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Abstract
The incorporation of renewable energy solutions into the global value chain is vital to the decarbonization of en-
ergy systems. However, the additional complexity may also lead to increased vulnerability in the face of disruptive
events. It is therefore imperative that future energy systems are resilient to these vulnerabilities. In this work, we propose
a multi-scale design methodology in the design of resilient energy systems that integrates supply chain network decisions
with individual process reliability analysis. A two-step procedure is utilized where a network is first designed to optimize
for economic objectives, and then scenario analysis is conducted to study how the network behaves under discrete
disruptions. Agglomerative hierarchical clustering (AHC) is used to reduce problem size and increase computational
efficiency. The use of this procedure is demonstrated through a simultaneous design and scheduling case study for the
hydrogen supply chain. It is shown that a single process was chosen to meet 100% of demand if no failure scenarios are
applied, but redundancies are favored when discrete disruptions are introduced. Furthermore, the quantitative levels at
which investing in system reliability becomes cost-effective towards avoiding a penalty for unfulfilled demand can be
identified.
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Introduction

To support the decarbonization of energy systems, a suite
of renewable energy solutions are being investigated for their
potential incorporation into the global value chain. How-
ever, with this increase in complexity also comes an in-
crease in vulnerability, as more parts of the system are ex-
posed to potentially disruptive events (Sarma and Zaban-
iotou, 2021). Cyberattacks, natural disasters exacerbated by
climate change, as well as other global upheavals such as
pandemics have massively destructive effects that could rip-
ple through the value chain, impacting the lives and liveli-
hoods of people around the world. It is imperative, there-
fore, that energy systems are designed to withstand and adapt
to disruptive events. However, a major challenge in achiev-
ing resilient energy systems is the occurrence of ’unknown-
unknown’ events – where both the time and the impact of
the disruption are unknown (Golan et al., 2020). While it is
possible to optimize energy system resilience against a wide
array of possible scenarios to account for the possibility of
unknown-unknown events, it is highly inefficient and may
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result in blind spots where a particularly destructive potential
scenario is not included in the set of test scenarios.

A potential methodology to overcome this difficulty is to
optimize energy system design in a multi-scale manner; tak-
ing into account not only the supply chain network but also
the reliability of processes involved in the system and the
components of these processes (Chrisandina et al., 2022).
Multi-scale engineering has been applied to energy systems
due to its ability to incorporate information from the mul-
tiple spatiotemporal scales that are at play in energy sys-
tems, and therefore this methodology is well-suited to an-
alyze and optimize energy system performance against dis-
ruptions (Floudas et al., 2016; Kakodkar et al., 2022). Inte-
grating equipment-level quantitative risk analysis into supply
chain network design facilitates the consideration of system
resilience on economic objectives without specifying a dis-
ruption scenario a priori (Al-Douri et al., 2021). A trade-off
between investing in reliability and cost minimization strate-
gies can thereby be investigated, dependent on the penalties
imposed by customers for unmet energy demand. Therefore,
this work aims to propose a framework for the multi-scale de-
sign and integration of energy systems considering the trade-
off between resilience and cost-efficiency through the use of
quantitative risk analysis and supply chain network optimiza-



tion. This framework will guide decision-makers in making
cost-effective decisions when planning investments in energy
system resilience, equipping energy systems to face an in-
creasingly uncertain future.

To this end, the presented work demonstrates a multi-scale
framework for the design on systems with network reliability
considerations to bridge operational and strategic decisions
across spatiotemporal scales. The application of the frame-
work is demonstrated through a computational case study in-
volving planning and scheduling to meet daily hydrogen de-
mand.

Problem Statement

Given the at-scale introduction of renewables into the en-
ergy mix, as well as the higher incidence of weather-related
and social disruptions, it is desirable to design energy sys-
tems which perform better in terms of reliability. The mul-
tiple available modes of production with disparate tempo-
ral dynamics, resource consumption, and scaling limitations,
can be computationally challenging to resolve.

It is understood that in modern energy systems, redundan-
cies can provide a degree of resilience. It should be noted that
despite the additional cost incurred through the implementa-
tion of larger process capacities or newer processes, the in-
vestment could be justified if there is a high penalty enforced
on unmet demand.

To this end, a framework for the design of energy sys-
tems which consider the reliability of process components
implicitly can help decision-makers design resilient energy
systems.

Methodology

Modeling and optimization of energy systems frameworks
are able to provide solutions to optimize network configu-
rations, process design, and scheduling decisions. Never-
theless, mathematical programming frameworks constructed
as mixed integer programs (MIPs) assume perfect explicit
knowledge of the temporal horizon over which they are re-
solved. Naturally, addressing discrete events such as sys-
temic disruptions or temporary constraints under such a mod-
eling paradigm is computationally impractical for large-scale
problems. As a consequence, there is a gap in addressing op-
timal design under the influence of discrete uncertainties.

In this work, a two-step procedure is presented wherein:
1) a base-case network is designed through the implementa-
tion of a multi-scale MIP framework where every process is
assumed to be functional 100% of the time and there is no
penalty incurred for unmet demand, 2) process failure proba-
bilities and penalties for unmet demand are introduced to the
system and a new network is designed for different penalties.
At every realization of the procedure, the failure probability
indicates the likelihood that the process is completely non-
operational.

To reduce the problem size in each step of the procedure,
the agglomerative hierarchial clustering (AHC) algorithm as
described by Tso et al. (2020) is used to provide a sample of

representative days that can sufficiently capture the intermit-
tency of weather-related phenomena and varying natural gas
prices. Component failure rates are provided through sam-
pling from a randomly generated distribution as a measure of
the probability of failure.

Model Formulation

The framework is modeled as a mixed-integer linear pro-
gram (MILP) which allows for integrated design, planning,
and scheduling. In this section, we summarize some of the
key constraints of the framework. The full set of equations
and parameters are provided in the supplementary section.

Subsection ”Network design” describes the network prob-
lem which is resolved at the temporal scale of a year. The
planning and scheduling decision constraints are determined
for each hour of the planning period. The demand con-
straints are presented in Subsection ”Demand constraints”.
The annual production costs are determined using the con-
straints described in Subsection ”Annual production cost”.
The constraints to evaluate the expenditure on resource pur-
chase are shown in Subsection ”Resource purchase expendi-
ture”. Lastly the objective is described in Subsection ”Ob-
jective”.

Nomenclature

The nomenclature used in the rest of this section is out-
lined below.

Table 1: Sets

Notation Description
Jp Set of all resources used
Ip Set of all processes
H Set of hours in one year
Y Set of years in the planning horizon
S Set of cost scenarios

Table 2: Parameters

Notation Description
CapP−max

i,y Max. production capacity for process i at
year y

CapS−max
j,y Max. storage capacity for resource j at

year y
ηi, j Conversion efficiency for resource j by

process i
LOSS j Storage loss factor for resource j
ζp Disruption pattern for production capacity
ζs Disruption pattern for storage capacity
Demand j,h,y Demand for resource j at time period h in

year y
demandslack

j,h,y Demand slack for resource j at time period
h in year y

Cost purchase
j,i,y Purchase cost of resource j for process i in

year y
Ψ Penalty for unmet demand



Table 3: Continuous decision variables

Notation Description
capP

i,y Production capacity of process i in year y
capS

j,y Storage capacity for resource j in year y
pi,h,y Realized production for process i in time

period h within year y
inv j,h,y Inventory level for resource j in time pe-

riod h within year y
c j,h,y Amount of resource j purchased in time

period h within year y
opexvar

i,y Variable O&M expenditure for process i in
year y

Opexvar
i,y Variable O&M expenditure for process i in

year y
opex f ix

i,y Fixed O&M expenditure for process i in
year y

Opex f ix
i,y Fixed O&M expenditure for process i in

year y
capexi,y Capital expenditure for process i in year y
capexi,y Capital expenditure for process i in year y
bannual

j,y Annual purchase expenditure for resource
j in year y

Table 4: Binary decision variables

Notation Description
xP

i,y 1 if production facility i is built in year y, 0
otherwise

xS
j,y 1 if storage facility i is built in year y, 0

otherwise

Scenario reduction

The temporal scale is clustered using agglomerative hier-
archical clustering (AHC) (Tso et al., 2020), using the nor-
malized solar and wind profiles as well as varying natural gas
spot prices. It should be noted that AHC maintains temporal
chronology which makes it easier to relay information be-
tween the time periods in the scheduling model. However, it
was inferred by (Tso et al., 2020) that minimizing the within
cluster variance does not necessarily lead to a reduction in the
objective error. Hence, the model is run over the time period
of a year for various cluster sizes to gain insight into how the
objective error scales with an increase in cluster sizes (see
Figure 1). Notwithstanding the absence of a formal method-
ology to identify the optimal number of clusters from the
perspective of objective error, a cluster number of 20 (288
hours) is chosen based on the trade-off with computational
time. Moreover, the solution is validated with the full-scale
solution across the planning horizon.

Network design

Binary variables (xP
i,y for production facilities and xS

j,y for
storage facilities) are assigned to each node. The binary
equals to 1 if the facility is built in a particular year, 0 oth-
erwise. Note that distinction between storage and production
facilities is only for the ease of representation. Moreover,
we do not impose a mathematical distinction between energy

Figure 1: Trade-off between within cluster sum of squares
(WCSS) and number of representative days.

and material conversion processes.

Production capacity sizing

Qualitatively, these constraints allow the model to account
for capital invested in establishing infrastructure in the pre-
ceding planning periods.

capP
i,y ≤CapP−max

i,y · xP
i,y, ∀i ∈ Ip, ∀y ∈ Y (1)

The storage capacity and facility location decisions are de-
termined using the following constraint:

capS
j,y ≤CapS−max

j,y · xS
j,y, ∀ j ∈ Jp, ∀y ∈ Y (2)

where capP
i,y is the production capacity of process i in

year y, capS
j,y is the storage capacity for resource j in year

y, CapP−max
i,y and CapS−max

j,y are the maximum production ca-
pacities for process i and storage capacities for resource j re-
spectively in year y.

Resource balance

We assume that all processes in the superstructure function
on a continuous basis. For each process i, the realized pro-
duction (pi,h,y) in a time period (h) of year (y) is constrained
to the capacity of the production facility as determined by
Constraint 1. Similarly, the inventory level (inv j,h,y) in a time
period (h) of year (y) is constrained to the storage capacity
as determined by Constraint 2. Furthermore, we restrict the
amount of resource that can be purchased from outside the
system (c j,h,y) to the maximum resource availability. Note
that the maximum resource availability will be non-zero only
for resources that serve as raw materials in the system, e.g.:
natural gas and water.

Nameplate production capacity

The realized production rates for each hour are determined
using Constraint 3 below. To account for the intermittent
availability of solar and wind, the solar direct normal irradi-
ance (DNI) and wind speed power outputs are normalized to



generate capacity utilization factors. ζp and ζs are disruption
patterns sampled based on the mean-time-to-failure.

pi,h,y ≤ ζ
p
i,h,y ·Cap f

i,h,y · capP
i,y, ∀i ∈ Ip,h ∈ H ,y ∈ Y (3)

Nameplate storage capacity

The inventory levels at every hour are restricted to the
nameplate storage capacity using the following constraint:

inv j,h,y ≤ ζ
s
i,h,y · capS

j,y, ∀ j ∈ Jp, ∀h ∈ H , ∀y ∈ Y (4)

Resource consumption capacity

This constraint restricts the amount of resource that can be
consumed.

c j,h,y ≤Cmax
j,h,y, ∀ j ∈ Jp, ∀h ∈ H , ∀y ∈ Y (5)

Inventory balance

The inventory balance constraint is applied over the plan-
ning horizon to determine both the resource flow through the
network, and account for inventory cycling:

inv j,h,y =(1−Loss j)·inv j,h−1,y+ ∑
∀i∈Ip

ηi, j · pi,h,y+c j,h,p−si,h,y,

∀ j ∈ Jp,h ∈ H \{h},y ∈ Y (6)

Where h, d are the first elements in the sets of time peri-
ods (H ) and seasons (D) respectively, whereas h̄, d̄ are the
last. The conversion efficiencies for each resource (j) by each
process (i) is given by the factor ηi, j. The model accounts for
storage losses using the factor LOSS j.

Demand constraints

The demand constraint ensures that the daily demand for
hydrogen is satisfied:

∑
∀h∈H

s j,h,y = demand j,h,y −demandslack
j,h,y ,

∀ j ∈ JH2−demand ∩ Jp y ∈ Y (7)

Annual production cost

We consider three costing components. Variable opera-
tional and maintenance (O&M) costs are calculated based on
the amount of basis resource produced by a process (Con-
straint 8). Annualized capital expenditure(Constraint 10) and
fixed (O&M) costs (Constraint 9), on the other hand, are eval-
uated based on the capacity sizing of the processes.

Variable O&M expenditure

opexvar
i,y = Opexvar

i,y · pannual
i,y , ∀i ∈ Ip,y ∈ Y (8)

Fixed O&M expenditure

opex f ix
i,y = Opex f ix

i,y · capP
i,y, ∀i ∈ Ip,y ∈ Y (9)

Capital expenditure

capexi,y = A f ·Capexi,y · capP
i,y, ∀i ∈ Ip,y ∈ Y (10)

Resource purchase expenditure

The annual expenditure on resource purchase is evaluated
using Constraint 11:

bannual
j,y =Cost purchase

j,i,y · cannual
i,y , ∀i ∈ Ip,y ∈ Y (11)

Objective

The objective of the model is to minimize the total cost
incurred by the system. If the hydrogen demand is met, the
objective value divided by the total hydrogen production in-
dicates the levelized cost of hydrogen (LCOH).

The cost objective minimizes the levelized total cost borne
by the system. The total cost consists of the annual-
ized capital expenditure (capextotal

a,y ), operational expenditure
(opextotal

a,y ), and material purchase cost (btotal
j,y ). Notably, capi-

tal and operational expenditures as well as purchase costs are
minimized in the system.

This objective minimizes the cost while meeting a daily
hydrogen demand. A penalty (ψ) is added to penalize unmet
demand.

min ∑
y∈Y

costtotal
y

costtotal
y = capextotal

y +opextotal
y +btotal

y

+∑ψ ·demandslack
j,h,y (12)

Computational studies

The framework is applied towards the simultaneous de-
sign and schedule optimization of an energy system to meet
a daily demand for hydrogen. Decision variables within the
framework cover both strategic and operational aspects of the
energy system, including which processes are implemented
as well as daily production of hydrogen through each pro-
cess. Of key interest is the trade-off between incurring a cost
penalty for unmet demand versus the cost of investing in re-
dundancies to increase the overall reliability of the system.



The implemented case study considers both wind and so-
lar energy for the generation of power; steam methane re-
forming (SMR) and alkaline water electrolysis (AWE) for
the production of hydrogen; lithium ion batteries for energy
storage, and geological storage for produced hydrogen. The
weather data for capacity factors is taken from the National
Solar Radiation Data Base (NSRDB) (Sengupta et al., 2018),
and the natural gas prices are from the Henry Hub Spot Price
Index (Energy Information Administration, 2022). The cost-
ing data is taken from Demirhan et al. (2020).

First, a base case is implemented sans the consideration of
process failure. It should be noted that failure can be expe-
rienced by various systems that can have real world impli-
cations. For example, in the case of the failure of hydrogen
storage, it would imply that while hydrogen is produced it
cannot be accessed. Similarly, weather-related disruptions
can affect the grid causing failure of wind and/or solar farms.
The generality of the framework allows it to be applied to-
wards the analysis of myriad cost and reliability scenarios.

In the subsequent case studies, the model is provided with
both an economic penalty for not meeting demand and pro-
cess failure realizations. In principle, the application of
the framework should allow for determination of designs
wherein the additional cost towards redundant facilities is
justified depending on the penalty that is imposed on unmet
demand.

Results and Discussion

In the base case, it can be observed that the entirety of the
production is met through the cheaper SMR process. There
is no failure imposed, and hence there are no redundancies
observed. It can be seen in Figure 2 that the cost objective
remains constant in the base case and this is due to the fact
that the SMR process is capable of meeting 100% of network
demand and thus the penalty does not affect network design.

Trade-off between penalty and cost objective

In the case where process failure realizations are intro-
duced to the system, it can be seen in Figure 2 that the system
willfully accepts the penalty until the cost incurred surpasses
the cost of the base case. At a cost point above the base
case cost (above the dotted line in Figure 2), it is more cost-
effective to install additional capacity despite the additional
investment costs incurred as the penalty for unmet demand
is high. Penalty on unmet demand can serve as a proxy for
the loss of business due to non-fulfillment of expected system
output.

It should, however, be noted that the results are highly de-
pendent on the consideration of the failure probabilities, and
also how the process failure is realized. In the illustrative re-
sults as shown in Figure 3, the model chooses to augment
the production of hydrogen by setting up other process units
such as alkaline water electrolysis units and additional hydro-
gen storage. Moreover, the discharge capabilities of stored
electricity is also augmented. Furthermore, it is also possible
to conduct sensitivity analysis on the failure probabilities to
determine which processes display outsized economic gains

Figure 2: Trade-off between penalty on unmet demand and
cost objective

relative to investments in process reliability.

Figure 3: illustrative results for a penalty factor of
$0.75/kg.H2. Here, change in installed capacity is calculated
on the basis of the new scenario.

Scenario Analysis

In essence, the framework can be used for scenario analy-
sis through the consideration of myriad values for the com-
ponent failure probabilities. For example, the scenario pre-
sented in Figure 4 only differs from the scenario as described
in Figure 3 in the failure probability of the energy storage
(lithium-ion) batteries. In this scenario, it can be observed
that the capacity of wind farms is augmented and the reliance
on energy storage is curtailed. Furthermore, the increase in
power generation potential also translates to a lower require-
ment for hydrogen storage at scale. In both cases the dis-
charging capacities are improved. It is understood that under
the influence of process disruption, a larger amount of de-
mand will need to be met directly through stored product or
by in-time production by utilizing stored energy.

Conclusion and future work

Real world systems vary greatly in terms of reliability. Re-
liability is notably influenced by exogenous factors, and is
thus suspect to localized factors such as weather patterns and



Figure 4: Illustrative results for a penalty factor of
$0.75/kg.H2- with risk assigned to energy storage. Here,
change in installed capacity is calculated on the basis of the
new scenario.

events, as well as factors which may be influenced by dynam-
ics outside the system boundaries such as the cost of natu-
ral gas which is dependent on global trade factors and social
events. Quantifying the overall reliability of a system can
thus be challenging. Nonetheless, in the absence of a realiz-
able perfectly reliable system, networks need to be analyzed
under the context of a penalty assigned to the failure to meet
a set demand target. Here, it can be noted that a high penalty
could justify investment towards redundancies and larger ca-
pacities to increase system reliability.

The proposed MIP framework can be implemented for the
analysis of various energy transition scenarios to design op-
timal energy systems models with embedded reliability. The
appetite for risk and non-fulfillment of demand can be de-
scribed through the different levels of penalty. While the
framework can also be applied towards the curtailment of
carbon emissions, a multi-objective study is not presented in
this article.

In future iterations of the framework, the downtime of
processes in the face of disruption will also be considered.
Longer downtime during repair negatively impacts revenue-
making potential, and it may be desirable to invest in more
capital-intensive processes to limit idle time in the future.
This becomes particularly important for the comparison of
modular processes (viz. water electrolysis) as compared to
larger facilities (methane reforming). Depending on the na-
ture of failure, modular facilities may be able to reconfigure
quickly to more rapidly bring a section of installed capac-
ity back online, which would change the configuration of the
energy system to incorporate more modular technologies as
opposed to larger ones.

Additionally, in the presented work, failure is considered
as a complete disruption of the process. In reality, however,
failures may only partially reduce the production capacity of
the process. To address this limitation, different levels of
failure need to be sampled by fitting available data. More-
over, lower down the scale failure could be limited to the
equipment level as opposed to the entire process, thus mo-
tivating the integration of process-level dynamics within the

framework. This may also provide valuable information on
specific bottlenecks and vulnerable components in the pro-
cess, which could lead to targeted investment opportunities
to enhance system reliability at large.
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