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Abstract 

In the optimization of liquid production from power-intensive Air Separation Units (ASU’s), decisions 

need to be made at two time scales - week-ahead production scheduling to leverage fluctuations in 

electricity prices, and real-time decisions that optimize the entire plant operation, while capturing spot 

opportunities. Although methodologies exist for week-ahead production scheduling and real-time 

optimization of ASU’s, integrating the two decisions has not been studied previously. In our work, we 

combine elements of flexibility analysis and robust optimization to propose a methodology to integrate 

production scheduling and real-time optimization. We illustrate the proposed methodology on a small 

multi-period inventory management example. The approach is generic and can be extended to any 

power intensive process with a variable production cost and inventory capacity. 
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Introduction

Air Separation Units (ASU’s) separate air into its 

constituent components (primarily Nitrogen, Oxygen & 

Argon) through cryogenic distillation. Most ASU’s 

produce gaseous products that are delivered through 

pipelines, and liquid products that are stored in tanks and 

delivered to customers via  trucks. Cryogenic temperatures 

at ASU’s are achieved through multistage gas compressors 

that consume large amounts of energy. Due to the volatile 

nature of energy markets, there is significant opportunity 

to lower the costs by scheduling production of liquid 

products to coincide with the valleys in price curves and 

leveraging the inventory capacity at the plants. 

Several papers have been published in the area of 

production scheduling for ASU’s in the recent past 

(Ierapetritou et al. (2002), Karwan and Keblis (2007)). 

Mitra et al. (2012) propose a very efficient mixed-integer 

linear production scheduling formulation for ASU’s, 

which was extended to a robust optimization (RO) 

formulation to address uncertainty in reserve markets by 

Zhang et al. (2016a). While Mitra et al. (2012) used a 

surrogate model that treated the plant as a single unit, 

Misra et al. (2016) proposed a state-task network 

representation in which all units of a plant are considered 

separately, providing more flexibility to capture real world 

constraints and limitations of an air separation plant. 

With a wider scope, Marchetti et al. (2012) proposed a 

formulation to coordinate production and distribution from 

multiple ASU’s in a basin. In all of the above approaches, 

significant cost savings were identified by scheduling 

production during periods of cheap electricity prices, and 

the savings were magnified when considering uncertainty 

or synergies between multiple plants in a basin.  

Several papers and patents exist for real-time 

optimization (RTO) of ASU’s. Huang et al. (2009) 

propose a nonlinear model predictive control (NMPC) 

formulation for the dynamic real-time optimization of 

ASU’s, and Li et al. (2011) present a formulation for real-

time optimization of a complex network of ASU’s. The 

objective of the RTO formulations is to minimize cost 

while satisfying mass balance and purity constraints. 



  

 

 

These models provide a detail plant representation but they 

are very computationally expensive and should not be used 

for making discrete decisions, such as turning on and off 

equipment. 

The topic of integrating production scheduling and 

real-time decisions has been addressed differently 

depending on the community. While the scheduling 

community has focused on reactive or online scheduling 

(Gupta and Maravelias (2016)), the control community has 

looked into closed loop implementations for simultaneous 

scheduling and control (Zhuge and Ierapetritou (2012)). 

Instead of increasing the rescheduling frequency or 

developing a monolithic solution that results in an 

extremely challenging mixed integer dynamic optimization 

problems, our objective is increase the flow of information 

from the scheduling to the RTO; the later can react to 

disturbances without jeopardizing the schedule, while 

maintaining the hierarchical structure between them.  

Traditionally, production schedules determined by a 

week-ahead optimization with an hourly discretization are 

passed to the plant as fixed production targets, and re-

scheduling is done every day once the demand and 

electricity price forecasts are updated (rolling horizon). 

However, in the presence of high uncertainty at the sub-

hourly time-scale, this approach can be sub-optimal. This 

is the case in highly volatile energy markets, where there 

are spot markets that offer significant cost incentives to 

modify the electricity consumption during periods of grid 

imbalance. This could also be the case for an Air 

Separation Unit that serves a highly volatile gas customer, 

and periods of unanticipated gas customer down-time 

could be opportunities to make liquid products at a lower 

cost. Both types of disturbances are hard to forecast and 

include within a production scheduler. This necessitates 

the development of RTOs that can deviate from the liquid 

targets when opportunities arise, without violating 

inventory limits for future time periods.  

 
 

Figure 1. Schematic of various inputs affecting 

ASU operations at varying frequencies 

For instance, Figure 2 shows the discrepancy between 

the day-ahead price (used in production scheduling) and 

spot price (used in real-time optimization) at an Air 

Liquide plant. The day-ahead price changes every hour but 

the spot price changes every 15 min. Between 9:00-15:00, 

since day-ahead price is high, a production scheduler 

would avoid production, but since the spot price is low (10 

times lower than day-ahead in certain time periods), an 

RTO should be provided with room to deviate from the 

schedule and increase production.  

However, deviating from the schedule could put 

inventory level constraints for future time periods at risk. 

In order to constrain the deviation from schedule, 

additional information needs to be provided to the RTO 

from the scheduling layer. We capture this information by 

performing a flexibility analysis on the system. We refer to 

these flexibility limits as ‘supply risk limits’, which 

provide a feasible region for the RTO that factors in future 

demand and supply constraints. The question of how much 

to deviate within the supply risk limits is a more complex 

optimization problem, and is outside the scope of this 

paper.  

In the following sections we present the mathematical 

formulation to obtain the ‘supply risk limits’ following 

flexibility analysis (Grossmann et al. (1983) and 

Grossmann and Straub (1991)) and robust optimization 

approaches (Ben-Tal et al. (2009)). The formulations are 

applied to a simple example to illustrate the methodology. 

We close with conclusions and ideas for future work. 

 
Figure 2. Day-ahead versus spot price at an 

Air Liquide plant. 

Mathematical Formulation 

Flexibility analysis focuses on how to design a 

process for guaranteed flexible/resilient operation, as well 

as to evaluate the process flexibility for a given design. A 

process is considered sufficiently flexible if feasible 

operation can be achieved for the entire range of the 

uncertain parameters. An example could be to determine 

whether a heat exchanger network design is feasible for 

any value (within a range) of the uncertain heat capacity 

flow-rate of one stream. Typically, the design variables 

correspond to the structure and equipment size of the 

plant, whereas the uncertain parameters are typically 

inputs or process parameters. For more detail information 
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regarding flexibility analysis, we refer to the recent review 

by Grossmann et al (2014). 

Within the classical flexibility analysis problem, the 

flexibility test problem deals with, for a given design d, 

determining whether by proper adjustment of the degrees 

of freedom available during operation z, the set of 

constraints that represent the system hold.  The problem is 

posed as follows: 

𝒳 𝑑 = max
𝜃∈𝒰

min
𝑧∈ℝ𝑛𝑧

max
𝑗 ∈𝒥

  𝑓𝑗 (𝑑, 𝑧, 𝜃) 
 

where 𝑑 ∈ ℝ   are the design variables, 𝑧 ∈ ℝ   are the 

control variables, 𝜃 ∈ ℝ  are the uncertain parameters and 

𝒥            is the set of constraints 𝑓  𝑑 𝑧 𝜃 . If the 

flexibility function  𝒳    is less or equal to zero for a 

chosen 𝑑, then the design is feasible for all 𝜃 in the 

uncertainty set 𝒰. 

In the context of our problem, the supply risk limits 

are the extreme values of the design variable d (production 

at time period t = k), subject to the flexibility test problem 

for all time periods in the scheduling horizon. For any 

choice of production at time period k within the supply 

risk limits, the inventory constraints will hold for all future 

time periods for any demand within the uncertainty set. 

The production at time t = k is a ‘here-and-now’ decision 

and the production for all time periods     are recourse 

actions/control variables.  

 
Figure 3. Flowchart showing the integration 

Supply Risk Limits and RTO 

The calculation of the supply risk limits are shown in 

Figure 3 above. At time period k, the extreme values for 

production at     are obtained by solving a Flexibility 

Analysis or Robust Optimization problem which factors in 

future uncertain demands and operational constraints, as 

well as past demand realizations. Along with liquid 

production targets, these limits are passed to the RTO and 

the solution of the RTO is communicated to the plant. 

Finally, information about the system’s state is passed 

back to the next flexibility analysis through the tank level 

and the horizon is rolled forward. 

The mathematical formulation describing the  

supply risk limits problem is given by: 

         

s.t. 

   
                    

 

    

     
       ∈    (1) 

  
  𝑛       

   
    ∈    (2) 

  ∈ 𝒰     ∈   (3) 

where    is the liquid production at time  , which is 

bound by   
  𝑛

 and   
        is the uncertain liquid demand 

belonging to uncertainty set 𝒰,       is the initial inventory 

in the tank,    
    and    

    define the storage capacity, 

          represent the planning horizon and    is a 

subset of    such that           . Eq. 1 is the result of 

combining mass balance in the tank (inventory level at 

time t is the inventory level at     plus the amount 

produced minus the demand) with bounds on inventory 

limits, and Eq. 2 defines the technical production limits. 

Eq. 3 represents a polyhedral uncertainty set for the 

demands, which for example may consist of an upper and 

lower limit for every    and correlations between them in 

the form of aggregated forecasts at various time levels: 

𝒰     ∈ ℝ                   ∈    ∈            (4) 

where   is the set of linear inequalities defining the 

uncertainty set. The correlation between the uncertain 

parameters leads to non-trivial solutions for the supply risk 

limits. We will use this simplified version of an industrial 

production model for illustration purposes, but the 

methodology can be easily extended to more detailed 

formulations.  

By setting    , we minimize production at     

and obtain lower supply risk limits, whereas if     , 

we maximize production at     to obtain the upper 

supply risk limits.  

Following the notation of flexibility analysis, the 

supply risk limit problem is formulated as: 

         
s.t. 

𝒳        
  ∈𝒰 

     
      

       
 ∈ 

   𝑓    ∈  
   ∈        (5) 

where    is the ‘design variable’,         are ‘control 

variables’,    is the ‘uncertain parameter’ and   
          is the set of constraints.  

In flexibility analysis, a design is feasible if the 

flexibility function satisfies 𝒳      . Since we are 

looking for the extreme values of the design variables, we 

can replace the inequality in (5) with an equality sign and 

the inner min max problem can be reformulated applying 

the Karush–Kuhn–Tucker (KKT) conditions and an active-

constraint strategy to convert the bi-level problems into 

single-level, mixed-integer problems as in Grossmann et 

al. (1987): 
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    𝑛          (14) 

  ∈ ℝ   

  
 ∈ ℝ ,    

 ∈ ℝ     

  
 ∈        

   ∈         

  ∈    
(15) 

           
   ∈   

   ∈   
(16) 

where   is the vector of slack variables,   denotes the 

vector of Lagrange multipliers,   is the vector of binary 

variables and   is a big-M parameter. For details on the 

reformulation refer to Grossmann et al. (1987). 

Inspired by the connection made by Zhang et al 

(2016b) between flexibility analysis and robust 

optimization, we propose an adjustable robust formulation 

(Ben-Tal et al. (2004)) for this problem, in which the 

control variables are affine functions of the uncertain 

parameters: 
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where Eq. (21) represents the affine solution policy for 

production as a function of past demand realizations. 

Notice that     and       are the decision variables instead 

of         

Applying duality to the inner max problem in each 

constraint, we obtain a single-level problem in the space 

              and the dual variables associated with the 

uncertainty set.  

We used the solution from Robust Optimization for 

illustrative purposes below, although, as pointed out by 

Zhang et al. (2016) the Robust Optimization approach can 

lead to more conservative solutions compared to 

Flexibility Analysis due to treatment of recourse by the 

former method. 

Regarding the computational complexity and 

scalability of the approach, Ben-Tal et al. (2004) showed 

that the affine adjustable robust counterpart problem of an 

uncertain LP is efficiently solvable if the uncertainty set is 

convex, compact and computationally tractable. However, 

the extensibility of the approach to an industrial 

application has not been addressed yet. 

Illustrative Example 

The following small example will be used to illustrate 

the methodology proposed to integrate scheduling 

information into an RTO. We consider a problem with 10 

time periods with the following input data: 

Table 1. Input data Illustrative Example 

Parameter Value 

      800 

    
       

     [725, 850] 

   
      

     [0, 30] 

   
      

     [0,15] 

        
  
          [40, 120] 

 

The last two rows in Table 1 contain the coefficients 

that characterize liquid demand uncertainty. 

The model was implemented in AIMMS 3.14, and the 

commercial solver CPLEX 12.6.1 was applied to solve the 

LPs on a Intel® Core
TM 

i5-5300U machine at 2.30 GHz 

with 4 processors and 16 GB RAM running Windows 7 

Enterprise. Since the example has only an illustrative 

purpose, the size of the model is very small: 442 

constraints and 257 variables. The walk-clock computation 

time to optimality is barely 0.02 seconds.  

Figure 4 shows the supply risk limits (dashed lines 

upper figures) in three different production scenarios for 

the same demand realization (lower figures). The middle 

row shows the progress of the inventory level profile as 

the horizon rolls. 

Scenario 2 represents the nominal production from a 

scheduling tool, Scenario 1 represents an extreme scenario 

in which the RTO deviates from the target by cutting back 

production to 0 (e.g., in periods of high spot prices where 

it is profitable to sell back to the grid), and in Scenario 3 



  

 

production overpasses the targets filling the tank (e.g., 

when spot prices are significantly lower). 

Scenario 1 

High Spot Price 

Scenario 2 

Nominal Spot Price 

Scenario 3 

Low Spot Price 

   

   

   

 Figure 4. Three production scenarios for same 

demand realization  

While Scenario 1 does not show modification of the 

flexibility of the system (the supply risk limits coincide 

with those of the nominal case), Scenario 3 shows 

modification of the maximum production limit passed to 

the RTO to prevent upper inventory level violations.  

A second example is shown in Figure 5 for three 

demand realizations. In the high demand case (Scenario 4) 

coupled with high spot prices, the RTO could still choose 

to reduce production to 0 for the first 5 time periods, but 

the lower supply risk limits will force production in time 

periods 6-8 in order to maintain the inventory levels.  

In the nominal case (Scenario 5), the production and 

demand follow opposite profiles. The upper supply risk 

limit will constrain production during the first time periods 

so as to keep the inventory within bounds, but the system 

recovers its full flexibility after period 6.  

 

Scenario 4 

High Demand 

Scenario 5 

Nominal Demand 

Scenario 6 

Low Demand 

   

   

   

Figure 5. Three production scenarios for three 

demand realizations 

In the low demand case (Scenario 6), the demand 

happens only at the end of the horizon. For this scenario, 

the RTO solution is to keep production at 15 units. The 

inventory can accept this production rate until period 3 but 

the upper supply risk limits will force a reduction in 

production at the middle of the horizon.   

The supply risk limits are not trivial or already 

implied in the RTO model, especially when considering 

uncertainty correlations. An RTO solution without supply 

risk limits would always be at either minimum (maximum) 

production when the objective is to minimize cost 

(maximize profit), as the inventory in the tank is 

considered ‘free’ for use to satisfy the mass balance for the 

current time instant. By replacing the mass balance 

constraint with the supply risk limits coming from a 

flexibility analysis of the system over a scheduling 

horizon, the RTO decisions can be constrained to maintain 

feasibility of the system for future time periods. 

Conclusions and Future Work 

In this work, we have presented a methodology to 

integrate mid-term uncertain demand information and real-

time optimization for production of storable products with 

varying production cost.  We achieve the integration by 

using the solution of two multi-period optimization 

problems under uncertainty as bounds for production at the 

RTO level. We describe how to formulate the problems as 

single-level deterministic mathematical programs, using 

approaches from Flexibility Analysis and Adjustable 

Robust Optimization.  

We apply the methodology to an illustrative example 

consisting of 10 time periods. We generate different 

demand and production scenarios to show different 

profiles for the supply risk limits. We observe that these 

limits are not trivial even in this simple example and that, 

at the RTO level, the mass balance constraint should be 

replace by bounds on production obtained from a 

flexibility analysis on the system.  



  

 

 

Future work will focus on how to set the objective 

function of the RTO for storable products to accurately 

determine how much to deviate from the schedule to 

capture spot opportunities. We would also like to examine 

the possibility of obtaining the supply risk limits off-line, 

i.e. before the start of the horizon, eliminating the need to 

solve a potentially complex optimization problem before 

every run of the RTO. The challenge here is that at any 

time    , not only demand is uncertain but production at 

    would be uncertain since it would be the result of 

the RTO decision at a previous time period.  
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 Nomenclature 

Indices 

j constraints (flexibility analysis) 

l inventory and production constraints 

i inequalities that define 𝒰 

t time periods 

k current time period 

 

Sets 

J constraints (flexibility analysis) 

T time periods  

    subset of time periods,            
𝒰 uncertainty set 

  set of inequalities that define 𝒰 

  constraints in supply risk limit problem 

 

Deterministic Parameters 

H horizon length 

  
     maximum production in time period t 

  
     minimum production in time period t 

      initial inventory 

   
    minimum inventory in time period t 

   
    maximum inventory in time period t 

  sign of objective function 

        demand uncertainty characterization 

  big-M parameter 

𝑛       maximum number of non-zero   
  

e column vector of appropriate 

dimensionality where all entries are 1 

  extent of recourse  

  
     minimum demand in time period t 

  
     maximum demand in time period t 

     minimum total demand 

     maximum total demand 

 

Uncertain Parameters 

𝜃 uncertain parameters (flexibility analysis) 

   liquid demand in time period t 

 

Continuous variables 

d design variables (flexibility analysis) 

z control variables (flexibility analysis) 

   liquid production in time period t 
IVt inventory in time period t 
   

     ( )-supply risk limit at time period k 

  
 

 slack variables 

  
 

 Lagrange multipliers  

    coefficient decision rule (adj. robust opt) 

       coefficient decision rule (adj. robust opt) 

 

Binary Variables 

  
   

 

Functions 

𝒳 flexibility function 

𝑓  𝑓  problem constraints 

 


