
A FRAMEWORK FOR MODELING AND OPTIMIZING

DYNAMIC SYSTEMS UNDER UNCERTAINTY

Bethany Nicholson∗1 and John Siirola1

1Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185

Abstract

Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic opti-

mization problems. However, there are still many classes of optimization problems that are not easily

represented in most AMLs. These classes of problems are typically reformulated before implementation,

which requires significant effort and time from the modeler and obscures the original problem structure

or context. In this work we demonstrate how the Pyomo AML can be used to represent complex opti-

mization problems using high-level modeling constructs. We focus on the operation of dynamic systems

under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and

stochastic programming of a semibatch reactor model under abnormal conditions.

Keywords

Stochastic Programming, Dynamic Optimization, Optimal Control, Parameter Estimation

Introduction

A common challenge rarely mentioned or addressed in

the optimization research community is the difficulty

associated with implementing cutting-edge methods or

industrial-sized optimization problems. This includes

not only the implementation of new solution techniques

for a particular class of optimization problems but also

the implementation of models that span several classes

of optimization problems. By a “class” of optimiza-

tion problems we mean the labels researchers apply to

their work based on the high-level modeling constructs

they consider; e.g., stochastic programming, bilevel op-

timization, or dynamic optimization. The challenge in

most cases is that general optimization solvers are not

designed to handle the high-level modeling constructs

that we use to concisely represent and understand com-

plex optimization problems. Constructs such as multiple

objectives, disjunctions, uncertainty scenario trees, and

differential equations are common components found in

models in the literature and are easy to write down on

paper but their implementations in code can often be

∗To whom all correspondence should be addressed

blnicho@sandia.gov

rather complicated. These constructs must be refor-

mulated before they can be expressed in most AMLs

and therein lies the problem. Often these reformula-

tions are tedious or non-trivial to implement and, given

an implementation of a previously reformulated prob-

lem, it can be difficult to reverse engineer the intent

or goal of the original problem. Furthermore, applying

nested reformulations to problems that include several

high-level modeling constructs can require a consider-

able amount of time and coding effort. Finally, there

are usually several ways to reformulate a high-level con-

struct. By implementing a reformulation rather than the

high-level construct itself it becomes difficult to experi-

ment with alternative reformulations. The work in this

paper aims to show how many of these challenges can

be overcome by modeling these types of problems with

high-level modeling constructs and offering libraries of

generalized reformulations that can be applied automat-

ically. The examples in this paper consider problems

that contain modeling constructs from both dynamic

optimization and stochastic programming. However, we

want to emphasize that the work presented here can

be extended to other classes of optimization problems

and their combinations. In the next section we intro-



duce the key components of the software package used

in this work. We then discuss a novel optimization mod-

eling paradigm that enables the rapid and easy imple-

mentation of complex structured optimization problems.

Finally, we demonstrate our technique using two illus-

trative examples of optimizing dynamic systems under

uncertainty.

Pyomo

Pyomo (Hart et al., 2011) is a free and open-

source algebraic modeling language (AML) developed

in Python. It provides users extreme flexibility in ex-

pressing and manipulating optimization models along

with access to other Python packages for model anal-

ysis and plotting. In addition to standard AML fea-

tures, Pyomo is well-suited for meta-algorithm develop-

ment and generic implementations of high-level model-

ing constructs and transformations. As evidence of that,

Pyomo includes extensions for stochastic programming,

generalized disjunctive programming, bi-level problems,

and differential algebraic equation(DAE) constrained

optimization. These extensions can be used together to

quickly and easily formulate very sophisticated models

which would be difficult to represent using other mod-

eling packages. In this work we focus on two of the

high-level Pyomo extensions, pyomo.dae for dynamic

optimization and PySP for stochastic programming. We

provide brief overviews of these extensions in the next

two sections.

Pyomo.dae

DAE constrained optimization problems allow mod-

elers to incorporate detailed dynamic models directly in

an optimization problem. However, solving these prob-

lems can be challenging as general optimization solvers

do not have the ability to represent differential equa-

tions. Therefore, dynamic optimization problems need

to be transformed into some other form before they can

be directly solved by an optimization algorithm. There

are several approaches for transforming the problem, but

a common theme in many AMLs is that the transfor-

mations must be applied manually, which can be te-

dious and error prone. The pyomo.dae extension allows

modelers to formulate dynamic optimization problems

in their natural form, directly writing differential equa-

tions as differential equations. The package then pro-

vides a library of automated transformations from which

the modeler can select to convert the DAE model into

a “solvable” form. The transformations included in the

package apply a simultaneous discretization to the dy-

namic model and return a nonlinear programming prob-

lem back to the user. The package allows users to exper-

iment with different discretization schemes and resolu-

tions without modifying the underlying dynamic model.

pyomo.dae is still under active development and addi-

tional features and transformations will be available in

the near future. More information about the package

can be found in Nicholson et al. (2016).

PySP

Stochastic programming is a useful technique for

finding optimal (or near-optimal) decisions while di-

rectly accounting for uncertainty. However, this ap-

proach has not seen wide-spread use in the process in-

dustries primarily due to the difficulties of expressing

the model and the size of the resulting optimization

problem. PySP(Watson et al., 2011) is a Pyomo exten-

sion which addresses these challenges. It allows users

to express stochastic programs by specifying a deter-

ministic base model formulated in Pyomo and a sce-

nario tree model defining the problem stages and un-

certain parameters. PySP also provides two strategies

for solving stochastic programs. The first approach

builds the deterministic equivalent (extensive form) of

the model, which then can be solved with standard

deterministic optimization solvers. For stochastic pro-

grams where the individual scenario models are large

or there are many scenarios, formulating and solving

the extensive form quickly becomes computationally in-

tractable, both in terms of memory and solution time.

The second approach provided in PySP addresses this

challenge by decomposing the extensive form into a se-

ries of smaller subproblems and employing an iterative

approach to converge the original problem. PySP pro-

vides several approaches for automatically decomposing

the problem, including both scenario-based (Progressive

Hedging) and stage-based (Bender’s decomposition) de-

compositions. As PySP has explicit knowledge of the

underlying stochastic program structure, it can directly

exploit distributed computing platforms by both gen-

erating and solving the subproblems in parallel. More

information on the package can be found in Watson et al.

(2011).



High-level Modeling Constructs and Reformula-

tions

High-level modeling constructs like those provided in

the aforementioned Pyomo extensions allow users to for-

mulate models in a much more natural form. This leads

to fewer coding mistakes and more intuitive implemen-

tations of complex optimization problems. In addition,

it separates the model specification from the reformula-

tion or solution technique used to solve it. This defers

decisions about how a model will be solved until so-

lution time rather than during model implementation.

This separation lets the user quickly experiment with

different reformulations while reusing most (if not all)

of their model code.

General implementations of common reformulations

also drastically reduce the expert knowledge required to

use certain techniques by shifting the burden of expert

implementation from the user to the implementation

developer. Similarly, generic reformulations also trans-

fer the reformulation debugging responsibilities from the

modeler to the transformation developer. Furthermore,

treating each reformulation as a distinct transformation

that can be applied to a model opens up the possibility

of applying multiple reformulations in series and allows

the user to experiment with different combinations of

reformulations.

Outside of modeling extensions for specific classes of

optimization, Pyomo also has core modeling constructs

for expressing model structure. This allows modelers to

further abstract their implementation into different sub-

models and link them together. This functionality has

been extensively used in modeling power systems where

submodels are written for each network component(e.g.

buses, lines, generators) and then linked together to cre-

ate a model of the entire power network(Greenhall et al.,

2012; Friedman et al., 2013). Being able to represent un-

derlying model structure in a straightforward way opens

the door for rapid development of generalized solution

algorithms that exploit particular structures. These

structure capturing features are not explicitly used in

the implementations of the examples in this work how-

ever they are fundamental for several Pyomo extensions

including PySP.

Semibatch Reactor Model

We demonstrate the modeling concepts described in

this paper using a dynamic model of the semibatch reac-

tor from Abel and Marquardt (2000). This model con-

siders the following series of highly exothermic reactions

A −→ B −→ C (1)

We assume that component A is fed into a solvent-

filled reactor and reacts to form the desired product B.

Component B then partially reacts to form the unde-

sired product C. This model considers a reactor ves-

sel equipped with two heat-exchange systems, a reactor

jacket and an internal coil. The dynamic model equa-

tions are shown below. They include component, mass,

and heat balances.

Ċa =
Fa
Vr
− k1 exp

(
− E1

RTr

)
Ca (2)

Ċb =k1 exp

(
− E1

RTr

)
Ca − k2 exp

(
− E2

RTr

)
Cb

(3)

Ċc =k2 exp

(
− E2

RTr

)
Cb (4)

V̇r =
FaMWa

ρr
(5)

(ρrcpr )Ṫr =
FaMWacpr

Vr
(Tf − Tr)

− k1 exp

(
− E1

RTr

)
Ca∆H1

− k2 exp

(
− E2

RTr

)
Cb∆H2

+ αw,j
Aj
Vr,0

(Tw,j − Tr) + αw,c
Ac
Vr,0

(Tw,c − Tr)

(6)

Table 1. Parameters for semibatch reactor model

Parameter Value Parameter Value

k1 15.01 1/s Aj 5.0 m2

k2 85.01 1/s Ac 3.0 m2

E1 30,000.0 kJ/kmol Vj 0.9 m3

E2 40,000.0 kJ/kmol Vj 0.07 m3

R 8.314 kJ/kmol/K ρw 700.0 kg/m3

MWa 50.0 kg/kmol cpw 3.1 kJ/kg/K

ρr 1,000.0 kg/m3 Ca(t0) 0.0 kmol/m3

cpr 3.9 kJ/kg/K Cb(t0) 0.0 kmol/m3

Tf 300.0 K Cc(t0) 0.0 kmol/m3

∆H1 -40,000.0 kJ/kmol Tr(t0) 300.0 K

∆H2 -50,000.0 kJ/kmol Vr(t0) = Vr,0 1.0 m3

αw,j 0.8 kJ/s/m2/K αw,jfail 0.3 kJ/s/m2/K

αw,c 0.7 kJ/s/m2/K

Values for the model parameters and initial condi-

tions for the differential equations are given in Table

1. The control inputs for this model are the feed rate

of component A, Fa, and the cooling medium tempera-

tures in the jacket and in the coil, Tw,j and Tw,c respec-

tively. For the sake of simplicity we assume that there is



a single cooling medium source and the jacket and coil

temperatures are equal, reducing the number of control

inputs to two.

In the next two sections we use the semibatch re-

actor model in two illustrative examples of stochastic

dynamic optimization problems: parameter estimation

and optimal control. The point of these examples is not

to promote novel model formulations or solution tech-

niques but rather to promote novel implementations of

complex optimization problems. While the main contri-

bution of this work is a drastically simplified implemen-

tation, we omit the model code for the sake of brevity.

The full implementations of these examples are available

as part of the Pyomo project.

Stochastic Parameter Estimation

We first demonstrate how the combination of PySP

and pyomo.dae can be used to formulate and solve dy-

namic parameter estimation problems. We use the dy-

namic semibatch reactor model described in the previous

section to simulate the system behavior under different

experimental conditions and then add Gaussian noise

to the concentration and reactor temperature profiles

to obtain simulated experimental measurements. We

assume that measurements are taken every 36 minutes

(the time step used by Abel and Marquardt (2000)).

To vary the experimental conditions we introduce step

changes in the control inputs Fa and Tw,c three hours

into the batch. We also assume that different sets of

measurements were taken for each experiment, simulat-

ing the case where a sensor might fail or there are only

enough experimental resources to measure a subset of

the variables of interest. Table 2 notes the step changes

present in each of three experiments and the measure-

ments recorded for each experiment. We assume that

we are trying to estimate the Arhenius equation param-

eters, k1, k2, E1, and E2.

Table 2. Experimental conditions for parameter estima-

tion with missing measurements

Experiment Step Change In Measurements

1 Fa Ca, Cb, Cc, Tr

2 Tw,c Tr

3 Fa, Tw,c Cb, Tr

Our implementation of this problem first formulates

a dynamic optimization model for each experiment. The

code to generate this model is reused with slight modifi-

cations to the objective function depending on which

measurements are available. The objective function

minimizes the squared difference between our measure-

ments and our model. The dynamic model is discretized

using collocation over finite elements and we ensure that

a finite element boundary lies at each measurement time.

These individual dynamic models are then fed into PySP

as separate scenarios within a two-stage stochastic pro-

gramming problem. The Arhenius equation parameters,

k1, k2, E1, andE2, constitute the first stage decision vari-

ables to force the optimization to identify a single esti-

mate across all experiments, whereas the time series for

each experiment form the scenario-specific second stage

variables. We use PySP to build the scenario tree for this

problem and generate the extensive form of the model.

We then solve the extensive form of the problem using

IPOPT(Wächter and Biegler, 2006).

The parameter estimates for two cases are given in

Table 3. In the ’All Meas.’ case we assume that mea-

surements of Ca, Cb, Cc, and Tr are available for every

experiment. In the ’Missing Meas.’ case we assume

that we only have a subset of measurements for each

experiment according to Table 2. We see that we obtain

parameters that are relatively close to the actual param-

eter values and, as expected, our estimates get worse in

the case of missing measurements.

Table 3. Parameter estimates

k1(1/s) k2(1/s) E1(kJ/kmol) E2(kJ/kmol)

Actual 15.01 85.01 30,000 40,000

All Meas. 16.84 81.19 30,322 39,861

Missing Meas. 20.69 77.42 30,850 39,697

This example is meant to illustrate the ease with

which a parameter estimation problem can be formu-

lated and solved using the modeling constructs provided

in Pyomo. We have demonstrated this on a parame-

ter estimation problem using a dynamic model and ex-

perimental data with different operating conditions and

measured variables. Our implementation could also be

extended to address experimental data with different

measurement frequencies or batch times.

Stochastic Optimal Control

In this example we recreate the optimal control prob-

lem developed by Abel and Marquardt (2000) with some

minor modifications. The motivation of this problem is

to find an optimal control strategy that maximizes the



expected amount of product B while ensuring that re-

actor operating limits can be maintained in the case of

partial cooling system failure. In other words, we want

to find a nominal control strategy for the batch such that

we can always find a feasible updated set of controls to

save the batch in case of cooling failure.

This model explicitly considers the case where the

cooling jacket around the reactor fails. Abel and Mar-

quardt (2000) formulate this as a scenario-based optimal

control problem by noting that the jacket could fail at

any time during the batch run. The stochastic uncer-

tainty in the problem is the time of failure. After cooling

jacket failure, the temperature in the jacket is modeled

using the following differential equation:

(ρwcpwVj)Ṫw,j = αw,jfailAj
Vr
Vr,0

(Tw,j − Tr) (7)

where a smaller value of the heat transfer coefficient

αw,jfail captures the the reduced cooling potential of

the jacket. The value of this new parameter is given in

Table 1.

In order to convert the continuous set of failure time

realizations into something tractable for an optimization

solver, we only consider a finite, discrete set of failure

times over the batch run. In this example we consider 9

different equally-likely failure times uniformly spaced at

36 minute intervals over a 6 hour nominal batch time.

One of the main differences between our example and

the one in (Abel and Marquardt, 2000) is how we deal

with the batch time after jacket failure. Abel and Mar-

quardt (2000) identify the optimal amount of time to

extend the batch run after jacket failure up to a maxi-

mum of 6 hours. For most of the failure scenarios they

found that the optimal batch extension time was the

maximum, 6 hours. In our work we assume that the

batch extension time is always 6 hours, which simplifies

the model implementation and objective function spec-

ification. This also results in failure scenarios that have

different total batch run times.

Abel and Marquardt (2000) also include an addi-

tional constraint on the adiabatic end temperature of

the reactor. They explain that this constraint limits the

reactor temperature in case of a total cooling system

failure, and represents a simpler way to address this ex-

treme case than including it as an additional scenario.

Equation 9 captures this additional constraint.

Tad = Tr +
Vr [(−∆H1 −∆H2)Ca −∆H2Cb]

ρrcprVr + ρwcpw(Vj + Vc)
(8)

Equation 10 shows the complete optimization prob-

lem corresponding to a single scenario, or realization, of

min
Fa,Tw,c

Cb(tf ) (9)

s.t. Eqs. 2 to 6 and Eq. 9∫ tf

0

Fadt = 20 kmol

Ca(tf ) ≤ 0.5 kmol/m3

Tad ≤ 453 K

0 ≤ Fa ≤ 180.0 kmol/h

288 K ≤ Tw,c ≤ 432 K

tf = tfail + 6 h

Tw,j (t) =

Eq. 7 t ≤ tfail
Eq. 8 t > tfail

the failure time, tfail.

We include bounds on the control inputs and spec-

ifications for the total amount of component A fed to

the reactor and the concentration of A at the end of the

batch run.

Similar to the previous example, we solve this prob-

lem by formulating each scenario as a separate model,

discretizing the dynamic equations using pyomo.dae,

and creating the extensive form of the overall problem

using PySP. Plots of the control inputs and concentration

profiles for the scenario tfail = 3.0h are shown in Figure

1. For the sake of brevity we don’t include plots for the

other scenarios. The final concentration of component

B in each scenario is reported in Table 4. Our results

are within 3% of those reported in Abel and Marquardt

(2000), with the discrepancy primarily attributable to

the difference in treatment of the batch completion time.

Table 4. Final product concentrations

tfail Cb(tf ) tfail Cb(tf )

0.6 h 9.35 kmol/m3 3.6 h 9.81 kmol/m3

1.2 h 9.50 kmol/m3 4.2 h 9.85 kmol/m3

1.8 h 9.64 kmol/m3 4.8 h 9.71 kmol/m3

2.4 h 9.73 kmol/m3 5.4 h 9.01 kmol/m3

3.0 h 9.78 kmol/m3 (N/A) 9.07 kmol/m3

Abel and Marquardt (2000) implement their solution

strategy using a shooting approach that directly lever-

ages several Fortran packages for numerical integration

and optimization. In contrast, this work completely iso-

lated the dynamic model from the solution methodology.



Figure 1. Operating conditions for the nominal

case (dashed lines) and the case where tfail = 3 h

(solid lines). (Top) Feed flow rate for component

A (Middle) Cooling coil and jacket temperatures

and the reactor temperature (Bottom) Concentra-

tion profiles for each component

We were able to implement the model equations almost

exactly as they appear in the paper and rely on Py-

omo packages to manipulate the model. Furthermore,

everything was formulated, solved, and plotted using a

single software platform (Python). The entire imple-

mentation (including result plotting) requires less than

300 lines of code, divided among the deterministic dy-

namic model specification (60%), discretization (2%),

stochastic problem formulation (18%), and result plot-

ting (20%).

Conclusions

In this paper we have demonstrated the power and

modeling flexibility of the modeling language Pyomo

and some of its extensions. Pyomo is ideally suited for

rapid model and algorithm development and capable of

representing and solving a large range of optimization

problems. We have illustrated these features by pre-

senting two examples of combining the pyomo.dae and

PySP packages for dynamic optimization and stochastic

programming.

Acknowledgments

This work was conducted as part of the Institute

for the Design of Advanced Energy Systems (IDAES)

with funding from the Office of Fossil Energy, Cross-

Cutting Research, U.S. Department of Energy. San-

dia is a multi-mission laboratory operated by San-

dia Corporation, a Lockheed Martin Company, for the

United States Department of Energy’s National Nuclear

Security Administration under Contract DE-AC04-94-

AL85000. SAND2016-11854 C

References

Abel, O. and Marquardt, W. (2000). Scenario-integrated

modeling and optimization of dynamic systems. AIChE

Journal, 46(4):803–823.

Friedman, Z., Ingalls, J., Siirola, J., and Watson, J.-P.

(2013). Block-oriented modeling of superstructure opti-

mization problems. Computers & Chemical Engineering,

57:10–23.

Greenhall, A., Christie, R., and Watson, J.-P. (2012). Min-

power: A power systems optimization toolkit. In 2012

IEEE Power and Energy Society General Meeting, pages

1–6. IEEE.

Hart, W. E., Watson, J.-P., and Woodruff, D. L. (2011).

Pyomo: Modeling and solving mathematical programs in

Python. Mathematical Programming Computation, 3(3).

Nicholson, B., Siirola, J. D., Watson, J.-P., Zavala, V. M.,

and Biegler, L. T. (2016). pyomo.dae: A modeling and

automatic discretization framework for optimization with

differential and algebraic equations. Mathematical Pro-

gramming Computation. Manuscript submitted for publi-

cation.

Wächter, A. and Biegler, T. L. (2006). On the implemen-

tation of an interior-point filter line-search algorithm for

large-scale nonlinear programming. Mathematical Pro-

gramming, 106(1):25–57.

Watson, J.-P., Woodruff, D., and Hart, W. (2011). Pysp:

Modeling and solving stochastic programs in python.

Mathematical Programming Computation, 3:219–260.


