parameters p as well as differential state

variables z(t), algebraic variables y(t), control variables

u(t), which are functions of the scalar t ∈ [t0, tf ]. As

constraints we have differential and algebraic equations

(DAEs) given by (1b)-(1c) and we assume without loss

of generality that this DAE system is index one.

As shown in Figure 1, a number of approaches can

be taken to solve Problem (1). DAE optimization prob-

lems are solved using a variational approach or by vari-

ous strategies that apply nonlinear programming (NLP)

solvers to the DAE model. Until the 1970s, these prob-

lems were solved using an indirect or variational ap-

proach, based on the necessary conditions for optimality

obtained from Pontryagin’s Maximum Principle [38, 15].

For problems without inequality constraints, these con-

ditions can be written as a set of DAEs. Obtaining

a solution to these equations requires careful attention
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Figure 1. Solution strategies for dynamic optimization

to the boundary conditions. Often the state variables

have specified initial conditions and the adjoint variables

have final conditions; the resulting two-point boundary

value problem (TPBVP) can be addressed with different

approaches, including single shooting, invariant embed-

ding, multiple shooting or some discretization method

such as collocation on finite elements or finite differ-

ences. On the other hand, if the problem requires the

handling of active inequality constraints, finding the cor-

rect switching structure as well as suitable initial guesses

for state and adjoint variables is often very difficult.

Early approaches to deal with these problems can be

found in [15].

Methods that apply NLP solvers can be separated

into two groups, sequential and simultaneous strategies.

In the sequential methods, also known as control vec-

tor parameterization, only the control variables are dis-

cretized. In this formulation the control variables are

represented as piecewise polynomials [45, 46, 4] and op-

timization is performed with respect to the polynomial

coefficients. Given initial conditions and a set of control

parameters, the DAE model is embedded within an in-

ner loop controlled by an NLP solver. Parameters (p)

that represent the control variables are updated by the

NLP solver itself. Gradients of the objective function

with respect to the control coefficients and parameters

are calculated either by direct sensitivity equations de-

rived from the DAE system or by integration of the ad-

joint equations; several codes have been developed for

both sensitivity methods.

Sequential strategies are relatively easy to construct

and to apply, as they incorporate the components of reli-

able DAE and NLP solvers. On the other hand, repeated



numerical integration of the DAE model is required,

which may become time consuming for large scale prob-

lems. However, optimal control problems with many

degrees of freedom lead to expensive (direct) sensitivity

calculations required by the NLP; they also retain calcu-

lation noise from the DAE integrator and their expense

dominates the computation cost. Moreover, sequential

approaches are known to fail on unstable dynamic sys-

tems [3, 22]. Finally, state constraints can be handled

only approximately by sequential methods, within the

limits of the control parameterization.

Multiple shooting is a simultaneous approach that in-

herits many of the advantages of sequential approaches.

Here the time domain is partitioned into smaller time el-

ements and the DAE models are integrated separately in

each element, along with corresponding sensitivity equa-

tions [11, 12, 31]. Control variables are parametrized as

in the sequential approach and gradient information is

obtained for both the control variables and the initial

conditions of the states variables in each element. Fi-

nally, equality constraints are added to the NLP to link

the elements and ensure that the states are continuous

across each element. As with the sequential approach,

inequality constraints for states and controls can be im-

posed directly at the grid points, and care is needed to

avoid noisy and expensive sensitivity calculations.

Finally, in the Simultaneous Collocation Approach,

we discretize both the state and control profiles in time

using collocation of finite elements, as shown in Figure

2. This approach corresponds to a particular implicit

Runge-Kutta method with high order accuracy and su-

perior stability properties. Also known as fully implicit

Gauss forms, these methods are can be expensive (and

not widely applied) as initial value solvers. However, for

boundary value problems and optimal control problems,

this approach is essential and also requires far fewer time

steps to obtain accurate solutions. On the other hand,

simultaneous collocation leads to large-scale NLP prob-

lems, which may require efficient optimization strategies

(see [5, 8]). Because simultaneous collocation methods

directly couple the solution of the DAE system with the

optimization problem, the dynamic system is solved only

once, at the optimal point. Intermediate solutions that

do not exist, become unstable or require excessive com-

putational effort are therefore avoided. Coupled with

modern NLP solvers and optimization environments,

this approach can be considerably more efficient than

sequential methods on large-scale problems.

The simultaneous collocation approach has a num-

ber of advantages over other approaches to dynamic op-

timization. First, when control variables are discretized

at the same level as the state variables, the Karush Kuhn

Tucker (KKT) conditions of the simultaneous NLP are

consistent with the optimality conditions of the dis-

cretized variational problem [8]. Moreover, under mild

conditions, convergence properties to the optimal con-

trol solution of (1) have been analyzed [20, 26] and ex-

tended to Radau collocation [29].

Second, as with multiple shooting approaches, simul-

taneous approaches can deal with instabilities that occur

for a range of inputs. Because they are extensions of ro-

bust boundary value solvers, they are able to “pin down”

unstable modes (i.e., increasing modes in the forward

direction). This property has important advantages for

problems that include transitions to unstable points, op-

timization of chaotic systems [12] and systems with limit

cycles and bifurcations, as illustrated in [22].

Finally, simultaneous collocation methods also allow

the direct enforcement of state and control variable con-

straints, at the same level of discretization as the state

variables of the DAE system. As discussed in [8], these

present some interesting advantages on large-scale prob-

lems. Moreover, simultaneous collocation approaches

have demonstrated distinct advantages for singular con-

trol problems and problems with high index path con-

straints [6, 30, 18].

Nevertheless, simultaneous collocation often requires

the application of large-scale optimization solvers (e.g.,

CONOPT [21], IPOPT [47], KNITRO [17]) and op-

timization modeling environments (e.g., GAMS [14],

AIMMS [1], AMPL [23] and PyOMO [28]).

3 Optimal Design for Graded Bed Reactors

Optimization of packed bed catalytic reactors with

runaway reactions represents an important challenge for

dynamic optimization. In order to increase productiv-

ity and prevent temperature profiles from becoming un-

bounded, graded (or zoned) bed techniques introduce

nonuniform active catalyst distributions along the re-

actor bed, with catalysts diluted with inerts in differ-

ent compositions. The catalyst dilution strategy can

also improve dynamic controllability of the reactor un-

der constrained cooling capacities.

In [36] a systematic design approach was developed

for graded bed optimization with nonuniform catalytic

activity distributions. This study considers the vapor

phase oxidation of o-xylene to phthalic anhydride with



vanadium pentoxide catalyst. Typically, o-xylene is

mixed with excess air before entering the reactor. The

highly exothermic reaction scheme can be summarized

as follows:

C8H10
o−xylene

+ 3O2
k1−→ C8H4O3 + 3H2O

phthalic anhydride
(Rxn1)

C8H4O3
phthalic anhydride

+ 7.5O2
k2−→ 8CO2 + 2H2O (Rxn2)

C8H10
o−xylene

+ 10.5O2
k3−→ 8CO2 + 5H2O (Rxn3)

Reaction rates are modeled as pseudo-first-order and

proportional to a catalyst activity profile σ(V ) ∈ [0, 1]

that varies along the bed length V . The reactor model

is formulated in both radial and axial directions and

a novel alpha model was applied in [36] to transform

mass and energy balances to DAEs in the axial coor-

dinate. The optimization problem is to maximize the

productivity of phthalic anhydride at the reactor out-

let. Key product specifications are given as end-point

constraints:

Selectivity:
foPA

f iOX − foOX
≥ 75.0%

Conversion:
f iOX − foOX

f iOX
≥ 92.5%.

where foPA is outlet molar flow rate of phthalic anhy-

dride, and f iOX/f
o
OX are inlet/outlet molar flow rates

of o-xylene. In addition to σ(V ), the decision variables

include inlet temperature T i, wall temperature T c and

inlet flow rates f ij , with feed composition fixed.

The reactor optimization takes the form of Problem

(1), and a sequential approach would treat the reac-

tor model as a black box, where the state trajectories

(and their sensitivities required in optimization search)

are provided by external numerical DAE solvers. This

method relies heavily on repeated solution of DAEs.

However, when decisions are chosen so that tempera-

ture profiles become unbounded, as with any unstable

system, the DAE solver fails, the optimization strategy

aborts, and the user is left to “pick up the pieces.”

In contrast, the simultaneous collocation approach

incorporates the DAEs as constraints directly within the

NLP. Because the temperature and composition profiles

are bounded in the optimization problem, the simulta-

neous approach can handle unstable DAE systems as

boundary value problems, and it ensures convergence to

the optimal catalyst distribution problem with runaway

reactions.

Zone # Product rate Tmax CPU

N [kg/(m3 · h)] [K] [s]

1 79.33 684.58 19.2

2 100.32 669.82 16.0

4 106.50 676.76 20.3

10 106.63 679.38 29.2

∞ 106.64 680 2798.91

Table 1. Optimization statistics for increasing catalytic

zones

Moreover, the graded bed problem is a singular op-

timal control problem, as control variables appear only

linearly in (1) and the optimal control policy cannot

be explicitly recovered from the stationary conditions.

As degrees of freedom increase numerical optimization

methods often give rise to highly oscillatory profiles, es-

pecially when a high-resolution discretization scheme is

used for the control variables. One way to avoid this

behavior is to use a coarse discretization and to design

a graded bed with only a few catalytic zones with con-

stant σ values. The multi-zone optimization formulation

is introduced by dividing the reactor bed into N(> 1)

catalytic zones, with varying segment length, and the

activity coefficient σ as a piece-wise constant function

over the bed length.

The optimization model, discretized with 3 point col-

location over 60 finite elements, was solved with IPOPT

3.10 on an Intel Core i7 CPU, with an increasing num-

ber of zones N , in order to inspect the influence of finer

zoning on the production of phthalic anhydride. The

optimization formulation with over 7800 variables and

constraints solves to local optimality for all scenarios

and the results and model statistics are listed in Table

1. Higher productivity is achieved by raising both the

mass flow and cooling temperature, and (for N > 1)

the maximum temperature remains bounded by 680 K

through manipulation of the graded beds.

As seen from Table 1, a single uniform bed (N = 1)

has the lowest productivity. Additional activity zones

show significant improvement, but eventually with di-

minishing benefits. Figure 2 shows profiles with 4 to 10

zones. With N = 10 the dilute zones between the first

and last approximate a singular arc with a shallow re-

sponse surface that has little additional influence on the

optimal objective function value.

To obtain a limiting solution that captures the singu-

lar arc as N →∞, we note an increased ill-conditioning
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Figure 2. Optimal profiles of the multi-zone beds N =

4, 5, 10,∞

of the NLP. A recent approach that avoids this problem,

and leads to solutions of singular arcs is given in [18]. In

addition to solving the discretized optimal control prob-

lem, optimality conditions from the infinite dimensional

problem (1) must be strictly enforced; finite elements are

adjusted and added in order to improve the approxima-

tion error on these conditions. The resulting approach

in [18] leads to a bilevel optimization formulation where

the inner NLP solves the discretized problem with fixed

elements, while the (smaller, but more nonlinear) outer

problem manages the finite elements, in order to satisfy

Euler-Lagrange Conditions on the singular controls to

a numerical tolerance. Applying this approach to the

graded bed reactor optimization leads to the tempera-

ture and activity profiles given in Figure 2. This verified

singular control solution has similar performance as with

N = 10 but at considerable increase in computational

cost.

4 Integrated Optimal Grade Transitions with

Product Specification Bands

This section considers the development of optimiza-

tion models for the grade transition of polyethylene solu-

tion polymerization processes. Among the large family

of polyethylene products, linear low-density polyethy-

lene (LLDPE) is among the most versatile, and is widely

manufactured and marketed. Typically made by copoly-

merization of ethylene with longer-chain olefins and

single-site catalysts, LLDPE has a narrower distribution

of molecular weight and leads to various product grades

defined by specified product properties such as melt in-

dex (MI) and density. These product grades are typi-

cally produced on the same production line, and grade

transitions are frequently applied. Consequently, grade

transitions require the minimization of off-spec product

as well as loss of production time, while meeting oper-

ating and safety constraints.

In the solution polymerization process shown in Fig.

4, LLDPE is produced in a loop reactor operating at

high recycle ratio that can be modeled as an ideal

CSTR. Ethylene, comonomer, catalyst, hydrogen, sol-

vent and impurities are continuously injected into the

jacketed reactor, and ethylene is partially polymerized

to produce products of different grades. Cooling me-

dia flow through the reactor jacket to control the re-

actor temperature to an acceptable range, and to en-

sure all components remain in liquid phase. The re-

actor is followed by a separator, which separates poly-

mers from other components and a splitter which re-

cycles both liquid and vapor streams. For grade tran-

sition optimization, available manipulated variables in-

clude ethylene flowrate, comonomer flowrate, hydrogen

flowrate, catalyst flowrate and inlet cooling media tem-

perature; controlled variables are ethylene conversion,

MI and product density. Within the process, a detailed

reactor model has been created that includes a moment

model that allows product quality to be incorporated

directly into the optimization problem. This reactor

model considers a single-site catalyst and the reactions

in Table 2. Here, P0 is the empty site; M , monomer

and comonomer denoted by different subscripts i and j;

Pn,i, growing polymer of chain length n and end-group

Mi; Dn,i, dead polymer of chain length n and end-group

Mi; Cd, dead catalyst site; and A, S, T, X for cocatalyst,

solvent, transfer agent and poison, respectively.

Grade transition optimization can be formulated as

Problem (1) and specific grade transition optimization

problems are typically formulated as “point to point”

problems where the objective is to minimize time or re-

sources consumed. This is denoted as a single stage op-

timization, starting from the current product specifica-

tions and operating conditions at t0 and moving to the

target specifications and operating conditions at some

unknown tf . The dynamic optimization problem is de-

fined by:

min
∫ tf
t0
‖ y(t)− y∗ ‖2Q + 1

γ ‖ u(t)− u∗ ‖2R dt
s.t. Reactor Moment model

Process Model equations

Process constraints

(2)

where y(t), y∗ are output variables and corresponding



target, u(t), u∗ are input variables and corresponding

target, and Q and R are scaling matrices. Full details

on this model are provided in [42]. In the objective

function, the first term addresses the gap between cur-

rent property predictions and their targets, while the

second is a regularization term that ensures that the

target steady state is reached smoothly. When this

regularization term is removed, the problem becomes

an ill-conditioned, singular control problem, where solu-

tion profiles are highly sensitive to numerical error. As

the regularization weight 1/γ increases, smoother con-

trol profiles can be observed at the expense of longer

transition time.

To leverage the flexibility of simultaneous solution

strategies, the dynamic optimization can be formulated

as a “set to set” transition problem, leading to a multi-

stage formulation where the objective excludes parts of

the transition that satisfy product specification bands.

The result is that transition time and off-grade product

are significantly reduced. This multi-stage optimization

problem for minimum transition time is written as:

min αt(t2 − t1) + βt(t1 − t0)

+
∫ tf
t0
‖y(t)− y∗‖2Q + 1

γ ‖u(t)− u∗‖2Rdt
s.t. Reactor Moment Model

Process Model Equations

Process Constraints

Property Specifications in 1st and 3rd Stages

MIA,min ≤MI ≤MIA,max,

ρA,min ≤ ρ ≤ ρA,max, t ∈ [t0, t1]

MIB,min ≤MI ≤MIB,max,

ρB,min ≤ ρ ≤ ρB,max, t ∈ [t2, tf ]

(3)

Moreover, the multi-stage formulation is easily modified

for direct minimization of off-grade material, by substi-

tuting the corresponding objective.

αp
∫ t2
t1
P (t)dt+ βt(t1 − t0) +

∫ tf
t0
‖y(t)− y∗‖2Q

+ 1
γ ‖u(t)− u∗‖2Rdt (4)

Here P (t) is production rate at time t, and off-grade

product is made in time period [t1, t2]. Similar to the

case with minimum transition time, the weights αp, βt

and γ can be tuned systematically with fixed Q and R.

A sketch of the multi-stage evolution is shown in Fig-

ure 3. In the above objective function, the terms rep-

resent the time period of producing off-grade product

(t2− t1), initiation to the first transition (t1− t0) and a

tf	

*	target	

Figure 3. Grade transitions when specification bands are

considered

Chain initiation P0 +Mi ⇒ P1,i

Chain propagation Pn,i +Mj ⇒ Pn+1,j

Chain transfer

1. to hydrogen Pn,i +H2 ⇒ P0 +Dn,i

2. to cocatalyst Pn,i +A⇒ P0 +Dn,i

3. to solvent Pn,i + S ⇒ P0 +Dn,i

4. to transfer agent Pn,i + T ⇒ P0 +Dn,i

5. to monomer Pn,i +Mj ⇒ P1,j +Dn,i

6. spontaneous Pn,i ⇒ P0 +Dn,i

Chain deactivation

1. by poison Pn,i +X ⇒ Cd+Dn,i

P0 +X ⇒ Cd

2. spontaneous Pn,i ⇒ Cd +Dn,i

P0 ⇒ Cd

Table 2. LLDPE polymerization reactions from [42]

regularization term that promotes a smooth solution to

the target steady state of the second grade, respectively.

αt, βt, γ, Q and R are weighting factors which are tuned

to balance these objectives.

Note that the grade transition problem considers not

just the individual reactor, but the dynamic optimiza-

tion of the entire plant with liquid and vapor recycles.

This also requires consideration of longer time horizons

for the grade transition. In addition, constraints are im-

posed to maintain the reactor in liquid phase over the en-

tire operation. These constraints require detailed vapor-

liquid equilibrium models to determine bubble point lim-

its of the reacting mixture over time. Finally, to approx-

imate the transport delay in the recycle streams, a vari-

able time delay has been built into the model in order

to accommodate the dynamics of the grade transition

problem.
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Figure 4. Flowsheet of Solution Polymerization Process
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Figure 5. A→B: Comparison of density profiles and ac-

cumulated off-grade production with four grade transi-

tion policies with t0 = 5.

The optimization problems (2), (3) (4) directly min-

imize transition times, off-grade production times and

off-grade product, respectively. Detailed presentation of

results and comparison of the resulting dynamic opti-

mization cases is given in [42]. To compare the single-

stage and multi-stage results, we consider the grade

transition from high density A (ρ = 0.908,MI =

1.0 g/10min) to low density B (ρ = 0.864,MI =

12.0 g/10min) product. Four different grade transition

policies are compared for this particular transition: a)

step response from steady state of A to B, b) single-stage

formulation (2), c) multi-stage formulation with mini-

mum transition time (3) and d) multi-stage formulation

modified for minimum off-grade production instead of

minimum time (4). With 3 point collocation and 48

finite elements, the resulting NLPs contain 157000 vari-

ables and constraints and require from 2 to 11 CPU

minutes to solve.

The optimal profiles of product density are shown

in Figure 5 with product property specification bands

t3 − t0 t1 − t0 t2 − t1 off-grade

A→B (hr) (hr) (hr) prod. (scaled)

Step response > 20 0.18 > 20 > 8.96

Single-stage 1.91 0.04 1.87 1.00

Min-off-grade 1.31 0.10 1.21 0.61

Min-time 1.28 0.10 1.18 0.65

Table 3. A→B: Comparison of step response, single-

stage and multi-stage solutions for transition to low den-

sity

marked by horizontal dashed lines; additional input and

output profiles can be found in [42]. Included in this fig-

ure is the straightforward step response to target steady

state as a typical base case. As shown in Table 3,

the single stage optimization reduces off-grade produc-

tion and transition time by an order of magnitude over

the step response case. The multi-stage optimization

provides the best transition policies and reduces off-

grade production and transition time by an additional

30%. Starting at t0 = 5h the multi-stage transition

quickly leaves the first specification band at t1, per-

forms a fast transition to the boundary of the second

band and reaches Stage 3 at t2 = 6.36 h. In constrast,

t1 is about the same for the single-stage solution, but

this solution reaches the boundary of the target band at

t2 = 6.91 h. Similarly, the modified multi-stage formu-

lation (4) directly minimizes off-grade production and

has significantly lower off-grade production during tran-

sition. Consequently, multi-stage formulations signifi-

cantly outperform the single stage formulation, and are

able to directly reduce the amount of off-grade product

as well as transition time.

5 Integration of Dynamic Operations with

Scheduling

Integrated optimization of production schedules and

unit control strategies is a promising approach to im-

prove plant profitability. Bhatia and Biegler [7] were

among the first to incorporate rigorous dynamic mod-

els into batch scheduling problems. While that study

was restricted to flowshop plants with limited trans-

fer polices, their work showed great potential of the in-

tegrated optimization approach to improve plant prof-

itability. Nyström et al. [37] studied a grade sequenc-

ing and transition problem of a polymerization process,

where the transition trajectories, operating points, and



sequencing of grades are determined all-at-once with a

mixed integer dynamic optimization formulation. Cost

minimization is achieved by reducing raw material use

and off-grade products.

Integration of batch processes has also gained more

attention due to advances in batch scheduling meth-

ods [27] and dynamic optimization algorithms [8]. This

section considers the integrated optimization of a semi-

batch process for the manufacture of polyether poly-

ols. A general-purpose formulation was developed in

[35] to integrate scheduling and dynamic optimization

for batch/continuous processes. For the polyether polyol

process, we first developed a rigorous mathematical re-

actor model based on the reaction scheme described in

Table 4 [33]. This dynamic model is based on first-

principles including mass and population balances, re-

action kinetics and vapor-liquid equilibria. A dynamic

optimization problem is then formulated to minimize the

processing time within target requirements, along with

additional requirements on product quality and process

safety. In particular, novel constraints are imposed over

time to reflect limitations on cooling duty as well as an

adiabatic temperature rise constraint that enforces safe

operation even if cooling is lost.

Solved by the simultaneous collocation strategy we

obtain optimal temperature and monomer addition pro-

files in Figure 6. The optimization reduces the batch

time by 47% while meeting the same product quality

constraints. This indicates a significant improvement

over current operations.
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Figure 6. Optimal control profiles of the process

To extend this process to integrated scheduling and

dynamic optimization, we consider the unified time grid

in Figure 7. Here the discrete time representation is

adopted to enable detailed modeling of process charac-

Hydrolysis:

W + M
kh−→ 2D0

Initiation:

G0 + M
ki−→ G1

Q0 + M
ki−→ Q1

Propagation:

Gn + M
kp−→ Gn+1 (n > 1)

Qn + M
kp−→ Qn+1 (n > 1)

Transfer:

Gn + M
kt−→ Dn + Q0 (n > 0)

Qn + M
kt−→ Rn + Q0 (n > 0)

Exchange:

Gn + Dm
ke−→ Dn + Gm (n,m > 0)

Qn + Rm
ke−→ Rn + Qm (n,m > 0)

Gn + Rm
ke−⇀↽−
ke

Dn + Qm (n,m > 0)

Table 4. Reactions for polyol polymerization. Gn de-

notes growing product chains of length n, Dn denotes

dormant product chains of length n, Qn denotes grow-

ing by-product chains of length n, Rn denotes dormant

by-product chains of length n.

. . .

Collocation pointsFinite elementsTime slots

Time

t = 1 t = 2 t = 3 t = 4 t = H

Figure 7. Time representation of the integrated formu-

lation

teristics in both the scheduling and operation layers. In

this figure, the entire scheduling time horizon is indexed

by t ∈ {1, 2, . . . ,H} with H discrete time slots of unit

length. A time slot contains finite elements with collo-

cation points inside each element. Also, note that the

starting point of a scheduling time slot is aligned with

a finite element, so that task switching events, repre-

sented as binary variables, are addressed simultaneously.

Both the scheduling and dynamic modeling equations

are then formulated as a nonconvex Mixed Integer Non-

Linear program (MINLP).

To demonstrate this integrated approach we consider

the polyether polyol process model in [35]. As shown in

Figure 8, the plant has two parallel polymerization reac-

tors (Rxr1, Rxr2) of identical processing capacity; both

connect to the downstream buffer tank (T) followed by

the purification unit (PU). Three types of products are

made from the process (A, B, C) with different speci-

fications on molecular weight and byproduct ratio. An
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Rxr2

Tank Purification Unit
Prod A,B,C

Figure 8. Flowsheet of the polyether polyol process

integrated approach is applied to maximize the over-

all profit of the process within a given scheduling hori-

zon. As a result, rigorous dynamic models are developed

for the polymerization reactors, while the other continu-

ous units are modeled using the Resource Task Network

(RTN) representation.

Rxr1 and Rxr2 demand a large cooling capacity as

reactions are highly exothermic. An interesting feature

of the plant is that the two reactors share cooling utility

from the same source. Moreover, the optimized sched-

ule must produce a predetermined amount of Product A

according to customer orders, while additional Product

B and C can be made beyond ordered amounts. The de-

cision variables are the task assignments for scheduling,

and the control strategy of the reactors includes the tem-

perature trajectory and monomer feed policy. There are

two polymerization modes for Products B and C with

the same quality specs but different task lengths; Prod-

uct A has only one polymerization mode. PU has a max-

imum processing rate that is product dependent. Costs

consist of cooling utility cost, fixed cost for polymeriza-

tion operations and PU maintenance, and penalties for

monomer flow rate and temperature fluctuations. The

goal of the integrated optimization is to maximize the

plant profit over a 3-day scheduling time horizon, which

is calculated by product sales minus total manufacturing

cost.

To determine the schedule, the RTN models mate-

rials and process unit availability as resources that can

be generated and/or consumed by operation tasks. This

model allocates tasks over time while ensuring that re-

source levels stay within feasible limits. Detailed deriva-

tion of the RTN model can be found in [34]. To illustrate

this model, we describe the following resource balance

equation, which accounts for the variation of excess re-

source levels over time.

Rr,t = Rr,t−1 +
∑
i∈I

∑
m∈M

τi,m∑
θ=0

µi,m,r,θw̄i,m,t,θ

+
∑
i∈I

∑
m∈M

∑
n∈N

τi,m∑
θ=0

νi,m,n,r,θ ξ̄i,m,n,t,θ + Πr,t,

∀r ∈ R, t ∈ T . (5)

Here, R is the resource level, w̄ and ξ̄ are the discrete

and continuous task history states, τ is the task length,

µ and ν are the corresponding task resource parame-

ters, and Π is used to represent external transfer events.

The subscripts are r for resource, t for time slot, i for

tasks, m for task modes, n for task extents. Also, θ is a

dummy subscript to account for time delay shifts in the

resource balance. Analogous equations are also derived

to represent the task history states (w̄, ξ̄) as well as the

upper and lower bounds of the resource levels and task

histories.

The integrated formulation proposed in [35] ties the

RTN scheduling model and process dynamic models

together along the time line presented in Figure 7.

Task switching events are described by the task assign-

ment/history variables in the RTN scheduling model.

The integrated formulation for scheduling and dynamic

optimization is given by:

max Φ(Rr,t, zt, yt, ut, w̄i,m,t,θ, ξ̄i,m,n,t,θ)︸ ︷︷ ︸
Overall profit

(6)

= Φsch(Rr,t, w̄i,m,t,θ, ξ̄i,m,n,t,θ)︸ ︷︷ ︸
Product sales

−Φdyn(zt, yt, ut, w̄i,m,t,θ, ξ̄i,m,n,t,θ)︸ ︷︷ ︸
Manufacturing cost

s.t. Scheduling equations, analogous to Eq. (5)

F sch(Rr,t, R
min
r,t , Rmaxr,t , w̄i,m,t,θ, ξ̄i,m,n,t,θ) = 0

Scheduling inequalities, analogous to Eq. (5)

Gsch(Rr,t, R
min
r,t , Rmaxr,t , w̄i,m,t,θ, ξ̄i,m,n,t,θ) ≤ 0

Dynamic equations

F dyn(zt, yt, ut, w̄i,m,t,θ, ξ̄i,m,n,t,θ) = 0

Dynamic inequalities

Gdyn(zt, yt, ut, w̄i,m,t,θ, ξ̄i,m,n,t,θ) ≤ 0

The overall objective function Φ(·) is written as

two sub-objectives Φsch(·) and Φdyn(·) that depend on

scheduling and dynamic optimization variables, respec-

tively. Also, the constraints can be separated into

scheduling and dynamic optimization groups.



The integrated MINLP formulation (6) is solved

with Generalized Benders Decomposition (GBD). The

scheduling equations (in master problem) and dynamic

models (in primal problem) are linked only by the task

history variables. The primal problem comprises the

dynamic optimization to minimize manufacturing cost,

with fixed complicating variables (w̄, ξ̄). The master

problem comprises the RTN scheduling model, a projec-

tion of the primal problem in the space of complicating

variables, and cutting planes (Benders cuts) that bound

Φ(·) from below. Using GBD, the optimal solution of the

original problem is bounded by the best primal (upper

bound) and master problem (lower bound) solutions.

The GBD method applies an iterative procedure to

obtain the optimal solution of the original problem,

while the primal problem is solved in an inner loop and

the relaxed master problem guides the selection of com-

plicating decision variables. At first, the primal prob-

lem is solved with the complicating variables fixed at

an initial point. The master problem is then solved to

update the complicating variables, and trigger the next

GBD iteration. As iterations proceed the best primal

solution gives the upper bound of the optimal objec-

tive value, while the relaxed master problem calculates

the lower bound. As Benders cuts are accumulated in

the master problem, the lower bound is non-decreasing

through the iterations. The algorithm terminates when

lower and upper bounds fall within optimality toler-

ances. Global optimality can only be guaranteed when

the primal problem is convex.

For the case study, the GBD algorithm solves the

problem in only three iterations, due to the inclusion

of the Benders cuts and the incorporation of the RTN

scheduling problem in the GBD master. The MILP mas-

ter problems, with over 28,700 continuous variables and

1825 binary variables, are solved in less than 10 CPU

s. Primal NLP problems with 14,820 variables solve in

less than 200 CPUs. Additional details on case study

results and algorithm performance can be found in [35].

The optimal plant profit for the integrated optimiza-

tion approach is 10.5% higher than the schedule deter-

mined with fixed, optimally generated recipes. Opti-

mized schedules with and without integration are shown

for both cases in Fig. 9. Task rectangles denote different

products and task modes. For the buffer tank (T), the

upper small rectangles represent the material transfer

operations that load the reactor products to the buffer

tank, while the lower rectangles represent the outgoing

flows from the tank (T) to the purification unit (PU).

PU

T
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Rxr1
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Rxr2	

PU	

Figure 9. Optimal production schedules without inte-

gration (above) and with integrated recipes. Note the

highlighted batches allowed with the integrated approach.

In addition, reactors Rxr1 and Rxr2 may be used as

temporary storage units when the buffer tank is not im-

mediately available. The PU processes different prod-

ucts, carries out transition cleaning, and turns offline

for maintenance to replenish its processing capacity.

The non-integrated schedule in Figure 9 produces

two batches of Product A, four batches of Product B,

and three batches of Product C. Also, different task

modes are observed for Product B and C. In contrast, an

additional batch of Product C is produced with the in-

tegrated schedule. Without integration, cooling utilities

become too expensive when running two parallel batches

of Product C with pre-determined recipes. With inte-

gration, the dynamic optimization determines new in-

teracting recipes for Rxr1 and Rxr2 that reduce utility

costs and allow a profitable additional batch. Unfortu-

nately, because the non-integrated approach uses fixed

reactor recipes independent of the production schedule,

it cannot consider these unit interactions.

6 Conclusions and Future Work

Strengthened by powerful optimization algorithms

and modeling environments, simultaneous collocation

has developed into an effective methodology for the

systematic development and optimization of dynamic

chemical processes. This study shows how these dy-

namic optimization strategies overcome a number of dif-

ficulties that present severe challenges with competing

approaches.

This study considers three real-world chemical pro-

cess systems that have been optimized with the simulta-

neous collocation approach. The first case is a singular

optimal control problem with unstable dynamic modes



that arise from an exothermic catalytic reaction. Simu-

lation of these systems often leads to runaway behavior

with unbounded profiles. The simultaneous collocation

approach determines an optimal catalyst activity pro-

file that leads to significant performance improvements

in product yield as the number of catalytic zones in-

crease. Moreover, simultaneous collocation is shown to

approach the infinite dimensional, singular solution ar-

bitrarily closely.

The second process example deals with grade tran-

sitions in the LLDPE process, where we describe a

novel multi-stage approach based on product specifica-

tion bands. This leads to a dynamic optimization for-

mulation for a “set to set” transition, which is enabled

by the simultaneous collocation approach. The resulting

multi-stage formulation leads to over 30% reduction in

off-grade product, when compared to the classical single

stage optimization.

The third process example considers the determina-

tion of optimal recipes for a semi-batch polyol process.

Since the main reactions are exothermic and reactor

cooling is essential, typical operating recipes are heavily

constrained and conservative. In contrast, simultaneous

dynamic optimization solves this problem in less than

a CPU minute and leads to feasible and safe operation

with 47% less time. This detailed model can be em-

bedded directly into a process scheduling scheme with

the result that optimal schedules with detailed reactor

performance can be determined during operation. This

leads to a further 10% increase in profitability, when

compared to the best fixed-recipe schedule.

These results demonstrate the significant gains that

are due to solving dynamic optimization problems ef-

ficiently and reliably. They also illustrate the impor-

tance of applying more flexible problem formulations,

advanced optimization modeling platforms and efficient

large-scale nonlinear programming solvers. These are

essential tools that enable superior results.

Future research will be devoted to expanding these

concepts and tools so that they can be applied more

widely to larger and more challenging problems. As dy-

namic optimization models increase, NLP solvers and

modeling environments require more efficiency and ro-

bustness. Moreover, continuous development of paral-

lel computation and advanced computing architectures

need to be leveraged to improve and redesign optimiza-

tion strategies.

Moreover, optimal solutions presented here were de-

termined for models developed under nominal condi-

tions. On the other hand, there are many sources of

uncertainty due to model mismatch, uncertain process

parameters, measurement errors and equipment perfor-

mance decay that compromise these optimal solutions.

Such uncertainties can be built into the optimization

problem so that feasible designs can be determined with

superior performance characteristics. Advances in this

area include large-scale algorithms applied to multi-

scenario optimization as well as formulations for back-off

constraints [41, 43, 32, 24].

Finally, dynamic optimization solutions have their

ultimate value when they can be deployed and validated

on-line. This task requires the integration of on-line

control with numerical optimization. Concepts to ad-

dress this problem include stability and robustness of

the implemented dynamic optimization, as well as ef-

ficient solution of “time critical”, yet accurate process

optimization models. While these concepts and research

directions are beyond the scope of this paper, they are

explored in [48, 9, 25].
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