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Abstract 

The notion of Internet of Things (IoT), as well as related topics like Cyber-Physical Systems and Smart 
Manufacturing, is currently attracting a lot of attention both within the process industries. Clearly, IoT offers many 
potential applications for automation, ranging from how to engineer the installation of new plants to production 
management and more intelligent maintenance schemes. However, the focus of this paper is on the control and 
operations. Most likely IoT leads to new SW architectures where more open standards will result. Through a better 
connectivity, information will be much easier available, which could result in that previously isolated functions will 
be more closely integrated. Here modeling at the right level of fidelity will be absolutely key. It can be expected that 
the importance of optimization will increase and this paper discusses some aspects related to the opportunities, 
challenges and changes triggered by IoT. 
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Introduction

The control and operations of process plants has 
undergone significant developments compared to the early 
analogue regulatory schemes. Computer based supervisory 
control was first tried already in the late 1950s. Then with 
the advent of the microprocessor the first distributed 
control systems (DCS) were introduced in the 1970s. This 
is sometimes referred to as the first digital revolution. 
Later, increased computational power as well as 
development of better optimization solvers have triggered 
advances also for the upper layers of the automation 
hierarchy. However, a typical process industry has 
separate departments for different functions such as plant 
operations, production planning, energy planning, supply 
chain optimization and maintenance planning. 
Furthermore separate computer tools are traditionally 
deployed for these functions, which are often 
geographically separated on site or even in different 
locations. 

Now with improved connectivity and dramatically 
increased access to computational capability the so-called 
Internet of Things (IoT) shows promise of an increased 
integration of the control and operations in the process 
industry. The purpose of this paper is to discuss, more in 
detail, some of the currently on-going developments and to 
humbly try to predict some future changes that may occur 
as a result of this second digital revolution of industry. 

Business Challenges for Automation 

Before focusing on technology it is important to 
consider that at the end of the day the aim is to obtain 
tangible economic benefits for the industry. Already 2005 
during the work towards a Strategic Research Agenda for 
the EU technology platform for embedded systems – 
ARTEMIS -- the first author together with a former ABB 
colleague, Nils Leffler, formulated two Grand Challenges 
for Automation: 

• The sustainable 100 % available plant 
• To engineer systems 10x today’s complexity with 

10% of today’s effort  
The first challenge stresses that the highest priority for all 
process industry is of course that the production is in fact 
running. By 100 % availability is meant the vision that in 
the future there will be only planned maintenance stops. It 
can of course be debated whether this vision is realistic or 
even desirable, but as a vision it is hard to aim for anything 
less. In practice one needs to find the right balance 
between maintenance cost and risk. Much of this relates 
rather to topics like condition monitoring and predictive 
maintenance which are at the heart of the industrial 
digitalization but beyond the scope of this particular paper. 
Instead what will be discussed below is embedded in the 



  
 

 

one word “sustainable”, which then refers to topics like 
productivity as well as resource and energy efficiency. 

The second challenge is primarily that of the 
automation suppliers. Regardless of what level of 
automation there needs to be continuous improvement in 
the time it takes to configure and commission new 
systems, solutions and products. We will come back to this 
challenge several times in the remainder of this paper. 

Industrial digitalization 

The last 10-15 years have seen a phenomenal 
development of the internet and later smart phone apps 
change almost every facet of our daily life. It has changed 
how we book travel, do our banking, watch TV, keep in 
contact with our friends etc. The drastic changes to the 
consumer market have not yet fully reached the business to 
business market. Digitalization of industry has been going 
on since the 1970s when microprocessor controllers and 
distributed control systems were first introduced. In 
parallel the use of information technology (IT) in general 
and internet in particular has increased especially from the 
1990s, but has so far been separated from the control room 
by a firewall and the data flow has been primarily one-
directional.  What is now often referred to as 
“Digitalization” could also be called the second digital 
revolution. It will lead to a much closer integration of 
operational technology (OT) and IT. For a discussion of 
the economic potential of the Industrial Internet see (Evans 
and Annunziata, 2012). 

Hence, similar to the way our daily life as private 
consumers has been transformed, the current 
industrialization digitalization will have a profound impact 
on every aspect of how a process industry conducts its 
business in the future. Examples of functions that will be 
impacted include how the companies handle their product 
development, customer contacts, collaboration with sub-
suppliers etc. Many of the expected new digital functions 
are of course not related to control and operations which is 
the focus of this paper. In the following sections we will 
discuss more in detail the current and future implications 
of the industrial digitalization specifically on control and 
operations. 

Current trends 

The above introductory sections have already covered 
some upcoming trends and in this section some of these 
are further explored. The so called hypes or trends may not 
all be long-lived but they certainly also affect the 
expectations of the end users and may indirectly steer the 
developments of future operations and control. Also, at 
least for researchers it is always desired to challenge the 
current state-of-the-art and investigate the true potential of 
emerging technologies. Below some of the relevant trends 
are briefly discussed 

• Internet of Things: As already discussed above, 
this is the enabler for cyber-physical systems, 

which is the core of for instance Industrie 4.0 
(Germany) and Smart Manufacturing (US) 
activities. What it basically means is that any 
device can be connected to the internet allowing 
both way communications across- or between 
plants. This makes new data available also across 
operations and supports more horizontal 
applications with decentralized decision making. 
This fact easily creates unrealistic expectations 
through the countless opportunities of cross-
collaborations between applications. A research 
question is to identify the main benefits from this 
collaboration potential. It is important that the 
engineering and information technology research 
communities collaborate on these to enable 
maximum flexibility, as it can result in a 
paradigm change within the process automation 
and its functional components. 

• Automation Cloud enables software applications 
to be installed not physically in the plant but 
anywhere through either intra- or internet 
connection. This enables the use of much more 
powerful computing resources (e.g. parallel 
computing) and easier remote administration. It 
can also allow purchasing a solution as a service 
without investing in hardware, thus reducing the 
investment risk. Technically, even if it is possible 
to solve larger mathematical problems using the 
“cloud” still only a few algorithms exist that fully 
take advantage of this. Definitely, a research 
challenge is to identify how “unlimited” 
computing power may affect the life of a normal 
production facility and to define optimization 
algorithms that can fully benefit from this and 
create added value. Methods for systematically 
evaluating the true optimization potential of a 
processing plant are still missing. Note that a 
cloud solution can also be hosted locally. 

• Big Data technologies aim at analyzing large sets 
of non-structured data. This can enable new 
knowledge about the production identifying 
problems early or creating more accurate data-
driven models. For instance, a scheduling 
function within operations can become more 
aware and knowledgeable about the underlying 
and surrounding processes – or the control 
strategy can be automatically adapted to various 
situations. It is, nevertheless, most important to 
have an idea of what one is looking for. 

• Smart Grids and Renewable Energy. These 
energy related topics have increased the 
importance of energy for scheduling and control 
and opened a bi-directional information flow 
making it possible to adapt operational decisions 
to changing energy availability and pricing 
(industrial demand-side management). Also, new 
processes related to energy may become part of 
production planning. A challenge is to create 
efficient demand-side management solutions that 
explore the opportunities on all levels from 
process control to short-term planning. 



  

 

• Mobility, Unmanned Sites and Remote 
Operations all contribute to more automated 
process operations and control. The main idea is 
to increase the safety of operations, reduce costs 
and be able to monitor and interact with the 
process from anywhere at any time. Upcoming 
standards e.g. 5G with very low latency should 
enable geographically distributed control solution 
components. In principle this could be seen as a 
pure IT-topic. However, not having operators at 
hand puts more responsibility on the automation 
and its optimization solutions, which must 
comprise some level of domain competence. This 
also raises the global perspective possibly leading 
to larger problem instances. In the long run some 
of the operator experience will be replaced, which 
requires fail-safe algorithms also in extreme 
situations. Furthermore, what kind of remote 
interaction is needed? 

• Service, for instance software-as-a-service 
(SaaS), provides a large number of opportunities, 
where basically the imagination is the limit. Can 
this be a way to make control and operations 
solutions easier deployable or provide a 
performance-based solution where the end-
customer pays related to the quality of the 
resulting production or the computational efforts? 
Will this drive the improvement of algorithms? A 
main challenge is related to value creation, i.e. 
how to measure the offered added value? 

In the following sections we will elaborate more on some 
of these on-going trends and discuss specifically how they 
concern the control and operations community. 

Flexibility and agility of industrial production 

The term "digitalization" stands for new possibilities 
provided by the use of more and new types of data, 
communication infrastructure and computing power. But 
what drives the industrial user to use these technologies 
applied to process control and operations? While the high 
level business objectives in the manufacturing and the 
processing industries like productivity, resource efficiency 
and responsiveness did not change since decades, new 
market constraints call for a higher degree of flexibility 
and agility of industrial production. The main reasons for 
the new market constraints are  

• an increasing individualization and fluctuation of 
end customer demands that propagate through the 
entire value chain from the customer markets 
through the manufacturing industry to the 
processing and primary industry, 

• higher volatilities in electricity availability and 
cost caused by the limited controllability of an 
increasing amount of renewable energy sources 
like wind and solar, and 

• an increasing cost pressure leading to the need to 
remove buffers and reduce expensive stock of 
inventories. 

Case studies indicate that significant untapped flexi-
bility and agility potential exists both within production 
facilities and the supply chains (e.g. Hadera et al., 2015; 
Xu et al., 2012). To unlock this potential and to use the 
flexibility in an agile, cost effective and intelligent 
manner, more automation, automatic control and 
optimization functionality is required. While in modern 
plants and factories the degree of automation is already 
high on device and unit level, the networking between 
units, plants and enterprises is still limited. In order to 
support more flexibility and agility, the scope for control 
and operations technologies needs to be increased from 
devices and units to networks within the enterprises and 
among enterprises. 

The figure below illustrates the need for higher 
flexibility and agility in principle. More flexibility and 
agility is necessary on all levels of the enterprise operation 
starting on unit level with faster start-ups and shut-downs 
as well as product and grade changes. Looking at the plant 
level, the production planning has to be highly responsive 
and robust at the same time, and it should be integrated 
with the energy and the raw material procurement and the 
maintenance planning. And with the entire enterprise and 
networks of enterprises in scope, one has to consider that 
entire value chains will be re-defined and re-allocated 
between companies more frequently. 

 
Figure 1. Economic aspects of process flexibility and 
agility 

 
From the above it is clear that flexibility and agility of 

industrial production have an increasing business value 
which drives the technological development more and 
more. Combined with the growing amount of available 
data, better communication infrastructure and more 
computing power it can be expected that the feasibility 
limits for control and optimization technologies are pushed 
further. So, what are the main technological obstacles on 
the way to more flexibility and agility? 

First of all, the increase of the size of the considered 
systems from units to networks of enterprises comes along 
with an increase of complexity. It is unrealistic to assume, 
that such a complex system can be controlled and 
optimized by a "central intelligence". Instead, schemes for 
distributed control and optimization have to be enhanced 
such that they fulfill realistic stability, robustness and 
performance requirements. 



  
 

 

Secondly, in face of an increase in the flexibility and 
agility, new types of dynamics in the processes, the plants, 
factories and supply chains have to be considered. The 
production needs to be kept "under control" on all levels. 
The impact of fast changes has to be predictable and 
controllable on all levels including production planning 
and supply chain operation. Agility has an impact on the 
physical wear and lifetime consumption of production 
facilities. The cost of lifetime consumption needs to be 
considered and weighted against the benefit of agility. 
Therefore, production and maintenance planning have to 
be tightly integrated such that utilization and availability 
of production assets are considered as two sides of the 
same coin (Biondi et al., 2015). 

Thirdly, one should not assume that full information 
about the system under consideration is available. Data 
and information about production have a value and are not 
unconditionally shared between enterprises and sometimes 
not even between different departments of the same 
company. And even if business models are in place that 
monetize and support information sharing, an asymmetry 
between internal and external information will always 
remain. Other reasons for incomplete information are 
model uncertainties caused by measurement errors, 
structural discrepancies and limited precision of 
predictions. 

And last but not least, the cost-efficient formulation 
and maintenance of formal models as the representation of 
production principles on all levels remains a challenge 
with increasing importance. Formal models are usually the 
basis for the growing number of control and optimization 
functionalities. Following from the above, paradigms are 
required that support an easy exchange of models between 
different owners and the protection of intellectual property 
at the same time. 

The future of multivariable control 

The multivariable supervisory process control is more 
and more often done using Model Predictive Control, see 
e.g. (García et al., 1999).  With its capability to handle 
constraints and to anticipate future process variables, MPC 
has become a de facto standard for the multivariable 
control in process industry with many different 
applications (Qin and Badgwell, 2003). Later MPC has 
been extended to optimally embed more complex logics, 
e.g. switching between various control strategies through 
the application of binary decision variables. Some of the 
most prominent approaches are the MLD concept by 
Bemporad and Morari (1999), multiparametric control by 
Dua and Pistikopoulos (2000) and mixed-logic dynamic 
optimization by Oldenburg et al. (2003). Other approaches 
seek ways to enhance existing modeling strategies. The 
most common ones are to enlarge the scope of advanced 
process control, for instance through the use of economic-
MPC type of approach (Subramanian et al., 2012; 
Rawlings et al., 2012; Angeli et al., 2012; Amrit et al., 
2013). The eMPC concept can also be expanded to cover 

the nonlinear NMPC case, as is reported in (Lucia et al., 
2014).  

Perhaps, from an IoT-perspective, even more signi-
ficant a change has been in moving process control related 
functions from the embedded HW controllers to a PC 
environment. From an industrial perspective the most 
important issue with MPC is the modeling effort. Today 
there are MPC installation with hundreds of measured 
process variables and manipulated variables. However, the 
increased connectivity and availability of cheap sensors  
will potentially lead to applications with thousands of 
variables. Then new paradigms, for example, combining 
machine learning and control may be more efficient from a 
modeling perspective. A deep learning approach has in 
fact already been applied to data center cooling, see 
(Evans and Gao, 2016). Similarly there have been attempts 
to combine deep leaning and MPC (Lenz et al., 2014).   

Increased scope of control and operations 

The pressure to connect to and interact with 
neighboring solutions and systems is increasing (Engell 
and Harjunkoski, 2012). This makes it for instance very 
difficult to adapt, partly manual often rule-based, decision 
making to a larger scope due to the complexity of new 
interlinked goals and targets as well as theoretically 
unlimited opportunities. To increase the simplicity and 
define what actually makes sense, what brings additional 
value and is technically feasible is clearly also an 
academic challenge.  

Through the introduction of the enterprise-wide 
optimization concept (Grossmann, 2005) enabling the 
integration of the information and the decision making 
among the various optimization functions that comprise 
the supply chain of the company, it is evident that control 
and e.g. planning and scheduling can and should at least 
partially be considered jointly. There are several scientific 
contributions on the topic of integrating scheduling and 
control and a summary of the research directions is given 
in, for example, (Baldea and Harjunkoski, 2014). The 
problem gives rise to a mixed integer dynamic optimi-
zation (MIDO) problem (Allgor and Barton, 1999), which 
is non-trivial to solve for larger problem instances. A top-
down approach is applied in (Chu and You, 2012), assu-
ming that the process dynamics are handled as parameters 
in the scheduling models that can be updated regularly 
through double feedback loops. Furthermore, scheduling 
and dynamic optimization have been integrated using state 
equipment networks in (Nie et al., 2012), and by combi-
ning enhanced RTN models and a tailored generalized 
Benders decomposition algorithm, as reported in (Nie et 
al., 2015). The most successful use cases have been 
applied to continuous processes where the scheduling 
challenge (number of potential alternatives) is moderate 
and the main value comes from selecting optimal 
trajectories for changeovers e.g. in polymer production 
(Terrazas-Moreno et al., 2007). The theoretical expecta-
tions are difficult to prove in practice and so far operations 



  

 

and control are still hierarchically separated in most 
industrial landscapes.  

As already pointed out above as well as in (Sand and 
Terwiesch 2013), there is also an increasing integration 
between the process and power automation. One example 
of this is the increasing research on industrial demand-side 
management taking advantage of the fluctuating price 
information of electricity (Mitra et al., 2014; Hadera et al., 
2015; Merkert et al., 2016). Another example is that you 
try to hedge for uncertain power supply while controlling 
the process. See, for example (Besselmann et al., 2016; 
Cortinovis et al., 2016), where control of large 
compressors is designed to ride-through a partial loss of 
power without tripping the compressor. 

In a similar fashion, integration to the supply chain 
level (e.g. Chu et al., 2015; Subramanian et al., 2014; 
Carlsson et al., 2014) is important for the overall opera-
tions in order to receive up-to-date commercial order in-
formation, including their priorities. There is also untapped 
potential integrating the supply chain and energy planning 
(Waldemarsson et al., 2013).  

 

 
 

Figure 2. Decision layers in operations – from supply 
chain to the process (Engell and Harjunkoski, 2012 

Future control architecture 

All of the above areas of research should ensure, 
among others, that the provided control and operation is 
aware of the surrounding environment as well as the 
underlying process. Figure 2 from (Engell and Harjun-
koski, 2012) illustrates the various dependencies of 
today’s hierarchical decision layers. One can observe that 
each level only communicates with the neighboring ones. 
Today, however, these functions are in a company 
typically carried out in different departments (sometimes 
in different locations) using different software tools.   

With the recent developments towards internet of 
things (IoT), we can expect that in the future devices and 
systems can seamlessly communicate. The most typical 
IoT-effects are seen in data analytics, where new devices 
can on-line collect earlier hardly accessible information 
and feed it into the cloud, where theoretically “unlimited” 
computing power can be used for processing the data or 
optimizing larger-scale problems. Owing to mobility, the 

results are accessible anywhere and at any time. The 
impact on process control and other process operations is 
quite straightforward: They should become more 
integrated and collaborative and this is supported by the 
IT-structures. In many industrial visions, the traditional 
automation pyramid (see Fig. 3), structurally separating 
process control, scheduling and planning to their own 
hierarchical levels, has come to its end. 

ERP
(Level 4)

MES / CPM
(Level 3)

Supervisory control
(Level 2)

Regulatory control
(Level 1)

Process
(Level 0)

ERP
(Level 4)

MES / CPM
(Level 3)

Supervisory control
(Level 2)

Regulatory control
(Level 1)

Process
(Level 0)  

Figure 3. Dissolving the automation pyramid 
 
The hosting levels 2-4 (all functions above regulatory 

control) may melt together into a single functional level, in 
which all data and information is available to any function 
in operational planning and execution (see Fig. 3) and 
tools available as “apps” in a common platform.. This calls 
for more collaborative methodologies and increases the 
role of software development. In the future, even a PID-
controller can simply be an IoT-enabled actuator 
connected to any PC or mobile device 

As seen in Fig. 3, the earlier well-categorized 
functionalities that logically belonged to one larger 
solution bundle, such as manufacturing execution system 
(MES) transforms to a more flexible hierarchy (right side 
of Fig. 3). The circles represent well-connected 
functionalities that are in the future only logically mapped 
to the earlier levels of an automation pyramid based on 
their function. This directly realizes one of the goals of 
internet of things: All solutions can directly be connected 
to the internet/intranet and communicate and exchange 
data with each other. Thus, instead of having only a 
handful of connections between the bundled blocks or 
earlier hierarchical layers, now there are theoretically an 
unlimited number of communication channels, which 
opens up a communication challenge e.g. in scheduling. 
Here, in a typical case order-related information is 
retrieved from the business systems and the ongoing 
production is monitored through the control system layer. 
Nevertheless, the major functionalities do not disappear 
despite the fact that the established hierarchical structures 
are replaced by point-to point communication but this 
transition also allows that new connections can be easily 
established between earlier practically isolated systems, 
for instance by bringing quality, energy and operational 
aspects closer to each other.  

In summary, instead of having large monolithic 
system components, smaller software solutions can 
contribute, which also makes it easier for “small players”, 
i.e. companies who only provide a small functionality to 
enter the market. In the multitude of possible connection 
points and increasing number of players one key challenge 
is to create more modular and flexible systems that enable 
seamless data communication and even can combine 



  
 

 

earlier separated business models. This ensures that new 
opportunities can be exploited. ExxonMobil has positioned 
its visions towards the future control architecture through a 
set of presentations (Forbes, 2016). Their vision states 
concretely that a future control system should be built of 
distributed control nodes (DCN) that are dedicated single-
loop controller modules connected to a real-time data 
service bus. Furthermore, the operations platform should 
be open and use open-source software. This would enable 
a much easier revamping of level-1 controllers, which 
using the current DCS architecture philosophy is in their 
view both complex and expensive. This means that the 
entire paradigm of operations and control may change due 
to a new IT-landscape. 
 

 
 

Figure 4. Potential future control architecture 
 

. A somewhat simplified picture of the ExxonMobil 
vision is depicted in Fig. 4. By device is here referred to 
everything that the control system is connected to, such as 
measurement devices like sensors and analyzers as well as 
actuating devices like valves and pumps. At this device 
level the connection to the common real-time bus could be 
through a standardized DCN as suggested by ExxonMobil. 
More futuristic, however, is to assume that all devices 
have enough intelligence to handle the connectivity and 
low level control computations themselves. An interesting 
challenge then is where a particular computation should 
take place. To perform the computing close to the source is 
sometimes called edge or fog computing. As is pointed out 
in (Ganz et al., 2015), it is already the case that not all data 
is sent to a data historian. For example, when the actuator 
is a medium-voltage drive that controls the speed, only 
speed and torque are collected at the control system level, 
while the current is typically only available inside the 
drive. Hence we have a trade-off between cloud and edge 
(fog) computing. 

In this whole discussion, a natural question is of 
course which challenges are academic and which ones are 
topics that should purely be solved by the industrial 
automation vendors. It seems intuitive that this type of 
evolution cannot be done without close collaboration and 
therefore identifying future possibilities and limitations are 
clearly academic questions, whereas the realization of the 
SW-platforms should be heavily driven by the industry. 
The most disruptive scenario – utilizing local intelligence 
without the DCN – clearly will require a considerable 
standardization effort to harmonize both communication 
protocols as well as control configurations. For example, 
notice that there are multiple ways how a PID controller 
may be parameterized - see e.g. (Åström and Hägglund, 
2006; Isaksson and Graebe, 2002) – which today leads to 
major proprietary differences how they are implemented. 

Standardized and automatic modeling 

One of the major future challenges lies in the 
modeling effort as well as fidelity of models needed at all 
levels of automation. Automation suppliers need to 
continuously cut down the time it takes to produce models 
for process simulation and optimization solutions as well 
as tuning of controllers. Very promising results already 
exist for auto-generation of process models from process 
topology (Arroyoa et al., 2016). In factory automation so-
called Virtual Commission is already becoming standard 
procedure, and this will eventually be the case also for 
process automation. Then if model parameters need to be 
estimated from real data it has been demonstrated that if 
enough historic data is available it may not be necessary to 
actually carry out identification experiments (Bittencourt 
et. al. 2015). For model based multivariable controllers 
like MPC the modeling work often accounts for 50 percent 
or more of the total engineering effort in a delivery project. 
Perhaps there is a potential revival for adaptive control 
(Chan et. al. 2014). Much engineering effort can also be 
saved utilizing a modular approach for the configuration of 
the automation system (Bloch et. al. 2016). 

For integration of control and scheduling the main 
challenge can be identified in the modeling and solution of 
the resulting multi-level problems. The first question is 
how to in the first place create a model of reality and what 
gets lost during this process? Applying e.g. mixed-integer 
linear programming (MILP) techniques for slower (static) 
problems limits the models to systems of linear equations. 
To date non-linear approaches to solve larger-scale 
MINLP-problems including numerous binary variables 
have been proven successful only in a few selected 
examples. Without going into details, other possible 
techniques to support larger problem instances are timed 
automata, constraint programming and software agent 
based methods. Even if there are a number of promising 
approaches available, a major modeling challenge remains: 
If we want to optimize the overall operations, how should 
we model an objective function that captures the various 
aspects of the problem components? For instance, the most 
typical scheduling objective of minimizing the make span 
is not as easily measurable as for instance energy costs, 
which makes balancing of various objective function 
components nontrivial. This is partly due to the difficulty 
of revealing the entire cost structure of companies, which 
often is a main trade secret.  

A fundamental question in the context of automatic 
modeling in face of an increasing amount and variety of 
data is: Under the assumption that all data from the design, 
the engineering and the past operation of a process is 
available, what can in principle be modeled automatically 
and what part of the modeling remains “an art”, i.e. can in 
principle not be automated? For instance, it is clear that 
some process dynamics can be identified from historic 
data, but can operational constraints which are seldom 
active be identified as well? Are first principles models 
necessary to optimally control, operate and plan complex 
processes or can (nearly) optimal controllers, set points 



  

 

and plans be learned from human behavior? Can a theory 
be developed that – in analogy to controllability and 
observability of dynamic systems – provides information 
on the “modelability” of a technical system? 

Conclusions 

In general, the importance of operational and control 
functions will not diminish. On the contrary, the industrial 
need for new optimization schemes is growing (Harjun-
koski, 2016). New arising communication technologies 
enables the collection and exchange of information in a 
much more detailed level creating many opportunities to 
include and consider a wider scope of aspects related to 
production. With the ever increasing availability of data 
and higher level of automation and electrification, e.g. 
production scheduling and process control cannot anymore 
be seen as autonomous solutions. 

Instead in the future, control and all levels of 
operations and operational planning must co-exist in the 
same environment, supplementing each other without 
redundancies or competitive functions. The future process 
control is synergistic process control, which benefits from 
other functions and information across entire process 
systems – and dilutes the borders between control and 
operations. This change will require cross-disciplinary 
collaboration between engineering domains and especially 
pose many challenges to the process systems engineering 
community, since despite more intelligent and capable 
systems, the engineering knowledge is going to play a key 
role in ensuring efficient, economic and safe process 
systems also in the future. In particular modeling at all 
levels will be important. To derive models with the 
appropriate fidelity at a minimum engineering effort. 

Apart from the modeling challenge, one essential 
question is related to the SW-architecture of future 
automation systems. The future automation needs to allow 
more open interfaces for value-adding components and 
ideally provide one single data source that is shared among 
all players. Ensuring that the data exchange is based on 
established standards is essential in order to support the 
modularity, flexibility and interexchange-ability of system 
components. It is likely that distributed control systems 
(DCS) of today partly lose their roles as coordinating 
entities and the control and operations functions are partly 
redefined. Nevertheless, this will be a long process as 
companies are not willing to change their established and 
proven systems before there are clear indications of the 
potential benefits.  

To summarize, the collaboration and inventive 
contribution from the academia is crucial to tackle the 
practical challenges faced by the industry – today and 
tomorrow. 
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