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Abstract 

We propose a data-driven outlier-insensitive adaptive robust optimization framework that leverages big 
data in industries. A Bayesian nonparametric model – the Dirichlet process mixture model – is adopted 
to extract the information embedded within uncertainty data via a variational inference algorithm. We 
then devise data-driven uncertainty sets for adaptive robust optimization. This Bayesian nonparametric 
model is seamlessly integrated with adaptive optimization approach through a novel four-level robust 
optimization framework. This framework explicitly considers the correlation, asymmetry and multimode 
of uncertainty data, and as a result generates less conservative solutions. Additionally, this framework is 
robust not only to parameter variations, but also to data outliers. An efficient tailored column-and-
constraint generation algorithm is proposed for the resulting problem that cannot be solved directly by 
any off-the-shelf optimization solvers. The effectiveness and advantages of the modeling framework and 
solution algorithm are demonstrated through industrial applications. 
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Introduction

In the past few decades, optimization of process systems 
under uncertainty has attracted wide attention from both 
academia and industry (Grossmann et al., 2016). Robust 
optimization (RO) emerges as a popular approach due to 
its strong ability to hedge against uncertainties and its 
computational tractability (Bel-Tal et al., 2009). It has 
achieved success in a broad array of applications 
(Bertsimas et al., 2011). Traditional RO approaches, also 
known as static robust optimization, make all the decisions 
at once. This modeling framework does not fit well with 
sequential decision-making problems. To this end, 
adaptive or adjustable robust optimization (ARO) was 
proposed to offer a new paradigm for optimization under 
uncertainty by incorporating recourse decisions (Ben-Tal 
et al., 2004). Due to the flexibility of adjusting some 
decisions to counteract uncertainties, ARO typically 
generates less conservative solutions than static robust 
optimization (Gong et al., 2016; Lappas and Gounaris, 

2016). Big data is reshaping both operations research and 
process systems engineering (Bertsimas et al., 2013; Ning 
et al., 2014; Qin, 2014). More recently, dramatic progress 
of mathematical programming methods, coupled with 
recent advances in machine learning algorithms, sparks a 
flurry of interest in the research field of data-driven 
optimization (Bertsimas et al., 2013; Calfa et al., 2015).  

Traditional ARO approach typically fails to take full 
advantage of data, and makes a priori and simple 
assumptions about uncertainty, such as independence and 
symmetry. These assumptions may not be reasonable for 
real world applications. In addition, process data are often 
contaminated with outliers. These outliers could 
undesirably affect the estimated region of uncertain 
parameters, and therefore would have an impact on 
uncertainty set. 

In this paper, we propose a data-driven adaptive 
nested robust optimization (DDANRO) modeling 



  
 
framework and its solution strategy. The Dirichlet process 
mixture model is employed to model the uncertainty data 
using a variational inference algorithm (Campbell and 
How, 2015). We propose two novel data-driven 
uncertainty sets for ARO in this paper. The first one is 
defined as a polytope using l1 norm. The second one is 
constructed as a data-driven budget based uncertainty set 
using l1 and l∞ norms. Multiple basic uncertainty sets, 
instead of one, are used to give a high-fidelity description 
of uncertainty data. The machine learning model is 
integrated with ARO approach seamlessly in a four-level 
optimization framework (a min-max-max-min problem). 
To solve the problem, we further propose a tailored 
column-and-constraint generation (C&CG) algorithm 
(Zeng and Zhao, 2013). 

The major novelties of this article are summarized as 
follows: 

• A novel data-driven adaptive nested robust 
optimization (DDANRO) framework is proposed 
for optimal process design and operations under 
uncertainty. 

• A data-driven approach for defining uncertainty 
set is proposed for ARO. 

• Since the resulting min-max-max-min problem 
cannot be solved directly by any off-the-shelf 
optimization solvers, a tailored column-and-
constraint generation algorithm is developed to 
efficiently solve the four-level problem. 

The remainder of this article is organized as follows. 
In the next section, we present the DDANRO modeling 
framework, followed by the solution strategy. We then 
present industrial applications, followed by the conclusion. 

General Modeling Framework 

A novel modeling framework DDANRO is proposed 
in this section. 

Two-Stage Adaptive Robust Optimization 

The general two-stage ARO in its compact form is 
given as follows (Zeng and Zhao, 2013). 
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where x  is the vector of first-stage decision variables, 
which need to be made before the uncertainty u  is known, 
and y  represents the vector of second-stage decisions. 
Traditional ARO in this paper is referred to as the ARO 
with the widely adopted the budget based uncertainty set 
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assumes symmetry and independence of uncertainty 
parameters. 

Data-Driven Uncertainty Set Construction for ARO 

A random draw from a Dirichlet process, i.e. DP (α, 
F0), is a distribution F. The Dirichlet process mixture 
model adds one more level to this hierarchy. It utilizes kθ  
as the parameters of the distribution of data. The Dirichlet 
process mixture model is summarized as follows 
(Campbell and How, 2015). 
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where Mult denotes a multinomial distribution, and li is the 
index of mixture components to which the observation oi is 
assigned. We propose a data-driven polyhedral uncertainty 
set for ARO below. 
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where iγ  is the weight of the i th component, which can be 
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iγ  indicates the probability of the corresponding mixture 
component. *γ  is a threshold value. , , , , ,i i i i i ivτ λ ωμ Ψ  are 
the inference results of the i th component using the 
variational inference algorithm. iΓ  satisfies the probability 

guarantee ( )2
Pr i ε≤ Γ =ξ , ( ) ( )1 dim~ ,

i
Stω + − u 0ξ I , where 

St represents Student’s t-distribution (Campbell and How, 
2015). We also propose the following data-driven 
uncertainty set. 
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where Λi is a scaling factor. This type of uncertainty set 
can be thought of as a data-driven version of the budget 
based uncertainty set. 

Data-Driven Adaptive Nested Robust Optimization 
Modeling Framework 

Data-driven adaptive nested robust optimization 
(DDANRO) model is proposed by integrating the 
optimization model with the machine learning model 
seamlessly. The DDANRO model using the l1 norm based 
data-driven uncertainty set, denoted as (DDANRO-1), is 
shown as follows. 
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The DDANRO model using the l1 norm and l∞ norms, 
denoted as (DDANRO-inf) is as follows. 

(DDANRO-inf)  
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Compared with (DDANRO-inf), (DDANRO-1) is 
preferable in terms of computational expenses. 
(DDANRO-inf) trades the computational time for the 
solution quality when handling high-dimensional 
uncertainties. 

Solution Strategy 

In this section, we address the computational 
challenge by proposing a decomposition-based solution 
algorithm for the DDANRO problem. This algorithm is 
designed in the line of the column-and-constraint 
generation as a master-subproblem framework (Zeng and 
Zhao, 2013). 

First, we address the subproblems of (DDANRO-1). 
By using 0i= Γ ⋅ξ ξ , we reformulate the set (3) into an 
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0 0 1
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The random variable 0ξ  can be expressed as a convex 
combination of all extreme points of D as follows. 
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simplified by using ( ) ( ), 1/2i j j

i i is± ±= Γf MΨ d . Note that a 
vector with a subscript t represents its corresponding 
element. For the simplified problem, the optimal value 

( )jν ±  has been proven to be a binary variable (Billionnet et 
al., 2014). 

We can use Glover’s linearization to linearize the 
bilinear term ( )j

tν ± φ  by the substitution ( ) ( )j j
t tg ν± ±= φ . 
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subproblem of (DDANRO-1) can be reformulated as the 
following MILP problem (SPi-1). 

(SPi-1)    

( )
( ) ( )

( )

( )( ) ( )

( )

( ) ( )

    , ,

1/2

0

max

              

                s.t.  
                       

                        

                       

                 

j j

T
i i

Tj j
i i i

j

T

j

j j

Q

s

M

ν

ν

± ±

± ±

±

± ±

= − −

− Γ

≤
≥

≤ ≤

≤ ⋅ ⋅

∑
φ g

x h Tx Mμ φ

MΨ d g

W φ b
φ 0

0 g φ

g e
( ) ( )( )

( ) ( ) { }
0

1

      1

                       1,  0,1

j j

K j j
j

M ν

ν ν

± ±

± ±

=

≥ − ⋅ − ⋅

= ∈∑

g φ e

        

where M0 is a sufficiently large constant, and e  represents 
a column vector whose elements are all ones. Note that the 
vector inequalities should be interpreted elementwise.  

Now, we address the solution of the subproblem of 
(DDANRO-inf). For ease of derivation, jz  can be divided 

into two parts j j j
+ −= −z z z  (Thiele et al., 2009). By using 

Glover’s linearization for tj j t
+ +=G z φ  and tj j t

− −=G z φ , we 
can reformulate the subproblem of (DDANRO-inf). The 
reformulation (SPi-inf) is shown as follows. 
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where e and e  both represent column vectors whose 
elements are all ones, but they are of different dimension, 
i.e., ( ) ( )dim dim K= =e u and ( ) ( )dim dim=e φ . The 

notation Tr denotes the trace of a matrix, for example, the 
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vector or matrix inequalities should be interpreted 
elementwise. The master problem (MP) is shown below. 
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The proposed algorithm iteratively solves a sequence 
of master problems and subproblems until the optimality 
gap reduces to a predefined tolerance. The procedure of 
the tailored C&CG algorithm for DDANRO is given as 
follows. Note that (SPi) represents (SPi-1) or (SPi-inf) 
depends on the choice of uncertainty sets. 

Algorithm. Tailored C&CG algorithm for DDANRO 

1: Set LB ← −∞ , UB ← +∞ , 0k ← ,  and 310ζ −← ; 

2: while UB LB
UB

ζ−
≥ do 

3:  Solve (MP) to obtain * * 1* *
1 1, , , , k

k kη+ +x y y ; 

4:  Update * *
1 1

T
k kLB η+ +← +c x ; 

5:     for 1 to i m= do  

6:   Solve (SPi) to obtain 1k
i
+u and ( )*

1i kQ +x ; 

7:     end  

8:  ( )* *
1arg max i k

i
i Q +← x ; 

9:  
*

1 1k k
i

+ +←u u  and  ( ) ( )*
* *

1 1k ki
Q Q+ +←x x ; 

10:  Update ( ){ }* *
1 1min , T

k kUB UB Q+ +← +c x x ; 

11: 
 Create second-stage variables 1k+y and add cuts 

1 1 1,T k k kη + + +≥ + ≥ −b y Tx Wy h Mu  to (MP); 

12:  1k k← + ; 
13:   end 
14: return UB ; 

Figure 1.   The tailored column-and-constraint 
generation algorithm. 

 

Industrial Applications 

Application 1. Data-Driven Robust Scheduling of Batch 
Processes under Processing Time and Demand 
Uncertainties 

Production scheduling plays an increasingly important 
role in process systems engineering for ensuring an 
efficient and competitive process manufacturing. In this 
case study, we employ the proposed DDANRO framework 
to an industrial multipurpose batch process in The Dow 
Chemical Company. Figure 2 displays the state-task 
network (STN) of this multipurpose batch process. The 
mathematical programming model for scheduling is to 
maximize profits while satisfying a set of constraints. 
Following the two-stage ARO model for batch scheduling, 
the processing times of all reaction tasks and demands for 
all products are subject to uncertainty (Shi and You, 2016). 
Unlike previous studies, the real batch processing time 
data are used to construct the uncertainty set. It is worth 
noting that the original data are corrupted with outliers. 
The main focus of this case study is to demonstrate how 
outliers could have a negative effect on traditional ARO 
solution quality. 

In this case study, we set the optimality tolerance for 
CPLEX 12 to be 10-3, and set the relative optimality 
tolerance for the proposed tailored C&CG algorithm to be 
0.1%. The optimal number of time points turns out to be 9 
for the static robust optimization. We set the time horizon 
to be 168 hours and the number of time points to be 9 for 
all methods. To make a fair comparison, we adjust the 
related parameters of model (DDANRO-1) to cover the 
same percentage of uncertainty data as the traditional 
ARO. 

 

Figure 2.   State task network of the 
multipurpose batch process. 

From Figure 3, we can see that the solution 
(DDANRO-1) generates the highest profit, which is 36.8% 
higher than that of the other two methods. 



  

 

Figure 3.   Gantt charts of (a) Static robust 
optimization, (b) Traditional ARO and (c) 

(DDANRO-1) when time points N=9. 

The corresponding total profit is listed at the upper 
right corner of the Gantt charts. The DDANRO method 
inherits the merits of robust optimization to hedge against 
uncertainty and is at the same time robust to data outliers. 
It is interesting to note that the time horizon in Figure 3 (c) 
is not packed with tasks. This indicates that the time points 
N=9 may not be optimal for the DDANRO. As mentioned 
before, when we increase the number of time points to 10, 
the optimal objective function value of static robust 
optimization does not change. However, when the number 
of time points is 10, the traditional ARO scheduling 
problem cannot be solved within 20 hours. 

To study the impact of time points on (DDANRO-1) 
solution, we increase N by one at each time for 
(DDANRO-1), and the corresponding Gantt charts are 
given in Figure 4. From Figure 4, we can see that more and 
more tasks can be performed within the time horizon as we 
increase the number of time points. Note that the problem 
(DDANRO-1) cannot be solved within 20 hours when the 
number of the time points is 13. Therefore, we only list the 
Gantt charts when the number of time points is 10, 11 and 
12 in Figure 4. 

 

Figure 4.   Gantt charts of (DDANRO-1) at 
different number of time points (a) N=10, (b) 

N=11 and (c) N=12. 

Through the above discussions, the proposed 
DDANRO outperforms the static robust optimization and 
the traditional ARO when uncertainty data are corrupted 
with outliers. 

Application 2. Data-Driven Robust Planning of Chemical 
Process Networks under Supply and Demand 
Uncertainties 

In this case study, we apply the proposed modeling 
framework and solution algorithm to address the design 
and planning of a chemical process network under supply 
and demand uncertainty (Yue and You, 2013). This 
process network includes 38 processes and 28 chemicals 
(You and Grossmann, 2011). In this section, we apply the 
DDANRO approach to the problem of process network 
planning under supply and demand uncertainties. The 
decisions of the model include the selection of processes 
for expansion, the capacity of processes, operating levels 
of the installed processes, sales and purchases at each time 
period. Unlike the traditional ARO which assumes that 
uncertainties are independent, DDANRO considers 
correlation explicitly, thus boosting the NPV from 
$761.79K to $819.28K. Uncertainty budgets are often 
chosen by decision makers. In Figure 5, we display a heat 
map of the robust solution profile under different budgets.  



  
 

 

Figure 5.   Heat map of solution profile for 
(DDANRO-inf) under different budgets. 

The computational experiments are carried out on a 
Dell Optiplex 790 desktop with an Intel (R) Core (TM) i5-
2400 3.10GHz CPU, 8GB RAM, and a Windows 7 64-bit 
operating system. We set the relative optimality tolerance 
for the proposed tailored C&CG algorithm to be 0.1%. 

 

Figure 6.   Lower and upper bounds of the 
tailored C&CG algorithm in each iteration. 

To showcase the computational performance of the 
tailored C&CG algorithm, we display the convergence 
process of our proposed algorithm in Figure 6. We can see 
that the proposed algorithm is able to converge rapidly to a 
small optimality gap after the first few iterations. 

Conclusion 

This paper proposes a novel data-driven adaptive 
nested robust optimization (DDANRO) framework. It is a 
general framework for optimization under uncertainty. In 
this paper, we focus on its application in optimal design 
and operations. The proposed DDANRO framework 
inherits advantages of the machine learning model and 
adaptive robust optimization model. Therefore, it captures 
the useful information embedded within uncertainty data, 
and generates less conservative robust solutions. 
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