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Abstract
Multiparametric programming is a paradigm of manipulating and solving parameterized mathematical programs
which allows for explicit algebraic solutions to optimization problems. This has found great interest in the literature,
from explicit model predictive control to data science applications, and allows one to address an entire family of
associated optimization problems simultaneously. From the multiparametric viewpoint, many optimization-based
applications in control and engineering can be succinctly stated as a single multiparametric program, such as with model
predictive control and state estimation. In some cases, the full explicit solution of a multiparametric program is not
computationally feasible to generate, leading to the development of partial explicit multiparametric methods that can be
utilized to reduce the computational burden of online optimization problems while not fully solving the explicit solution
of the multiparametric program. Here, a partial explicit method is presented that allows for feasible constraint pruning
from parameterized optimization problems by inspecting the optimality conditions of the multiparametric program
and deriving overestimators of constraint optimality domains in the parametric space. These overestimators are then
used to remove constraints from consideration in the online optimization problem, including feasible constraints, while
retaining the exact solution. The utility of this methodology is demonstrated via the application of optimal control on a
non-isothermal CSTR system, showing an average decrease in solve time of 40% to solve the online model predictive
control problem.
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Introduction

Multiparametic programming has received much interest
in the control literature since it was shown that the model
predictive controller (MPC) problem can be reformulated
into a multiparametric program (Pistikopoulos et al., 2021;
Bemporad et al., 2000). Through the use of multiparamet-
ric programming methods, explicit algebraic solutions of the
mpMPC (multiparametric MPC) can be computed; these are
typically referred to as explicit MPC in the literature (Pap-
pas et al., 2021). Explicit MPC has found many applications
in automotive, aeronautical, and chemical industries (Pappas
et al., 2021). Dedicated solvers have been developed to solve
particular classes of the multiparametric programs that arise
in mpMPC (Kenefake and Pistikopoulos, 2022; Oberdieck
et al., 2016; Herceg et al., 2013). However, in some cases the
complexity of the mpMPC makes solving the full explicit so-
lution prohibitive – that is, collecting all critical regions that
compose a solution – leading to the recent development of
what will be referred to as partial multiparametric methods
in this work. The general form of a continuous multipara-
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metric program can be seen in eqn. 1, with f (x,θ) denoting
the parameterized objective, g(x,θ) denoting the parameter-
ized equality constraints, h(x,θ) denoting the parameterized
inequality constraints, and Θ denoting the space of parame-
ters.

min
x

f (x,θ) (1a)

g(x,θ) = 0 (1b)
h(x,θ)≤ 0 (1c)

θ ∈ Θ (1d)
x ∈ Rm,θ ∈ Rn (1e)

Recently, many partial multiparametric strategies have
been explored in the literature such as with the development
of the custom Quadratic Program (QP) solver, qpOASES,
which is specialized for solving control type problems where
the previous solution is utilized as a hot start to the next
optimization problem utilizing multiparametric methodolo-
gies (Ferreau et al., 2008). A partial explicit approach used
by Katz and Pistikopoulos (2020) is based on sampling the
parameter space Θ, to collect the critical regions that cover
large volumes of the parameter space, and incorporated as hot



start procedure for the online optimization problem. Methods
based on caching critical regions have been implemented,
such as in Kenefake et al. (2022), where given a parameter
realization, θ0 ∈ Θ, if it is not inside any cached regions,
the optimization problem is solved. Using multiparametric
programming techniques, the critical region corresponding
to the point θ0 is generated and added to cache.

In this work, a partial multiparametric method that gen-
erates regions in the parameter space that contain all points
where each inequality constraint participates in an optimal
active set is proposed. These regions are then used during the
real time optimization step to remove constraints that cannot
participate in the optimal solution from consideration. By
removing constraints from the online optimization problem,
the computational complexity of the optimization is reduced.
The utility of this approach is then demonstrated in the op-
timal control of a non-isothermal continuously stirred tank
reactor (CSTR).

Methods

The Methods section is separated into three separate sub-
sections. The first subsection describes the optimality condi-
tions of a multiparametric program, where the KKT (Karush-
Kuhn-Tucker) conditions are derived and the complementar-
ity conditions are reformulated to avoid unnecessary nonlin-
ear constraints by using indicator constraints. The second
subsection describes the general behavior of domains of op-
timal constraints in the parameter space and describes the
procedure of generating overestimating regions of these do-
mains. The last subsection describes how the information
obtained from these regions can be used in real time to re-
duce the computational overhead of the optimization prob-
lem when a parameter has been realized, e.g. θ0 ∈ Θ, while
still obtaining the exact optimal solution.

Multiparametric KKT Conditions

The KKT conditions define the necessary conditions for
the solution of an optimization problem (Karush, 2014; Kuhn
and Tucker, 2014). The multiparametric KKT conditions can
be derived for the general multiparametric program as seen
in eqn. 2, with eqns. 2b, 2c, 2e referring to primal feasibility,
eqn. 2a referring to the stationarity condition, eqn. 2d refer-
ring to the complementarity conditions, eqn. 2f referring to
the dual feasibility, and eqn. 2g referring to the parameter
feasibility.

∇x f (x,θ)+ ⟨∇xg(x,θ),µ⟩+ ⟨∇xh(x,θ),λ⟩= 0 (2a)
g(x,θ) = 0 (2b)

h(x,θ)+ Im×ms = 0 (2c)
⟨λ,s⟩= 0 (2d)

s ≥ 0 (2e)
λ ≥ 0 (2f)
θ ∈ Θ (2g)

In the case of mpLP (multiparametric Linear Programs)
and mpQP (multiparametric Quadratic Programs), all con-
straints are linear except for the complementarity conditions

Figure 1: Subset of the full explicit solution from Fig. 2,
where a particular constraint appears in the optimal active
set. It can be seen that this is a non-convex polytope.

(eqn. 2d). This is ameliorated via introducing an auxiliary bi-
nary variable y for every inequality constraint, and reformu-
lating the complementarity conditions via the indicator con-
straint formulation as shown in eqn. 3. In the case of mpLPs
and mpQPs with this reformulation, the mpKKT conditions
are mixed integer linear representable, allowing the utiliza-
tion of a modern mixed integer linear programming (MILP)
solver, such as Gurobi, to solve this problem (Gurobi Opti-
mization, LLC, 2022). Alternatively, a Big-M formulation
can be utilized for the reformulation.

⟨λ,s⟩= 0 =⇒ λisi = 0 =⇒ yi = 1 =⇒ si = 0
yi = 0 =⇒ λi = 0 (3)

Constraint Domain Boundary

There are many options to represent the domain of parame-
ters where a constraint is optimal for a given multiparametric
program, Xi ⊆ Θ. As the computational cost of solving the
bilevel substituted problem described in eqn. 6 is not compu-
tationally trivial, there is a trade off between tightness of the
domain description and the computational time to describe
this domain. The full description can be trivially constructed
from the full explicit solution which requires the computa-
tionally difficult solution of a multiparametric program to be
solved. On the other hand, it does not require any prior com-
putation to consider that all constraints could be active at any
parameter realization. An example of an explicit solution and
the domain of parameters where a constraint is optimal can
be seen in Figs. 1 and 2. The space of parameters, θ, where
any given constraint appears in the optimal active set is not
necessarily convex, as can be seen in Fig. 1.

The AABB (Axis Aligned Bounding Box) was selected as
an overestimating domain for the set of parameters where a
constraint is optimal. This domain description was chosen
for three primary reasons: 1) Only 2n optimization problems
need to be solved to get the full description, 2) AABBs re-
quire very little storage to save the full description, 3) check-
ing if a point is inside of an AABB is computationally cheap.
It should be noted that an AABB is simply a hyper rect-
angle where the faces are in line with the coordinate axes,
here intersected with Θ, giving Xi ⊆ AABBi ⊆ Θ. Compu-



Figure 2: The full explicit solution of an mpQP, showing all
critical regions and refining the optimality of each compo-
nent.

tational savings for the online problem are expected when
AABBi ⊂ Θ, as that implies there are θ ∈ Θ such that con-
straint i is not in the optimal basis solution.

AABB = {θ ∈ Θ : θi ≤ θi ≤ θi} (4)

The axial bounds of each AABB can be computed by solv-
ing the bilevel optimization problem as described in eqn. 5;
however, this form cannot be solved with many modern op-
timization solvers and requires the utilization of equilibrium
programming, which is not computationally attractive. Here,
eqn. 5 shows the optimization problem for finding the min-
imum bounds of the jth parameter, θ j, given inequality con-
straint kth is active, such that the resulting optimization vari-
able, x, is still optimal with respect to the lower level opti-
mization problem.

min θ j (5a)
s.t. hk(x,θ) = 0 (5b)

x ∈ argmin f (x,θ) (5c)
s.t.g(x,θ) = 0 (5d)

h(x,θ)≤ 0 (5e)
θ ∈ Θ (5f)

x ∈ Rm,θ ∈ Rn (5g)

This bilevel optimization problem is reformulated into a
single level optimization problem by incorporating the mp-
KKT conditions into the upper level optimization problem,
similar to the reformulation of the flexibility index problem
as proposed by Grossmann and Floudas (1987). The com-
putational performance of this formulation can be improved
by removing constraints that are redundant ∀θ ∈ Θ, and by
including valid bounds on x, s, θ, λ, µ. The procedure for
calculating bounds on feasibility for x, s, and θ via simple
optimization-based methods is well-known in the literature.

min θ j (6a)
s.t.∇x f (x,θ)+ ⟨∇xg(x,θ),µ⟩+⟨∇xh(x,θ),λ⟩= 0 (6b)

g(x,θ) = 0 (6c)
h(x,θ)+ Im×ms = 0 (6d)

yl = 1 =⇒ sl = 0,∀l ∈ {1, . . . , p} (6e)
yl = 0 =⇒ λl = 0,∀l ∈ {1, . . . , p} (6f)

s ≥ 0 (6g)
λ ≥ 0 (6h)
θ ∈ Θ (6i)

sk = 0 (6j)
x ∈ Rm,θ ∈ Rn,y ∈ {0,1}p,s ∈ Rp

+,λ ∈ Rp
+

(6k)

If the problem is infeasible when solving for the bounds
of the AABB of an inequality constraint, this implies that the
constraint does not participate in any optimal active set for
any parameter realization θ0 ∈Θ. It immediately follows that
this constraint can be removed from the model formulation
for all problem realizations, even if that constraint is non-
redundant.

Online Procedure

The AABB overestimators can then be incorporated into
an online procedure where, if the parameter realization θ0 ∈
Θ is not contained in the ith AABB, then this constraint can
be removed from consideration from the online optimization
problem. Additionally, it is clear that if θ0 /∈ Θ, then the
optimization problem is infeasible.

min
x

f (x,θ0) (7a)

s.t. g(x,θ0) = 0 (7b)
hi(x,θ0)≤ 0, ∀i ∈ {i ∈ {1, . . . , p} : θ0 ∈ AABBi} (7c)

The solution of this optimization problem must be checked
for feasibility of the constraints that was removed, ensuring
that a false feasible solution is not found (e.g. a situation
when a parameter realization θ0 generates an infeasible op-
timization problem). This represents the blank regions sur-
rounding the explicit solution in Fig. 2. This can be done by
simply substituting the solution of the optimization problem
x∗ and the parameter realization θ0 into the multiparametric
program constraints, and checking if the resulting constraints
are consistent. If the substituted constraints are consistent,
then the optimal solution to the optimization problem has
been verified. On the other hand, if the constraints are not
consistent, then the original optimization problem with θ0
substituted and all constraints included is also infeasible.

h j(x∗,θ0)≤ 0, ∀ j ∈ { j ∈ {1, . . . , p} : θ0 /∈ AABB j} (8)



Example Problem

The methods developed so far can be demonstrated on a
simple mpQP, as shown in eqn. 9. Here, Θ is real numbers
between 0 and 1 inclusive, Θ = [0,1].

min
x

1
2

x2 (9a)

s.t. x−1−θ ≤ 0 (9b)
−x+θ ≤ 0 (9c)

θ ∈ Θ (9d)

Firstly, the AABBs for each constraint are generated by
solving the optimization problem as seen in eqn. 10. To
find the lower bound of the kth constraint of the ith parame-
ter, the following optimization problem, as shown in eqn. 10,
is solved for each parameter of interest, θ j, and inequality
constraint. To find the upper bound, the direction of the op-
timization problem can simply be changed to maximization.
As there are not any equality constraints in this multiparamet-
ric program, the terms relating to g(x,θ) and µ are dropped.

min θ j (10a)
s.t. x+λ1 −λ2 = 0 (10b)

x−1−θ+ s1 = 0 (10c)
−x+θ+ s2 = 0 (10d)

yl = 1 =⇒ sl = 0,∀l ∈ {1,2} (10e)
yl = 0 =⇒ λl = 0,∀l ∈ {1,2} (10f)
s1,s2 ≥ 0 (10g)

λ1,λ2 ≥ 0 (10h)
0 ≤ θ ≤ 1 (10i)

sk = 0 (10j)

x ∈ R,θ ∈ R,y ∈ {0,1}2,s ∈ R2,λ ∈ R2 (10k)

It can be shown that both inequality constraints (9b and
9c) are non-redundant, meaning that they both form facets of
the feasible space. However, when computing the AABBs
for constraints 9b and 9c it was found that constraint 9b does
not participate in any optimal active set, and can be removed
from the online calculation ∀θ ∈ Θ. The AABB for con-
straint 9c was computed, and is shown in eqn. 11. In this
example, Θ = AABB9c. However this procedure identified
a constraint that was entirely surpurfluous while still being
feasible: constraint 9b.

AABB{9c} = {θ ∈ Θ : 0 ≤ θ ≤ 1} (11)

Now that the AABBs for the inequality constraints have
been calculated, the online procedure is performed. A pa-
rameter realization of θ0 = 0.5 will be used to demonstrate
the methodology. After utilization of the AABB to remove
constraints, the resulting substituted problem, with θ0 substi-
tuted as θ, is shown in eqn. 12. As constraint 9b has been
eliminated via the previous analysis, it does not need to be

included in the substituted problem. The solution to the sub-
stituted problem, eqn. 12, is x∗ = ⟨0.5⟩.

min
x

1
2

x2 (12a)

−x+0.5 ≤ 0 (12b)

The solution x∗ is checked against the constraint 9b to en-
sure that (x∗,θ0) is a feasible solution. Here, by the sensible
use of optimality conditions and bounding, non-redundant
constraints can be removed a priori from consideration of
the substituted problems and thus simplifying the resulting
optimization problem.

x∗−1−θ0 ≤ 0 →−1 ≤ 0 (13)

Case Study: Non-Isothermal CSTR MPC

The proposed methodology will be demonstrated on
an ideal non-isothermal CSTR adopted by Kazantzis and
Kravaris (2000). The reaction considered in the CSTR is the
irreversible reaction between sodium thiosulfate and hydro-
gen peroxide to generate sodium trithionate and water.

2Na2S203 +4H202 → Na2S3O6 +Na2SO4 +4H2O (14)

For ease of notaion, Na2S203 and H202 are denoted as A
and B respectively. The Arrhenius rate law of A is as shown
in eqn. 15, where k0 is the pre-exponential factor, E is the
activation energy, R is the ideal gas constant, T is the reactor
temperature, and cA and cB denoting the reactor concentra-
tions.

−rA = k0 exp
(
−E
RT

)
cAcB (15)

With the assumption of constant mixture density, volume,
and feed composition (2cA(t) = cB(t)), the dynamic model of
the CSTR is represented by the following system of ordinary
differential equations, as stated in Pappas et al. (2020):

dcA

dt
=

F
V
(cA,in − cA)+ rA (16a)

dT
dt

=
F
V
(Tin −T )+

(∆H)R

ρcp
rA −

UA

V ρcp
(T −Tj) (16b)

Considering a nominal value of the manipulated variable
of F

V = .2s−1, there are three steady states of the process sys-
tem. The most economically advantageous steady state was
found to be at cA = 0.667, and Ts = 308.499 as considered by
Pappas et al. (2020) (as a note, this steady state is unstable).
Deviation variables are used to shift the desired steady state
to the origin, as shown in eqn. 17.

x =
[

cA − cAss

T −Tss

]
u =

F
V

− F
V

∣∣∣
ss

(17)



The dynamic model was linearized and discretized with a
time step of 0.2s assuming zero-order hold, and the resulting
discrete linear system that represents the dynamic model are
shown in eqn. 18.

xk+1 =

[
0.9194 −0.0013
5.8554 1.1394

]
xk +

[
0.0685
−6.9670

]
uk (18)

The multiparametric program for this can be effectively
stated in eqn. 19, with the initial state being equal to the the
uncertain parameters,θ0 , as the state is not known ahead of
time. This is a multiparametric program in the class mpQP,
as all constraints are affine and the objective is both convex
and quadratic. It should be noted that many linear MPC prob-
lems can be trivially converted into the mpMPC form. Here
the MPC is set with a control and output horizon of N = 40,

where Q =

[
1 0
0 0.05

]
, R =

[
10
]
, and A, B are as presented

in eqn. 18.

min
u,x

xT
NPxN +

N−1

∑
i=0

(
xT

i Qxi +uT
i Rui

)
(19a)

x0 = θ0 (19b)
xt+1 = Axt +But , ∀t ∈ {0, . . . ,N −1} (19c)

u ≤ ut ≤ u, ∀t ∈ {0, . . . ,N} (19d)
x ≤ xt ≤ x, ∀t ∈ {0, . . . ,N −1} (19e)
θ ∈ Θ (19f)

Here, the mpMPC has 240 inequality constraints and, after
equality constraints are eliminated, 40 variables relating to
the ut variables. After removing constraints that are redun-
dant for every parameter realization θ ∈ Θ, 116 constraints
were removed from the problem formulation and only 124
inequality constraints remain. The AABBs for this mpMPC
are generated based on the constraint domain boundary pro-
cedure with a computational cost of 602s, on an Intel i7-4790
desktop with 16 GB of RAM utilizing Gurobi 9.5.2 to solve
the MILPs. Inspecting the AABBs reveals an additional 42
constraints that never participate in any optimal active set
combination for any realization of system state and thus can
be removed, leaving 82 constraints that need to be considered
for any realization of the MPC problem.

First, the case of an initial state of x0 = [0.417,15] was
considered. The AABB constraint pruning procedure was
then applied with θ0 = x0 to further reduce the number of
constraints that must be accounted for by an additional 7
constraints. The online optimization problem that was to
be solved contained only 75 of the original 240 constraints.
This constitutes a reduction factor of approximately 3x in the
number of constraints. The online optimization problem is
solved, with the reduced constraint set provided by the par-
tial multiparametric procedure, and the solution is exactly
equal to the full optimization model with all 240 constraints.
The full model takes 187 µs to compute while the reduced
model takes 160 µs to compute when averaged over 10,000
runs, resulting in a reduction in solve time by 14%. The QPs
considered in the case study were solved with the quadprog

Figure 3: The evolution of the states of the linearized system,
given the solution of the MPC problem.

Figure 4: The solution of the MPC problem, uopt , with θ0 =
x0 = [0.417,15] as the initial state.

package in a Python 3.10 environment with a desktop that
has Intel i7-4790 CPU and 16 GB of RAM, with the online
procedure included in the time to solve. This solver utilizes
the Goldfarb/Idnani dual algorithm to solve convex quadratic
programs as proposed by Goldfarb and Idnani (1983). The
system dynamics can be seen in Figure 3, with the solution
of optimal control problem shown in Figure 4.

An additional case study was performed where 100,000
points were sampled from Θ, each relating to an initial state
of the system. The corresponding MPC problems for each
point were solved twice: once utilizing the standard MPC
without constraint pruning, and once utilizing the constraint
pruning AABB procedure. This amounts to 100,000 QPs be-
ing solved, one for each point. The standard MPC with all
constraints considered took 38.55s to compute all solutions,
compared to 23.1s when utilizing the partial multiparamet-
ric approach. This amounts to a ≈ 40% reduction in time to
solve for the entire problem set.

Discussion

It can be seen that the method requires a relatively small
amount of memory to store the AABBs as each one is stored
in the form of two vectors of floating point numbers: the up-
per and lower bound vectors. For every inequality constraint,
given p inequality constraints and m parameters, the storage
required to save the AABBs for the entire problem is 2nmp
bytes, where n is the number of bytes per floating point num-



ber. For optimization problems stored via dense matrices,
this is typically smaller than the optimization problem defi-
nition.

In the case where the reformulated bilevel optimization
problem found in the Methods section is too computation-
ally burdensome, instead of solving for the extent of the pa-
rameters θ j subject to the optimality conditions, this can be
relaxed to primal and parameter feasibility. While the range
of the AABBs will expand, and therefore the efficiency of
the constraint pruning will decrease, the computational com-
plexity of the subproblems is greatly reduced. This is due
to removal of the optimality-based constraints from the for-
mulation that are typically the source of computational com-
plexity.

Conclusion

In this work, a partial explicit multiparametric program-
ming method was developed that allows for the removal of
feasible constraints from the online optimization problem
while still resulting in the exact solution. This removal of
feasible constraints was developed by inspection of the op-
timality conditions of multiparametric programs, and deter-
mination of overestimating regions in the parameter space Θ

where a constraint could participate in the optimal active set
of the parameter substituted problem, θ0 ∈ Θ. The proposed
approach was successfully applied to the control of a non-
isothermal CSTR reactor at an unstable steady state, showing
an average reduction of 40% in computational time to solve
the online MPC problem. There are synergies between the
partial multiparametric programming algorithms in the liter-
ature and this proposed algorithm that could be exploited to
further reduce the time to solve. In the proposed method,
the online optimization problem must still be solved at ev-
ery step. These optimization problems could be accelerated
via the initialization procedure proposed by Katz and Pis-
tikopoulos (2020) and the caching procedure as proposed by
Kenefake et al. (2022) to reduce the computational burden.
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