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Abstract

State estimation incorporates the feedback in optimization based advanced process control systems and is very important
for the performance of model predictive control. We describe the extended Kalman filter, the unscented Kalman filter, the
ensemble Kalman filter, and a particle filter for continuous-discrete time nonlinear systems involving stochastic differential
equations. Continuous-discrete time nonlinear systems is a natural way to model physical systems controlled by digital con-
trollers. We implement the state estimation methods in Matlab, illustrate and evaluate their performance using simulations of
the modified four-tank system. This system is non-stiff and the state estimation methods are implemented numerically using
an explicit numerical integration scheme. We evaluate the accuracy of the state estimation methods in terms of the mean
absolute percentage error over the simulation horizon. Each method successfully estimates the states and unmeasured distur-
bances of the simulated modified four-tank system. The key contribution is an overview and comparison of state estimation
methods for continuous-discrete time nonlinear stochastic systems. This can guide efficient implementations.

Introduction

State estimation is widely applied in advanced process
control (APC) systems, e.g. for monitoring, fault-detection,
and as part of model predictive control (MPC). The ob-
jective of state estimation is to predict and reconstruct the
states of a mathematical model using measurements from a
physical system. The Kalman filter provides optimal esti-
mates for systems with Gaussian process and measurement
noise, but is limited to system with linear dynamics (Kalman,
1960). For nonlinear systems, the exact evolution of the
state distribution can be computed as the solution to the
Fokker-Planck equation (Kolmogorov’s forward equation).
However, the Fokker-Planck equation is a partial differential
equation where the number of dimensions equal the number
of states in the system. The Fokker-Planck equation suffers
from the curse of dimensionality and solving it is therefore
impractical for systems with more than a few states (Jazwin-
ski, 2007). This paper describes four approximate methods
for state estimation, 1) the extended Kalman filter (EKF), 2)
the unscented Kalman filter (UKF), 3) the ensemble Kalman
filter (EnKF), and 4) a particle filter (PF).

In the EKF, the equations of the original Kalman filter are
applied on a local linearisation of a nonlinear system (Rawl-
ings et al., 2017). The EKF is a computationally efficient
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method, but the quality of the estimates depend on the non-
linearity of the system (Frogerais et al., 2011). Additionally,
some stability issues may arise in relation to fixed step-size
solutions (Bucy and Joseph, 2005; Jørgensen et al., 2007).
In the UKF, an unscented transformation is used as an ap-
proximation for the first two moments of the true nonlin-
ear distribution. The unscented transformation is propagated
through the nonlinear dynamics and each sigma-point is up-
dated using observations from the physical system (Julier and
Uhlmann, 2004). For some systems, the UKF has shown
higher accuracy than the EKF, while still being computa-
tionally efficient (Wan and van der Merwe, 2000). How-
ever, the UKF also suffers from inaccuracy in highly non-
linear systems. For the UKF, some of the issues pertaining to
nonlinearity and numerical instability have been addressed
in more recent contributions (Kandepu et al., 2008; De Vivo
et al., 2017). In the EnKF, a set of particles, the ensemble,
is randomly sampled from the state distribution and propa-
gated through the nonlinear system dynamics. Each parti-
cle in the ensemble is updated separately using the Kalman
filter update when a measurement becomes available. The
state estimates are computed statistically from the ensem-
bles (Gillijns et al., 2006; Myrseth and Omre, 2010; Roth
et al., 2015). In PFs, a set of particles is sampled from the
state distribution and propagated through the nonlinear sys-
tem dynamics. When a measurement becomes available, the
particles are resampled in accordance with their likelihood



of being observed. The likelihoods are computed using the
innovation posterior distribution. Similarly to the EnKF, the
state estimates are determined statistically from the particles
(Arulampalam et al., 2002; Rawlings and Bakshi, 2006; Tul-
syan et al., 2016). The EKF and UKF provide efficient state
estimation, but suffers from loss of accuracy for highly non-
linear systems. The EnKF and PFs provide a set of sampled
particles from the true nonlinear distribution, but their com-
putational efficiency depends on the number of particles re-
quired for the estimates to reach the desired accuracy. As a
result of this, the EnKF and PF can be computationally inef-
ficient for high dimensional systems.

The aim of this paper is to provide a condensed overview
of available methods for state estimation in continuous-
discrete time nonlinear stochastic systems that are described
using stochastic differential equations (SDEs). The intention
is to guide efficient implementation by providing an overview
for the continuous-discrete nonlinear state estimation meth-
ods. The nonlinear state estimation methods can generally be
separated into two steps; prediction and filtering. In the pre-
diction step (time update), the system is propagated through
time based on past information from a physical system. In
the filtering step (measurement update), the state estimates
are updated with the latest measurement information.

The paper is structured as follows. In Section 2, we
present the nonlinear continuous-discrete stochastic differen-
tial equation models used in simulation and state estimation.
In Section 3, we present the EKF, the UKF, the EnKF, and a
PF, and finally present a discussion of the methods. In Sec-
tion 4, we present a numerical example of state estimation for
a modified four-tank system. Finally, we present conclusions
in Section 5.

Nonlinear Continuous-Discrete Stochastic Systems

We consider continuous-discrete systems, in which the
system state is described by nonlinear continuous stochastic
differential equations and measurements are taken at discrete
points in time. The nonlinear continuous-discrete stochastic
differential equation models are defined as

dx(t) = f (t,x(t),u(t),d(t),θ)dt

+σ(t,x(t),u(t),d(t),θ)dω(t),
(1a)

y(tk) = h(tk,x(tk),θ)+v(tk), (1b)

where f (·) is the drift function, σ(·) is the diffusion func-
tion, and h(·) is the measurement function. The states are
x(t) ∈ Rnx , the inputs are u(t) ∈ Rnu , the disturbances are
d(t) ∈ Rnd , the parameters are θ ∈ Rnθ , and the measure-
ments are y(tk) ∈ Rny . The process noise ω(t) ∈ Rnω is a
standard Wiener process, such that dω(t) ∼ N (0, Idt), and
v(tk) ∼ N (0,R) is the measurement noise. The initial state
is assumed to be distributed as x0 ∼ N (x̄0,P0).

State Estimation in Nonlinear Systems

In this section, we present methods for state estimation in
continuous-discrete nonlinear systems (1). These estimators
are called continuous-discrete estimators.

Continuous-discrete extended Kalman filter

The EKF is initialised with the mean and covariance of the
initial state of the system described in Section 2

x̂0|0 = x̄0, P0|0 = P0. (2)

Time update: In the time update, the mean and covariance
are computed as the solution to the ordinary differential equa-
tions (ODEs) for t ∈ [tk, tk+1]

dx̂k(t)
dt

= f (t, x̂k(t),u(t),d(t),θ), (3a)

dPk(t)
dt

= Ak(t)Pk(t)+Pk(t)AT
k (t)+σk(t)σT

k (t), (3b)

where x̂k(tk) = x̂k|k, and Pk(tk) = Pk|k. Ak(t) =
∂ f
∂x (t, x̂k(t),u(t),d(t),θ) and σk(t) = σ(t, x̂k(t),u(t),d(t),θ).
Alternatively, the covariance update can be represented and
solved on integral form as presented by Jørgensen et al.
(2007). The mean and covariance estimates are

x̂k+1|k = x̂k(tk+1), Pk+1|k = Pk(tk+1). (4)

Measurement update: In the measurement update, we
compute the innovation and its covariance as

ek = yk − ŷk|k−1, Re,k =CkPk|k−1CT
k +R, (5)

where

ŷk|k−1 = h(tk, x̂k|k−1,θ), Ck =
∂h
∂x

(tk, x̂k|k−1,θ). (6)

The Kalman gain is computed as

K fx,k = Pk|k−1CT
k R−1

e,k . (7)

The mean and covariance estimates are computed as

x̂k|k = x̂k|k−1 +K fx,kek, (8a)

Pk|k = Pk|k−1 −K fx,kRe,kKT
fx,k (8b)

=
(
I −K fx,kCk

)
Pk|k−1

(
I −K fx,kCk

)T
+K fx,kRKT

fx,k, (8c)

where (8c), Joseph’s stabilising form, is numerically stable.

Continuous-discrete unscented Kalman filter

The unscented Kalman filter is initialised with the mean
and covariance of the initial state of the system described in
Section 2

x̂0|0 = x̄0, P0|0 = P0. (9)

Time update: In the time update, we compute the parame-
ters

c̄ = α
2 (n̄+κ) , (10)

λ̄ = α
2 (n̄+κ)− n̄, (11)



where α ∈]0,1], κ ∈ [0,∞[, and n̄ = nx +nω. We compute the
sigma-point weights

W̄ (0)
m =

λ̄

n̄+ λ̄
, (12a)

W̄ (0)
c =

λ̄

n̄+ λ̄
+1−α

2 +β, (12b)

W̄ (i)
m = W̄ (i)

c =
1

2
(
n̄+ λ̄

) , (12c)

for i ∈ {1,2, . . . ,2n̄} and where β ∈ [0,∞[ (β = 2 optimal for
Gaussian distributions). We sample deterministically a set of
2n̄+ 1 sigma-points. For propagation through the determin-
istic dynamics (ODE), we compute 2nx +1 sigma-points

x̂(0)k|k = x̂k|k, (13a)

x̂(i)k|k = x̂k|k +
√

c̄
(√

Pk|k

)
i
, (13b)

x̂(nx+i)
k|k = x̂k|k −

√
c̄
(√

Pk|k

)
i
, (13c)

for i ∈ {1,2, . . . ,nx}.
(√

Pk|k

)
i

denotes the i’th column of
the Cholesky decomposition of the covariance. For prop-
agation through the stochastic dynamics, we compute 2nω

sigma-points

x̂(2nx+i)
k|k = x̂k|k, (14)

for i ∈ {1,2, . . . ,2nω}. Additionally, we compute the process
noise

dω
(2nx+i)
k (t) =

√
c̄ dt (I)i , (15a)

dω
(2nx+nω+i)
k (t) =−

√
c̄ dt (I)i , (15b)

where i ∈ {1,2, . . . ,nω}. We propagate the first sigma-points
through the deterministic dynamics for t ∈ [tk, tk+1] and com-
pute the predictions as the solution to

dx̂(i)k (t) = f (t, x̂(i)k (t),u(t),d(t),θ)dt, (16)

for x̂(i)k (tk) = x̂(i)k|k and i ∈ {0,1, . . . ,2nx}. We similarly prop-
agate the remaining sigma-points through the stochastic dy-
namics for t ∈ [tk, tk+1] and compute the predictions as the
solution to

dx̂(i)k (t) = f (t, x̂(i)k (t),u(t),d(t),θ)dt

+σ(t, x̂(i)k (t),u(t),d(t),θ)dω
(i)
k (t),

(17)

where x̂(i)k (tk) = x̂(i)k|k and i∈ {2nx+1,2nx+2, . . . ,2nx+2nω}.
The predictions are computed as the solution to (16) and (17),
as x̂(i)k+1|k = x̂(i)k (tk+1). The mean and covariance estimates are
computed as

x̂k+1|k =
2n̄

∑
i=0

W̄ (i)
m x̂(i)k+1|k, (18a)

Pk+1|k =
2n̄

∑
i=0

W̄ (i)
c

(
x̂(i)k+1|k − x̂k+1|k

)(
x̂(i)k+1|k − x̂k+1|k

)T
.

(18b)

Measurement update: In the measurement update, we
compute the parameters

c = α
2 (nx +κ) , λ = α

2 (nx +κ)−nx. (19)

We compute the sigma-point weights

W (0)
m =

λ

nx +λ
, (20a)

W (0)
c =

λ

nx +λ
+1−α

2 +β, (20b)

W (i)
m =W (i)

c =
1

2(nx +λ)
, (20c)

for i ∈ {1,2, . . . ,2nx}. We compute a set of 2nx+1 determin-
istically sampled sigma-points

x̂(0)k|k−1 = x̂k|k−1, (21a)

x̂(i)k|k−1 = x̂k|k−1 +
√

c
(√

Pk|k−1

)
i
, (21b)

x̂(nx+i)
k|k−1 = x̂k|k−1 −

√
c
(√

Pk|k−1

)
i
, (21c)

for i ∈ {1,2, . . . ,nx}. We compute the innovation as

ek = yk − ŷk|k−1, (22)

where the prediction of the measurement prediction is com-
puted as

ŷk|k−1 = ẑk|k−1 =
2nx

∑
i=0

W (i)
m ẑ(i)k|k−1, (23)

for ẑ(i)k|k−1 = h(tk, x̂
(i)
k|k−1,θ). We compute the covariance and

cross-covariance information from the sigma-points

Rzz,k|k−1 =
2nx

∑
i=0

W (i)
c

(
ẑ(i)k|k−1 − ẑk|k−1

)(
ẑ(i)k|k−1 − ẑk|k−1

)T
, (24a)

Re,k = Ryy,k|k−1 = Rzz,k|k−1 +R, (24b)

Rxy,k|k−1 =
2nx

∑
i=0

W (i)
c

(
x̂(i)k|k−1 − x̂k|k−1

)(
ẑ(i)k|k−1 − ẑk|k−1

)T
. (24c)

The Kalman gain is computed as

K fx,k = Rxy,k|k−1R−1
e,k . (25)

The mean and covariance estimates are computed as

x̂k|k = x̂k|k−1 +K fx,kek, (26a)

Pk|k = Pk|k−1 −K fx,kRe,kKT
fx,k. (26b)

Continuous-discrete ensemble Kalman filter

The ensemble Kalman filter is initialised with a set of par-
ticles, the ensemble, sampled from the initial state distribu-
tion from (2). The initial state ensemble is denoted {x̂(i)0|0}

Np
i=1.



Time update: In the time update, each particle in the en-
semble is propagated through the system dynamics. The pre-
diction ensemble is computed as the solution to

dx(i)
k (t) = f (t,x(i)

k (t),u(t),d(t),θ)dt

+σ(t,x(i)
k (t),u(t),d(t),θ)dωk(t),

(27)

for i ∈ {1,2, . . . ,Np} and t ∈ [tk, tk+1]. The initial value is
x(i)k = x̂(i)k|k. The set of solutions, x̂(i)k+1|k = x(i)k (tk+1), gives rise

to the prediction ensemble {x̂(i)k+1|k}
Np
i=1. The mean and co-

variance estimates are computed as

x̂k+1|k =
1

Np

Np

∑
i=1

x̂(i)k+1|k, (28a)

Pk+1|k =
1

Np −1

Np

∑
i=1

(
x̂(i)k+1|k − x̂k+1|k

)(
x̂(i)k+1|k − x̂k+1|k

)T
. (28b)

Measurement update: In the measurement update, we
compute the ensemble of predictions, {ẑ(i)k|k−1}

Np
i=1, where

z(i)k|k−1 = h(tk, x̂
(i)
k|k−1,θ), for i ∈ {1,2, . . . ,Np}. Furthermore,

we compute the mean and covariance of the measurement
distribution and cross-covariance of states and measure-
ments, as

ŷk|k−1 = ẑk|k−1 =
1

Np

Np

∑
i=1

ẑ(i)k|k−1, (29a)

Rzz,k|k−1 =
1

Np −1

Np

∑
i=1

(
ẑ(i)k|k−1 − ẑk|k−1

)(
ẑ(i)k|k−1 − ẑk|k−1

)T
, (29b)

Ryy,k|k−1 = Rzz,k|k−1 +R, (29c)

Rxy,k|k−1 =
1

Np −1

Np

∑
i=1

(
x̂(i)k|k−1 − x̂k|k−1

)(
ŷ(i)k|k−1 − ŷk|k−1

)T
, (29d)

and we compute samples from measurement distribution, as

y(i)k = yk + v(i)k , (30)

where v(i)k are realisations of the measurement noise, vk ∼
N (0,R). The innovations are computed for each particle in
the measurement ensemble, as

e(i)k = y(i)k − ẑ(i)k|k−1. (31)

The Kalman gain is computed as

K fx,k = Rxy,k|k−1R−1
yy,k|k−1. (32)

The filtered state ensemble, {x̂(i)k|k}
Np
i=1, is computed as

x̂(i)k|k = x̂(i)k|k−1 +K fx,ke(i)k . (33)

The mean and covariance estimates are computed as

x̂k|k =
1

Np

Np

∑
i=1

x̂(i)k|k, (34a)

Pk|k =
1

Np −1

Np

∑
i=1

(
x̂(i)k|k − x̂k|k

)(
x̂(i)k|k − x̂k|k

)T
. (34b)

Continous-discrete particle filter

The particle filter is initialised with a set of particles sam-
pled from the initial state distribution from (2). The initial
set of particles is denoted {x̂(i)0|0}

Np
i=1.

Time update: In the time update, each particle is propa-
gated through the nonlinear system dynamics. The set of
predicted particles is computed as the solution to

dx(i)
k (t) = f (t,x(i)

k (t),u(t),d(t),θ)dt

+σ(t,x(i)
k (t),u(t),d(t),θ)dωk(t),

(35)

for i ∈ {1,2, . . . ,Np} and t ∈ [tk, tk+1]. The initial value
x(i)k = x̂(i)k|k. The set of solutions, x̂(i)k+1|k = x(i)k (tk+1), gives rise

to the prediction set {x̂(i)k+1|k}
Np
i=1. The mean and covariance

estimates are computed as

x̂k+1|k =
1

Np

Np

∑
i=1

x̂(i)k+1|k, (36a)

Pk+1|k =
1

Np −1

Np

∑
i=1

(
x̂(i)k+1|k − x̂k+1|k

)(
x̂(i)k+1|k − x̂k+1|k

)T
. (36b)

Measurement update: In the measurement update, we
compute the set of measurement predictions, {ẑ(i)k|k−1}

Np
i=1,

where ẑ(i)k|k−1 = h(tk, x̂
(i)
k|k−1,θ), for i ∈ {1,2, . . . ,Np}. The in-

novations are computed for each particle, as

e(i)k = yk − ẑ(i)k|k−1, (37)

for i∈ {1,2, . . . ,Np}. We compute a set of likelihood weights
for each particle, arising from the posterior distribution of the
innovations

w̃(i)
k =

1√
2πny |R|

exp
(
−1

2

(
e(i)k

)T
R−1e(i)k

)
, (38)

where |R| denotes the determinant of R, and normalise

w(i)
k =

w̃(i)
k

∑
Np
j=1 w̃( j)

k

, (39)

for i ∈ {1,2, . . . ,Np}. The set of particles are then resampled
in accordance with their likelihood respective weights. For a
single realisation of a uniform distribution, q1 ∼ U [0,1], we
compute a set of ordered resampling points

q(i)k =
(i−1)+q1

Np
, (40)

for i ∈ {1,2, . . . ,Np}. We resample the particles by stor-
ing m(i) copies of each particle, x̂(i)k|k−1, in the set. The in-
dicies for the resampled particles, l, are chosen such that
q(l)k ∈

]
s(i−1),s(i)

]
, where s(i) = ∑

i
j=1 w( j)

k . Particles with rel-
atively high likelihood may appear several times in the re-
sampled set and particles with relatively low likelihood may



not appear at all. The resampled set is denoted as {x̂(i)k|k}
Np
i=1.

The mean and covariance estimates are computed as

x̂k|k =
1

Np

Np

∑
i=1

x̂(i)k|k, (41a)

Pk|k =
1

Np −1

Np

∑
i=1

(
x̂(i)k|k − x̂k|k

)(
x̂(i)k|k − x̂k|k

)T
. (41b)

Discussion of methods

The EKF is a computationally efficient method for systems
with a moderate number of states, while it is infeasible for
systems with a very large number of states. The complexity
in implementing the method is largely determined by compu-
tational aspects of solving the initial value problem (3) and
issues related to computation of the covariance matrix. The
accuracy of the EKF depends on how well the assumption
of local linearity holds. This means that for highly nonlinear
systems with relatively long sampling intervals, the EKF may
perform poorly, as the assumptions pertaining to the propa-
gation of the expectation and covariance will not hold. The
UKF is comparable to the EKF in terms of its computational
requirements. The computational efficiency partly arises by
utilising the unscented transformation, where the number of
deterministically sampled particles scales linearly with the
state dimension, instead of randomly sampling particles, as is
the case for other particle filters. The time update of the UKF
is simple to implement, as it simply involves propagating a
set of particles forward in time. For linear Gaussian systems,
the UKF and EKF provide equivalent solutions. However, for
nonlinear systems, the UKF propagates the particles through
the true nonlinear system dynamics and therefore may cap-
ture more information than the EKF. The particle filters, i.e.
the EnKF and PF, have computational efficiency which de-
pends on the tuning, i.e. the size of the sample set. They suf-
fer from the curse of dimensionality, as the sampling size re-
quired increases with the state dimension. However, the pre-
dictions more closely resemble the true nonlinear distribution
as the sampling size increases, at the cost of computational
efficiency. This means, that for highly nonlinear systems the
EnKF and PF may capture more information than the EKF
and UKF, but at the cost of computational efficiency. Never-
theless, the EnKF is often used for large-scale systems, but
with few samples.

Example – Modified Four-Tank System (MFTS)

The modified four tank system is modelled by a set of
ODEs describing mass balances as presented by Azam and
Jørgensen (2015). The model is further modified by mod-
elling the stochastic disturbances explicitly as states. The
disturbances are governed by the stochastic processes

dF3(t) = λ1 (F̄3(t)−F3(t))dt +σ1dω1(t), (42a)
dF4(t) = λ2 (F̄4(t)−F4(t))dt +σ2dω2(t). (42b)

The resulting system is described by a continuous-discrete
nonlinear system as described in (1).The performance of each

Table 1: run-times for time update (TU) and measurement
update (MU), and MAPE for states (MAPEx) and distur-
bances (MAPEd).

name EKF UKF EnKF PF
time TU [s] 3.09e-01 2.90e+00 3.38e+01 1.36e+02

time MU [s] 1.22e-02 4.14e-02 2.30e-01 1.05e+00
MAPEx [%] 2.55e+00 2.97e+00 2.35e+00 2.40e+00
MAPEd [%] 1.57e+01 1.75e+01 1.47e+01 1.37e+01

state estimation method is evaluated in terms of the mean
absolute percentage error (MAPE) , such that

MAPE =
1

nN

N

∑
k=1

n

∑
i=1

∣∣∣∣xi,k − x̂i,k

xi,k

∣∣∣∣ , (43)

where N is the number of observations and n is the dimension
of the state. The MAPE is computed separately for the states
representing the liquid mass and the state representing the
disturbances, as MAPEx and MAPEd respectively.

Simulation example

Fig. 1 illustrates the simulation of the modified four tank
system and Table 1 describes the results of the example.
We simulate for 30 minutes with 120 equidistant samples.
The simulation and estimation are computed with 1000 and
100 equidistant steps between samples, respectively. The
UKF has the parameter set [β,α,κ] = [2.0,0.001,0.0]. The
EnKF and PF has particle set sizes of 250 and 1000, respec-
tively. The disturbances are modelled with λ1 = λ2 = 0.1 and
σ1 =σ2 = 5.0 for the simulation. For the EKF, EnKF, and PF,
σ1 = σ2 = 5.0 and for the UKF σ1 = σ2 = 1.0. λ1 = λ2 = 0.0
for the EKF and UKF and λ1 = λ2 = 2.0e-3 for the EnKF and
PF. From the results presented in Fig. 1 and Table 1, we see
many of the properties described in the discussion of Sec-
tion 3. The EKF and UKF are demonstrated the be the most
computationally efficient methods, where EKF seem to be
outperforming UKF in this particular numerical experiment.
Furthermore, the EnKF and PF show better accuracy both in
estimating state and disturbance variables, but at the cost of
lower computational efficiency.

Conclusion

We present four methods for state estimation in
continuous-discrete nonlinear systems involving stochastic
differential equations: the EKF, the UKF, the EnKF, and a PF.
The state estimation methods are implemented for non-stiff
systems in Matlab, and a numerical experiment is performed
for a simulated MFTS. The performance of each state esti-
mation method is evaluated in terms of 1) the computational
times for the time- and measurement-updates and 2) the ac-
curacy measured by the MAPE for the state and disturbance
estimates.
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