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Abstract 

In recent decades, quality-by-design and quality-by-control have sparked interest in identifying the design 
space of pharmaceutical processes. The design space of a pharmaceutical process is defined as the 
operating region in which quality assurance is guaranteed over the interaction of process inputs and model 
parameters. Traditional approaches to identify such regions are often expensive, which led to the 
reemergence of flexibility and feasibility analysis as a mathematical tool to substitute sampling-driven 
approaches. However, solving such nonlinear programs to global optimality can become a difficult or 
intractable task. In this work, progressive relaxations of the feasibility analysis problem are used to solve 
a series of mixed-integer, quadratically constrained programs to identify the probabilistic design space of 
a pharmaceutical process. The method is shown to approach the global solution and represents a practical 
approach to identify a conservative design space. 
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Introduction

In 2004, the FDA launched the quality-by-design (QbD) 
initiative to prevent a shortage of critical medicines due to 
poor quality in pharmaceutical manufacturing processes 
(FDA 2004). Subsequently, in 2009, the so-called design 
space was defined to assist approval of operating 
procedures during pharmaceutical process design and in 
pharmaceutical manufacturing processes. The design space 
represents a region of quality assurance for a 
pharmaceutical process over the full interaction between 
process inputs and parameters (FDA 2009). 

Quality in a pharmaceutical process is ensured by 
strictly adhering to product or process-specific critical 
quality attributes (CQAs). Naturally, the design space for a 
given pharmaceutical process is identified by the limits of 

the CQAs over the range of process inputs and system 
parameters. However, system parameters are often 
estimated from experimental data and are inherently 
uncertain. How well the CQAs hold over the entire random 
space of these uncertain parameters is not captured with a 
standard design space. Therefore, the so-called probabilistic 
design space can be identified as the region for which all 
CQAs hold with confidence α while considering model 
uncertainty.  

Identification of such a region typically requires 
rigorous experimentation to understand the impact of input 
variables on the CQAs. These interactions are then used to 
fit mechanistic or data-driven models of a given process. 
These models, with or without their associated uncertainty, 



  
 

 

are then used to generate a design space. Subsequent 
confirmatory experiments are run to substantiate the design 
space found during the modeling phase. Methods using this 
structure for design space identification through surface 
modeling (Kumar, Gokhale and Burgess, 2014), or 
PCA/PLS (Facco et. al. 2015) have been successful. 
However, time and cost of experiments as well as the 
requirement of high-quality data may become significant 
obstacles when employing such data-driven techniques. 

Processes where mechanistic models are unavailable or 
intractable to use, but have significant data, have been 
explored. Boukouvala, Muzzio and Ierapetritou (2010) 
identify the probabilistic design space without explicit 
models. The work discusses identifying regions in black-
box processes with various sampling techniques. Over 
recent years, progress on feasibility analysis using black-
box and surrogate-based modeling in pharmaceuticals has 
been made. Rogers and Ierapetritou (2015a; 2015b) gave a 
good perspective on general feasibility analysis using 
surrogate and data-driven modeling. Wang and Ierapetritou 
(2017) used radial basis functions for the same task and later 
applied these techniques globally to pharmaceutical 
processes (Wang and Ierapetritou 2018). Most recently, 
Ding and Ierapetritou (2021) applied these strategies to 
continuous chromatography in biopharmaceutical 
manufacturing. García-Muñoz et al. (2015) identified the 
probabilistic design space by evaluating CQAs over process 
uncertainties through Monte Carlo simulation. With 
accurate distributions or ample data, sampling techniques 
provide excellent approximation of the probabilistic design 
space but carry significant computational cost. 

In general, flexibility in manufacturing may be viewed 
as the ability to mitigate or remove the impact of system 
disturbances caused by uncertainty within or around a 
process. Specifically, the flexibility of a process and the 
tradeoff of this flexibility with operational cost has been 
extensively studied in the literature through mathematical 
programming (Halemane and Grossmann, 1983; 
Grossmann, Halemene and Swaney, 1983; Grossmann and 
Floudas, 1987; Pistikopoulos and Grossmann, 1989a; 
Pistokopoulos and Grossmann 1989b; Ostrovsky et al. 
1994; Pistikopoulos and Ierapetritou, 1995).  

Since then, the field of flexibility analysis has 
reemerged in relevance for design space identification of 
pharmaceutical processes and other fields. Pulsipher and 
Zavala (2018) developed a framework considering gaussian 
uncertainty for flexibility analysis which was later used to 
construct a general tool (Pulsipher and Zavala 2019). Laky 
et al. (2019) developed a framework to identify probabilistic 
designs spaces in pharmaceutical processes with 
computationally efficient approaches when compared to 
sample-based techniques. Ochoa et al. (2019) developed a 
new framework in flexibility analysis specifically for design 
space identification and extended the formulation to address 
uncertain parameters that are unmodeled (Ochoa et al. 
2020). Recent advances using black-box models for 
flexibility analysis (Zhao et al. 2021) and the so-called 

design centering problem (Ochoa et al. 2021; Zhao et al. 
2022) have also been made.  

For a pharmaceutical process, flexibility may be 
interpreted as the maximum allowable deviation from 
nominal operation that satisfies the CQAs. In general, 
satisfying a CQA in a pharmaceutical process may be 
represented mathematically by the following inequality 

g(θp,	x,	z,	θm)	≤	0      (1) 

Here, θp are the process parameters, θmϵ	Tm are the 
uncertain parameters, x are the state variables of the system, 
and z are the control variables. With this idea in mind, the 
feasibility of a process as a function of the process 
parameters, what we refer to as the flexibility test (FT), may 
be evaluated with the following formulation: 

χ&θp'	=	 maxθmϵTm
min
z	ϵ	Tz

max
kϵK

gk(θp,	x,	z,	θm)   (2) 

																	s.t.	hl(θp,	x,	z,	θm)	=	0															∀	l	ϵ	L  (3) 

In the formulation above, the goal is to find the 
maximum violation of the constraints gk, over the 
uncertainty space Tm, while model equations, hl, hold and 
control actions, z, assist. If the maximum value is below 0, 
(i.e., Eq. (1) holds for all CQAs), then the conditions θp over 
all θmϵTm are feasible. Grossmann and Floudas (1987) 
provide a good overview of such feasibility and flexibility 
formulations. In previous work (Laky et al. 2019), we 
modified the flexibility test formulation to iteratively 
identify the largest design space over θp in which all CQAs 
hold for a pharmaceutical process. Because of the nature of 
the problem, global solution of formulation (FT) is required 
to ensure the feasible space is not overestimated. However, 
determining global solutions to such a formulation can be 
computationally challenging for non-convex problems. 

In this work, a modification to previous work (Laky et 
al. 2019) on the flexibility test formulation is proposed. The 
problem is relaxed, and a design space is generated using 
this relaxed problem. If the region is sufficiently large, then 
we have confirmed flexibility. However, if the region is too 
small, progressively tighter relaxations are implemented 
until the region is satisfactory or the gap is closed. This 
method provides a low-cost screening approach to mitigate 
the difficulty of solving the unrelaxed program globally. 

Problem Definition  

The purpose of this section is to provide background on the 
flexibility test problem and present a progressive relaxation 
approach to the algorithm developed by Laky et al. (2019). 
In the following section, the new method will be analyzed 
on an industrial case study. 

Here, θp are the process parameters, or the process and 
design inputs (i.e., feed concentrations, residence time, 
temperature profiles, etc.). θm, are model parameters with 
implicit uncertainty (i.e., reaction rate coefficients, 
Arrhenius coefficients, heat transfer coefficients, etc.). It is 
assumed that this uncertainty has been estimated from 



  

 

experimental or simulated data. Variables x represent the 
state variables (i.e., species concentrations), and z represent 
the control variables.  

In a traditional extension of formulation (FT), the 
flexibility index, or the measure of the size of the design 
space, may be maximized with respect to the process 
variables as θ;m shown in the flexibility index formulation 
(FI) below (Grossmann and Floudas 1987): 

F(θp)	=	maxδ δ 	      (4) 

			s.t.	χ&θp'	=	 (maxθmϵTm
min
z	ϵ	Tz

max
kϵK

gk(θp,	x,	z,	θm)) 	≤ 	0	 (5) 

																												s.t.	hl(θp,	x,	z,	θm)	=	0											∀	l	ϵ	L  (6) 
																																			δ∙Δθm- 	≤	(θm	-	θ;m)	≤	δ∙Δθm+ 	  (7) 

Of course, such a problem is cumbersome to solve as 
the constraint χ&θp' is a complex, multi-level problem that 
must be solved globally. An important distinction for this 
problem is that δ is solved over the uncertainty space, and 
θp, the design variables, are inputs. In later formulations, the 
interest will be placed on δ in the θp space with formulation 
(FT*).  

Formulation (FI) may be solved through a series of 
simplifications. The first is removing the inner-most 
maximization by introducing variable u. Second, a major 
simplification identified by Swaney and Grossmann (1985) 
by employing an active set strategy may be used. The 
simplification exploits the fact that it is guaranteed that a 
subset of constraints must be active at the solution to (FI). 

As shown in Grossmann and Floudas (1987), when the 
number of control variables is zero (i.e., nz = 0), a 
simplification to (FI) can be made for the resulting active 
set flexibility index formulation (FI*): 

F(θp)	=	 min
δ,	x,	s,	y,	θm

δ 	 	     (8) 

																	s.t.	hl(θp,	x,	θm)	=	0																						∀	l	ϵ	L  (9) 
																								sk	+	gk(θp,	x,	θm)	=	0    							∀	k	ϵ	K (10) 
																							 ∑ 𝑦2 	= 	1	

2      (11) 
																								𝑠2 	−	 𝑈(1	 − 	𝑦2) 	≤ 	0									∀	k	ϵ	K  (12) 
																								𝑠2 	≥ 	0, 𝑦2	𝜖	{0, 1}																	∀	k	ϵ	K  (13) 
																								δ	≥	0     (14) 
																								δ∙Δθm- 	≤	(θm	-	θ;m)	≤	δ∙Δθm+ 	   (15) 

Formulation (FI*) may be solved globally to provide 
the maximum deviation, δ, over the hyperrectangle in Eq. 
(15) for which the CQAs of the process hold. The active set 
nature of the problem arises from eq. (11) where one of the 
CQAs has the worst constraint value over the entire 
uncertainty space. Here, θ;m represents the nominal value of 
the model parameters θm. 

Although the hyperrectangle in Eq. (15) represents a 
valid region, statistical information on the probability of 
lying within a hyperrectangle is not easily made explicit. 
For this reason, Rooney and Biegler (1999) suggested the 
use of an ellipsoid region. Using this terminology, a 
constraint to substitute Eq. (15) may be represented as: 

(θm	-	θ;m)T	𝛴3#
45(θm	-	θ;m)	≤	δ    (16) 

Here, the value of δ corresponds to 𝜒6#
7 (𝛼). This is the 

value of the chi-squared distribution with nm degrees of 
freedom that corresponds to probability level α. One may 
use an LDL decomposition to reduce Eq. (16) to a set of 
linear constraints and sum of squares, as is used in this 
work, Pulsipher and Zavala (2018), and Laky et al. (2019). 

In previous work (Laky et al. 2019), (FI*) is used to 
identify a probabilistic design space of a pharmaceutical 
synthesis process. However, an iterative approach can be 
used on a modification of formulation (FT) to identify a 
region that corresponds to a flat confidence α over the entire 
design space. The modification of (FT) can be solved by 
introducing another shape factor in the process parameter 
space, δpr , which is defined below as formulation (FT*): 

χ(δpr ,	δmα )	= max
u,	θp,	x,	s,	y,	θm

u 	 	              (17) 

																	s.t.	hl(θp,	x,	θm)	=	0																					∀	l	ϵ	L  (18) 
																								sk	+	gk(θp,	x,	θm)	-	u	=	0    ∀	k	ϵ	K (19) 
																							 ∑ 𝑦2 	= 	1	

2      (20) 
																								𝑠2 	−	 𝑈(1	 − 	𝑦2) 	≤ 	0									∀	k	ϵ	K  (21) 
																								𝑠2 	≥ 	0, 𝑦2	𝜖	{0, 1}																	∀	k	ϵ	K  (22) 
																								𝛴3#

45 	= 	𝐿𝐷𝐿;    (23) 
																								𝑞; 	= 	(θm	-	θ;m)T	𝐿𝐷

5
7<    (24) 

																								𝑞;𝑞	 ≤ 	δmα      (25) 
																								δpr ∙Δθp- 	≤	(θp	-	θ;p)	≤	δpr ∙Δθp+	   (26) 

Formulation (FT*) takes two inputs and returns the 
maximum violation of the CQAs. In the standard flexibility 
index formulation (FI), δ is a decision variable over θmϵTm, 
however in (FT*), δmα  is the value corresponding to the chi-
squared distribution with fixed confidence level α. Because 
the confidence level for θmϵTm is fixed, an operating region 
for θp may be found instead of an operating point where δ 
is maximized. Thus, the operating region in θp is defined by 
a new shape factor, δpr , which in this case is a hyperrectangle 
region. Using bounds from 0 to 1 for δpr , a bisection search 
can be used to find the maximum value of δpr , or the largest 
operating region in θp where process CQAs are satisfied 
with confidence level α. A more detailed description of the 
algorithm to determine δpr  is shown in Laky et al. (2019). 

Unfortunately, (FT*) must still be solved to global 
optimality at each iteration. Often, knowing the full extent 
of the design space is not necessary. Rather, we only require 
that a pre-specified design space be confirmed which may 
be possible even with a conservative estimate of the design 
space. Exploiting this property of the probabilistic design 
space allows the proposal of a progressively refined 
relaxation of the nonlinear program in (FT*). The method 
for doing this is as follows. 

An upper bound on the maximum constraint violation, 
u, can be obtained by solving a relaxation of (FT*) for a 
given 𝛿=. Because the optimal value of u is a non-decreasing 
function of 𝛿=, any 𝛿= for which the maximum u of the 
relaxed problem is less than or equal to 0 is guaranteed to 



  
 

 

satisfy the CQAs for the original problem. Thus, the final 
value of δpr , δp

*, obtained from the bisection method using 
the relaxed problem will necessarily be less than or equal to 
the true value of δp

* for (FT*). 
Many methods exist for constructing relaxations of 

general MINLPs, including 𝛼𝐵𝐵, generalized McCormick 
relaxations, and factorable programming (Adjiman et al. 
1998; Tsoukalas and Mitsos, 2014; Misener and Floudas, 
2014). Here, we construct convex MIQCP relaxations (i.e., 
the continuous relaxation is a convex quadratically 
constrained program) using the factorable programming 
method in Coramin (Bynum et al. 2019). We use Coramin 
to construct piecewise linear relaxations of the nonlinear 
constraints ℎ and 𝑔. The remaining constraints are either 
linear or convex quadratic constraints. Initially, the 
relaxation is constructed with only one piecewise segment 
for each relaxed term, and bounds tightening is performed. 
If the solution to this problem does not produce a flexible 
region that is sufficiently large, then the segments are 
further refined (i.e., split in half) and the bisection algorithm 
is run again. Using these new segments is guaranteed to 
produce a tighter relaxation because the vertices of the 
piecewise linear segments of the tighter relaxation are a 
superset of those in the previous iteration. This process is 
repeated until an adequate region is accepted or the 
computational cost of solving the problem with many 
piecewise segments is too high. The resulting solution is a 
conservative region in θp which is guaranteed to abide by 
the CQAs with at least probability α. 

Industrial Case Study Results 

In this section, we analyze the results of using the described 
relaxation algorithm on an industrial case study provided by 
Eli Lilly and Company. The Michael addition reaction 
(Chen, Biegler and García-Muñoz, 2016) may be described 
by the following reaction kinetics: 
				AH	 + 	B	

2%→	A-	+	BH+      (27) 
				A- 	+ 	C	

2&→	AC-	      (28) 
												AC- 	

2'→	A- 	+ 	B      (29) 
		AC-	+	AH	

2(→	A-	+	P      (30) 
AC-	+	BH+ 	

2)→ 	P	+	B      (31) 

Here the starting materials AH and C are the Michael 
donor and the Michael acceptor, respectively. B is a base, 
BH+, A-, and AC- are reaction intermediates, and P is the 
product. The reactions rates for eqs. (32) through (36) are 
given below: 

r1	=	k1CAHCB       (32) 
r2	=	k2CA-CC       (33) 
r3	=	k3CAC-       (34) 
r4	=	k4CAC-CAH       (35) 
r5	=	k5CAC-CBH+      (36) 

 

In this case, uncertainty is represented in the reaction 
coefficients ki (i.e., θm = {k1, k2, k3, k4, k5}). Thus, the 
nominal point θ;m is defined as 𝑘; with the estimated reaction 
coefficients: 

𝑘, 	= 	 [49.7796, 8.9316, 1.3177, 0.3109, 3.8781]   (37) 

The units for 𝑘; i is L/(mol∙min) for all entries except 𝑘;3 
which is 1/min. Also, the mean values of the estimated 
parameters in 𝑘; correspond to a normal variance-covariance 
matrix Σθm. This matrix Σθm is provided in Laky et al. 
(2019). 

For this case study, it is assumed that the reaction is 
carried out in a constant-volume CSTR. The process 
parameters θp are the residence time, τ, and feed ratio of 
species AH to B, RA|B (i.e., 	θp 	= 	 {τ, 𝑅G|I}).  For 
simplicity, it is assumed the CSTR is operating at steady 
state. Using a steady state CSTR mass balance, and the rates 
of reaction ri, the equations h&θp,	x,	θm' can be defined for 
each species below: 

(Cj0	-	Cj) + 	τe𝜈L𝑟L
L

 (38) 

Initial concentrations hCAH0 ,	CB0,	CC0,	CA-0 ,	CAC-0 ,	CBH+
0 ,	CP0i 

are given by h0.3955, 0.3955/RA|B, 0.25, 0, 0, 0, 0i mol/L. 
Finally, the CQAs may be defined mathematically as 
follows: 

CC
0	-	CC	-	CAC-

CC
0 	≥	0.9	⇒	CC	+CAC- 	-	0.1CC0	≤	0   (39) 

CAC-≤	0.002       (40) 

Eq. (39) states that the conversion of the Michael 
donor, C, must be greater than or equal to 90 percent. Eq. 
(40) states that the concentration of intermediate AC- may 
not exceed 0.002 mol/L. 

Using parameters from Laky et al. (2019), tolerance for 
CQA violation is 𝜖NOP 	= 	 104Q. The range of process 
parameters θp are given by 400 to 1400 minutes for 
residence time τ, and 10 to 30 for feed ratio 𝑅G|I. The 
dimensions Δθp-  and Δθp+ were chosen for each process 
parameter θp as to scale δp within the domain [0, 1] (i.e., 
initialize δpL 	= 	0, δpU 	= 	1). For uncertain parameters θm, 
a value of δmα  corresponding to confidence level α	 = 	0.85 
was chosen using the chi-squared cumulative density 
function for five degrees of freedom. 

All multilinear terms will be relaxed with linear 
McCormick envelopes (McCormick 1976). Initially, the 
relaxation will be over the entire variable bound, and will 
be progressively tightened to have 2n (𝑛	𝜖	ℤTU) piecewise 
segments representing each bilinear relaxation variable wi. 
An example of how nonlinear terms are linearized is applied 
to the quadrilinear term, τ(k1CABCB), is shown below: 



  

 

w1	=	k1CAH     (42) 
w2	=	k1CAH𝐶I = 𝑤5𝐶I	       (43) 
w3	=	τ(k1CABCB)		=	τw2      (44) 

Piecewise McCormick envelopes are then applied to 
these terms. The process is repeated for all nonlinear terms 
in the model. In this case, 5 iterations of bound tightening 
were performed on each variable before the piecewise 
segmentation. With the constraints relaxed and variable 
bounds tightened, a 2n piecewise segment linear relaxation 
is applied to variables wi. The problem is now a mixed-
integer quadratically constrained program (MIQCP) due to 
the quadratic nature of the variance-covariance ellipsoid 
constraint.  

The MIQCPs solved in this work utilized the Gurobi 
solver under version 7.5.2 (Gurobi). All models were 
written with Pyomo (Bynum et al. 2021). To find the global 
solution for comparison with the progressively relaxed 
solutions, BARON (Sahinidis 1996) was used to solve the 
NLP subproblems of (FI*). 

Table 1. Maximum constraint violation at  
δp=0.5, optimal value 𝛿=∗ , and solution time for 

progressively refined relaxations. 

 
# of PW McCormick 
Relaxation Segments 

Maximum 
violation of 
CQAs at 
δp = 	0.5 

Flexibility 
Test Value 
(FT*) δp

* 

Solve 
Time 

(s) 

1 1.45∙10-1 0 5.1 
2 5.61∙10-2 0 6.3 
4 1.96∙10-2 0.0352 6.9 
8 9.09∙10-3 0.2656 12.2 
16 4.07∙10-3 0.3125 42.5 
32 1.97∙10-3 0.3438 714.5 
Global Solution 5.72∙10-4 0.3789 245.3 
 
Starting with n = 0, 1 piecewise linear segment was 

used to relax (FT*) for the Michael addition case study. 
With this relaxation, the entire operating region was 
infeasible, as shown in Table 1. However, as the relaxation 
was progressively refined, small operating region was 
feasible at n = 4. Eventually, using 32 segments for the 
relaxations yielded a solution within 10% of the extent of 
the global feasible region while also approaching the true 
global maximum of the CQA violations for a given value of 
δp. In Figure 1, the maximum constraint violation over all 
CQAs for a δp value of 0.5 is shown. Importantly, the 
constraint violation for finer relaxations conservatively 
represents the feasibility of the process and approaches the 
global value. The solution, δp* , found by solving the 
flexibility test formulation with progressively finer 
relaxations is also shown. As expected, finer relaxations 
approach the global optimum, remaining conservative for 
all relaxations. However, timing considerations show that 
solution time for 32 segments requires more solution time 
than the global optimizer. It should be noted that all relaxed 

bilinear terms utilize 32 segments, and improvement can be 
made by using a quantitative approach to choose which 
variables are progressively refined. Also, the bounds 
tightening procedure accounts for approximately 5 seconds 
of the total solution time to find δp

* for a given number of 
segments. 
 

 

Figure 1: Visualization of results reported in 
Table 1. Size δp approaches the global solution, 

and CQA violation at δp=0.5 approaches the 
global value as well. 

Conclusions 

Identification of the design space is a costly yet beneficial 
process in the pharmaceutical industry. Any advancement 
that can alleviate costs, either computationally or by 
reducing the number of required experiments is of great 
value. Here, we proposed an algorithm that is guaranteed to 
produce a conservative design space for non-linear 
pharmaceutical processes. This conservativeness of this 
approach is confirmed by overestimating infeasibility of the 
CQAs, as seen in Figure 1. 

Also, it was seen that progressively finer relaxations 
produce solutions more representative of the global 
solution. Often, the full extent of the design space is not 
required so long as the conservative design space is large 
enough for implementation.  

The form of the relaxations removes the difficult non-
linearity of the problem reducing the flexibility test 
formulation from a MINLP to a sequence of MIQCPs, 
resulting in improved computational performance. 
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