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Abstract
Over the past decade, economic Nonlinear Model Predictive Control (eNMPC) has gained attention along with setpoint
tracking NMPC for industrial applications. In particular, eNMPC is able to make future predictions by directly maximiz-
ing economic performance of the system. However, eNMPC usually requires a prior calculation of the steady state for
stabilization, which compromises the benefit of dynamic real-time optimization. The impact of this may cause control
delays in applications, especially when model parameters or disturbances are updated. In this work, we derive an eNMPC
formulation with a stabilizing constraint that is composed of optimality conditions of the economic steady-state problem,
over each stage in the prediction horizon. The proposed formulation reduces control delays as it does not require steady
states for stabilization. Instead, the optimality conditions lead the process to the steady state automatically after the
estimated information is updated in the predictive model. The advantage of this eNMPC formulation is demonstrated
on a continuous stirred tank reactor (CSTR) example with parameter perturbations. Additionally, we also investigate the
impact of terminal conditions on the stability of the proposed dynamic system.
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Introduction
Model Predictive Control (MPC) has applications in a

wide range of areas such as robotics, aerospace engineering,
and chemical engineering for trajectory or setpoint tracking.
This is due to MPC’s capability to handle complicated multi-
input and multi-output (MIMO) dynamic systems with oper-
ating constraints for states, inputs, and outputs. In the past
decade, Nonlinear Model Predictive Control (NMPC) grew
as a popular choice as it captures the detailed dynamics of
nonlinear models in the process, thus giving more accurate
state and output predictions.

With traditional control procedures for chemical units, we
usually calculate the setpoint or the reference in the Real-
Time Optimization (RTO) layer based on an economic goal
and steady-state plant model (Marlin et al., 1997). Then the
setpoint is passed to an advanced controller such as MPC or
NMPC to calculate the optimal control action based on the
current plant state and the predictive model. This is done
by solving an optimization problem that minimizes the dif-
ference between predictive states and the calculated setpoint
at each sampling time (Biegler et al., 2015). Next, the con-
trol action obtained from the controller is implemented in the
plant followed by the collection of the resultant plant mea-

surements. Once the measurements are obtained, they are
sent to a real-time estimator to determine the current plant
state and infer the model parameters. Finally, the control
loop is closed by updating parameters within the RTO and
controller models, which re-initializes the controller with the
new states.

Ideally, the solution of RTO problems and MPC problems
should have the same frequency; this assures that the tracking
direction always approaches an optimal goal as the parame-
ters are updated. However, solving RTO problems at every
sampling time may delay the on-line control. As a result,
RTO problems are usually solved to update the setpoint on an
hourly or even daily basis while control inputs are updated at
the frequency of a few seconds or minutes. Thus, while this
RTO approach prevents online computational delay, it may
lead to sub-optimal control actions due to the out-of-date set-
point, especially when there is mismatch in parameters be-
tween the plant and the RTO model.

To address this problem, the extension of MPC to op-
timize economic performance has been explored in Rawl-
ings and Amrit (2009), Würth et al. (2009), and Rawlings
et al. (2012). The concept of economic dynamic real-time
optimization (DRTO) and NMPC with economic objectives
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merges the RTO and the advanced control layers together,
and eliminates the inconsistencies between two layers. In-
stead of minimizing the trajectory difference between the
reference setpoint, eNMPC directly considers an economic
stage cost that represents meaningful benefits such as ma-
terial costs, product quantities, or some other performance
measure. This concept has been applied in Aske et al. (2008),
Würth et al. (2009), and Lin et al. (2022).

Although eNMPC implementations can improve eco-
nomic performance in practice, steady-state stabilization of
eNMPC continues to be a challenge. Steady-state stabiliza-
tion is an important characteristic for the control of chemical
processes as such processes often need to avoid state diver-
gence and persistent oscillations. Since the economic stage
cost can be any cost of interest and not always a K∞ function,
needed for control theory, eNMPC cannot guarantee asymp-
totic stability. This therefore leads to a Lyapunov function
without sufficient decrease to a stationary point. It is in con-
trast to setpoint tracking NMPC, which has a K∞ function
as a (usually quadratic) stage cost that provides asymptotic
stability with appropriate terminal conditions and horizon
length.

Recent studies have shown important stability results for
eNMPC strategies. Diehl et al. (2011) demonstrated that if
a strictly dissipative dynamic system has a storage function
and satisfies strong duality at the equilibrium point, asymp-
totic stability can be ensured by defining a rotated stage cost
which is a K∞ function. However, not all systems have this
dissipativity property and it is difficult to check and general-
ize for large-scale systems, such as distillation columns and
complex polymer processes. To construct a stabilizing strat-
egy for more general systems, Jäschke et al. (2014) modified
the economic stage cost to create a K∞ function, by adding a
tracking term with large enough penalty parameter. However,
the drawback of this strategy is that the extra tracking term
may dominate the objective function and lead to reduced
economic performance. To remove the tracking term in the
objective, Zavala (2015) proposed to interpret eNMPC as a
multi-objective optimization problem by including a stabiliz-
ing inequality as a constraint, which inherits stability proper-
ties of tracking NMPC while enhancing the economic per-
formance at the same time. Griffith et al. (2017) further an-
alyzed the robustness properties of this eNMPC formulation
and applied it to a large-scale distillation column. Although
this formulation demonstrates improved performance, it re-
quires a pre-calculated steady-state optimum as information
for the stabilizing constraint, which compromises the benefit
of dynamic real-time optimization. Specifically, if there are
any parameter updates from the estimator, the steady-state
optimizer needs to determine the new setpoint on-line. In
order to resolve this disadvantage, we reformulate the stage
cost and the Lyapunov function included in the stabilizing
constraint with the optimality conditions instead of the op-
timal steady state. This allows the optimal steady state to
be adjusted or updated automatically as model parameters or
disturbances are estimated.

The paper is organized as follows. In Section 2 we briefly
introduce the eNMPC formulation. In Section 3 we present

the Lyapunov Theory for asymptotic stability and two novel
strategies for stability. In Section 4, we derive the proposed
eNMPC formulation with the optimality conditions of the
steady-state problem. Section 5 demonstrates how we sta-
bilize a continuous stirred tank reactor (CSTR), which is not
asymptotically stable with standard eNMPC. Finally, Section
6 gives some conclusions and future perspectives.

Economic NMPC Formulation
Consider the dynamic system of a plant described as the

following discrete-time dynamic model with uncertain pa-
rameters,

xk+1 = f (xk,uk,dk) (1)

where xk ∈Rnx is the process state vector, uk ∈Rnu is the con-
trol vector, and dk ∈ Rnd denotes the parametric uncertainty
defined at time step tk with integer time index k ≥ 0. The
plant states and controls satisfy the constraints xk ∈ X, and
uk ∈ U. The dynamic function f : Rnx+nu+nd → Rnx maps
the information at time k to the state vector at time k + 1.
Equation (1) can then be implemented within a NMPC prob-
lem that minimizes either the deviation from a setpoint or an
economic cost, i.e.,

V (xk) = min
vl ,zl

Fγ (zN)+
N−1

∑
l=0

ψ
γ (zl ,vl)

s.t. zl+1 = f
(
zl ,vl , d̂k

)
, l = 0, ...,N−1 (2a)

z0 = xk, (2b)
zl ∈ X, vl ∈ U, zN ∈ X f (2c)

where vl ,zl are the predicted control and state variables, re-
spectively, at point l in the predictive horizon of length N,
and γ ∈ {tr,ec} denotes either the quadratic tracking stage
cost or the economic stage cost considered in the objective of
NMPC problem (2). Fγ is the terminal cost and d̂k represents
the estimate of uncertain parameter at time k.

Lyapunov Stability Theory and Previous Stabilizing
Strategies

Definition 1 (Comparison Functions). A function α : R+→
R+ is of class K if it is continuous, strictly increasing, and
α(0) = 0. A function α : R+→ R+ is of class K∞ if it is a K
function and lims→∞ α(s) = ∞.

Definition 2 (Lyapunov Function). A function V : X→ R+

that satisfies the following:

α1(|x|)≤V (x)≤ α2(|x|) (3a)
V (xk)−V (xk−1)≤−α3(|xk−1|) (3b)

where α1,α2,α3 ∈K∞ is said to be a Lyapunov Function for
Eq. (1).

Theorem 1. If system (1) admits a Lyapunov function for
some α1,α2,α3 ∈K∞ and

Fγ(zN|k)−Fγ(zN|k−1)≤−ψ̄
γ(zN|k−1,vN|k−1) (4)

holds, then (1) is asymptotically stable on X.



For setpoint tracking NMPC, Lyapunov function V (xk)
is usually chosen as the optimal objective function with
α3(|xk−1|) = ψtr(xk−1) in Eq. (3b), satisfying Definition 2
and thus resulting in asymptotic stability based on Theorem
1. On the other hand, since the economic stage cost ψec of
eNMPC can take any form of economic measures, Definition
2 does not necessarily hold if we continue to select the eco-
nomic objective of (2) as the Lyapunov function. Therefore,
additional work is required to stabilize eNMPC.

eNMPC stability can be established if the system satisfies
the turnpike property proposed by Faulwasser et al. (2017) or
if the system is dissipative as proved in Diehl et al. (2011).
However, these properties are system-specific and can be dif-
ficult when applied in practice. Instead, Jäschke et al. (2014)
derived a constructive way to calculate large enough track-
ing terms and modified the stage cost to ensure Definition 2
holds, as follows:

ψ
mod(zl ,vl) = ψ

ec(zl ,vl)+ρψ
tr(zl ,vl) (5)

where ψtr = ||zl − xss||2 + ||vl − uss||2 and ρ > 0 is a suffi-
ciently large constant.

Although (5) helps to stabilize the closed-loop control of
eNMPC, a large ρ limits economic performance and leads
to conservative control. Instead, Zavala (2015) and Griffith
et al. (2017) removed the tracking cost from the objective
and included a stabilizing constraint accounting for Eq. (3b)
in the eNMPC problem. We denote this eNMPC formulation
as eNMPC-sc.

min
vl ,zl

F tr (zN)+
N−1

∑
l=0

ψ
ec (zl ,vl)

s.t. zl+1 = f
(
zl ,vl , d̂k

)
, l = 0, ...,N−1 (6a)

z0 = xk, (6b)
V (xk)−V (xk−1)≤−δ ψ

tr(xk−1,uk−1), δ ∈ (0,1] (6c)
zl ∈ X, vl ∈ U, zN ∈ X f (6d)

where the Lyapunov function is defined with tracking stage
cost V (xk) := F tr(zN) + ∑

N−1
l=0 ψtr(zl ,vl). V (xk−1) and

ψtr(xk−1,uk−1) are the Lyapunov function and the first track-
ing stage cost calculated at time k−1, respectively. This for-
mulation preserves the economic cost in the objective func-
tion, and δ in Eq. (6c) can be adjusted to balance stability of
the system with dynamic performance. However, to calculate
ψtr, both strategies must calculate the optimal steady state
(xss,uss). This additional computational burden undermines
the purpose of eNMPC, which is to eliminate the need for
steady-state optimization. Moreover, frequent updates to in-
put disturbances and model parameters will require frequent
recalculation of (xss,uss). In the next section we describe an
eNMPC approach that does not need (xss,uss).

Proposed eNMPC Formulation without Pre-Calculated
Steady States

In order to derive the formulation of eNMPC without the
requirement of steady states for asymptotic stability, we first

consider the following steady-state problem:

(xss,uss) := argmin
x,u

ψ
ec(x,u) (7a)

s.t. x = f (x,u) (7b)
g(x,u)≤ 0 (7c)

Using barrier functions to take care of inequalities (7c), we
reformulate the steady-state problem as,

min
x,u

ψ̄
ec(x,u) = ψ

ec(x,u)−µ
ng

∑
j=1

ln(−g j(x,u)) (8a)

s.t. x = f (x,u) (8b)

where µ > 0 is the barrier parameter.
The barrier function can approach the optimum without

constraint violations by setting µ small in the objective. We
then derive the Karush-Kuhn-Tucker (KKT) conditions of (8)
as follows.

∇u f (x,u)(I−∇x f (x,u))−1
∇xψ̄

ec(x,u)+∇uψ̄
ec(x,u) = 0 (9)

x− f (x,u) = 0 (10)

It is important to note that the KKT conditions are sufficient
if the Strong Second Order Sufficient Condition (SSOSC)
and Linear Independent Constraint Qualification (LICQ) are
satisfied. The latter is satisfied if (I−∇x f (x,u))−1 is always
nonsingular. For convenience, we define,

Z(x,u)T = [∇u f (x,u)(I−∇x f (x,u))−1 | I] (11)

where Z(x,u) is a null space representation for ∇(x −
f (x,u))T . With Eqs. (9), (10), and (11), we can define a
new stage cost ψ̄tr(xk,uk) and Lyapunov function V̄ (xk) for
stability as follows.

ψ̄
tr(xk,uk) := ‖ f (xk,uk)− xk‖2 +‖Z(xk,uk)

T
∇ψ̄

ec(xk,uk)‖2

(12)

V̄ (xk) :=
N−1

∑
l=0

(‖zl+1−zl‖2+‖Z(zl ,vl)
T

∇ψ̄
ec(zl ,vl)‖2)+F̄ tr(zN)

(13)

Since ψ̄tr(xk,uk) is now a K∞ function, the descent property
(3b) holds for Lyapunov Theory. These equations yield our
new eNMPC formulation with stability property:

min
vl ,zl

F̄ tr (zN)+
N−1

∑
l=0

ψ
ec (zl ,vl)

s.t. zl+1 = f
(
zl ,vl , d̂k

)
, l = 0, ...,N−1 (14a)

z0 = xk, (14b)
V̄ (xk)−V̄ (xk−1)≤−δ ψ̄

tr(xk−1,uk−1), δ ∈ (0,1] (14c)
zl ∈ X, vl ∈ U, zN ∈ X f (14d)

where V̄ (xk−1) and ψ̄tr(xk−1,uk−1) are the new Lyapunov
function and the new first stage cost evaluated at k− 1. In
contrast to eNMPC-sc (6), the stabilizing constraint (14c)
is composed of the optimality conditions of the steady-state
problem (8). Therefore, it does not require the exact steady
state for dynamic system stabilization.



For the finite horizon MPC, terminal conditions are nec-
essary to account for the events beyond the horizon at each it-
eration. Either the terminal cost or terminal constraint or both
are included in the MPC problem to ensure that the state at
the end of the horizon is inside the terminal region and that
recursive feasibility holds. However, most terminal condi-
tions are constructed based on the stationary point, which we
no longer need to include in the proposed eNMPC formula-
tion. Therefore, we exploit the KKT conditions of Eqs. (9)
and (10) again formulate a strict terminal region defined by
the endpoint equalities and the terminal cost as follows.

xN− xN−1 = 0 (15a)

Z(xN ,uN−1)
T

∇ψ̄
ec(xN ,uN−1) = 0 (15b)

F̄ tr(zN)= β(‖xN−xN−1‖2+‖Z(xN ,uN−1)
T

∇ψ̄
ec(xN ,uN−1)‖2)

(16)

where β> 0 is a sufficiently large weighing parameter. In our
case study, we investigate the impact of terminal conditions
by comparing the cases with and without terminal conditions.

Stability Property of Proposed eNMPC
Consider the stabilizing constraint (14c) with new defined

Lyapunov function V̄ and stage cost ψ̄tr. We rearrange the
constraint and sum up both sides from k = 1 to k = ∞, which
leads to,

∞

∑
k=1

δ ψ̄
tr(xk,uk)≤

∞

∑
k=1

(V̄ (xk−1)−V̄ (xk)) (17)

After canceling the repeated terms on the right hand side, we
can obtain the following inequality,

∞

∑
k=1

δ ψ̄
tr(xk,uk)≤ V̄ (x0)−V̄ (x∞)≤ V̄ (x0). (18)

Since this infinite sum is bounded above, we obtain,

lim
k→∞

ψ̄
tr(xk,uk)

= ‖ f (xk,uk)− xk‖2 +‖Z(xk,uk)
T

∇ψ̄
ec(xk,uk)‖2 = 0.

(19)

Thus, asymptotic stability holds and we converge to a KKT
point of (8).

Simulation Example
We consider a nonlinear continuously stirred tank reac-

tor (CSTR) from Diehl et al. (2011), where reaction A→ B
occurs.

dCA

dt
=

q
V
(CA f −CA)− kCA (20)

dCB

dt
=

q
V
(−CB)+ kCA (21)

CA and CB represent the concentrations of chemicals A and
B, respectively, in mol/L. The control input is the flowrate
of reactor q in L/min. The volume of the reactor V is 10 L,
the rate constant of reaction k is 1.2 L/(mol ·min), and the

feed concentration of component A CA f is 1mol/L. The eco-
nomic stage cost is given by the price of CB and a separation
cost, which are proportional to the flowrate q as defined in
Diehl et al. (2011),

ψ
ec(CA,CB,q) =−q(2CB−

1
2
) (22)

with the steady-state values (CAss,CBss,qss) = (0.5,0.5,12)
and economic cost ψec

ss = −6. Initial conditions of states are
chosen as CA0 = 0.1 and CB0 = 1.0.

The continuous model consisting of Eqs. (20) and (21)
is discretized by Lagrange-Radau collocation method on fi-
nite elements and included as the predictive model in eN-
MPC optimization problems (2) and (14), which are con-
structed in the optimization modeling platform Pyomo 6.0.2
(Bynum et al., 2021) and solved by the NLP solver IPOPT
3.12 (Wächter and Biegler, 2006). All simulations are run on
an HPE-180t desktop operating on Ubuntu 18.04.3 with an
Intel Core i7-930 CPU.

Regular eNMPC without Stabilization
In the first case, we present the result of the standard eN-

MPC of Eq. (2) with γ = ec and the horizon length N = 10.
In addition, we include neither terminal cost nor terminal
constraint in the optimization problem. As shown in Figure
1, the dynamic system controlled is not asymptotically sta-
ble. The optimization-based controller obtains the maximum
economic performance under a periodic cycle, which causes
the states of CA and CB to oscillate during the entire process.
Furthermore, compared to the setpoint tracking NMPC, the
negative economic stage cost cannot provide a qualified Lya-
punov function for Eq. (3a) to achieve asymptotic stability.
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Figure 1: Concentrations of A (top) and B (bottom) of CSTR
under the closed-loop control by standard eNMPC.

Stable eNMPC without Terminal Conditions
In the second case, the proposed eNMPC formulation of

Eq. (14) with δ = 1 is implemented for the CSTR, but the
terminal conditions are not included in the optimization prob-
lem. We simulate the closed-loop results with different hori-
zon length where N = 10,20,30. In the top of Figure 2, the
state CA appears to converge to its steady state. However, as
we zoom in the state trajectory of CA between k = 60− 100
shown at the bottom of Figure 2, we note that CA does not
converge to the exact steady state, but to some ”neighbor-
hood” of the steady state. This is mainly because we do not



have terminal conditions in this case study. To be more spe-
cific, the important stability condition of terminal cost (4) is
not considered when the terminal conditions are ignored.
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Figure 2: Concentration of A (top) and its enlargement (bot-
tom) of CSTR under the closed-loop control by the proposed
eNMPC without terminal conditions.

Stable eNMPC with Endpoint Constraints
In the third case, we include Eqs. (15a) and (15b) as end-

point constraints in the proposed stable eNMPC with δ= 1 to
satisfy Eq. (4). We run the simulations of closed-loop control
with the horizon length N = 10,20,30. As presented in Fig-
ure 3, the concentration of A converges to the exact steady
state optimum no matter how long the horizon is, in contrast
to the previous results. The offset from the steady state is
eliminated because the endpoint constraints ensure the states
satisfy the KKT conditions at the end of the horizon, which
makes Eq. (4) hold, with zero on both left and right hand
sides.
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Figure 3: Concentration of A (top) and its enlargement (bot-
tom) of CSTR under the closed-loop control by the proposed
eNMPC with endpoint constraints.

Stable eNMPC with Quadratic Terminal Cost
In the fourth case, we include the terminal cost of Eq.

(16) in the proposed eNMPC with N = 10. A large enough
β is chosen to be 106. The states of CSTR, CA and CB, con-
verge to their steady states as shown in Figure 4. Addition-
ally, we investigate the effect of δ on the performance of the
proposed eNMPC, which controls the rate of convergence in
Eq. (14c). We run three simulations with different values
of δ = 0.3,0.6,1.0. In Table 1, we compare the economic

performance by summing up the scaled economic stage cost
over 100 iterations of the closed-loop results. We notice that
when δ is smaller, the oscillation lasts longer and the state
converges to the steady state slower. However, we also ob-
serve that the sum of costs reveals a monotonic relationship
with δ, where smaller δ results in better economic perfor-
mance. This is due to the longer period of oscillations to the
steady state. Generally, the proposed eNMPC allows the sys-
tem to explore the periodic cycles to gain the best economic
performance while the stabilizing constraint drives the state
toward its optimal stationary point. The tradeoff between dy-
namic economic performance and stability is controlled by
the parameter of convergence rate δ, which can be adjusted
depending on the application in practice.

0 20 40 60 80 100
0

0.2

0.4

0.6

C
A
 (

m
o
l/
L
)

CSTR states and steady states

 = 0.3

 = 0.6

 = 1.0

Steady state

0 20 40 60 80 100

k

0.4

0.6

0.8

1

C
B
 (

m
o
l/
L
)  = 0.3

 = 0.6

 = 1.0

Steady state

Figure 4: Concentrations of A (top) and B (bottom) of CSTR
under the closed-loop control by the proposed eNMPC with
terminal cost.

Table 1: Economic performance of proposed eNMPC with
different δ

Proposed eNMPC ∑
100
k=1 ψec(xk,uk)−ψec

ss
δ = 0.3 -27.0128
δ = 0.6 -23.2065
δ = 1.0 -21.3178

Stable eNMPC with Input Parameter Updates
In the last case, we simulate the closed-loop control of

CSTR with the proposed eNMPC and quadratic terminal
cost. The horizon length is N = 10 and δ = 1. We demon-
strate the main advantage of the proposed eNMPC by per-
turbing one of the parameters, CA f , from 1.0 to 1.2 at k = 50.
As shown in Figure 5, the system continues to be asymp-
totically stable even after the parameter perturbation. Both
states converge to the first steady state after about 20 hori-
zons. After the parameter CA f is updated in the predictive
model at k = 50, two states oscillate for a few iterations and
then eventually converge to the second steady state. The sta-
bilizing constraint of Eq. (14c) is temporarily deactivated at
k = 50 in order to re-calculate the non-zero Lyapunov func-
tion due to the parameter update and then it is reactivated at
k = 51. It is important to note that we do not need to solve for
any steady-state optima explicitly during the whole process
because once the parameter is updated in the model the opti-
mality conditions considered in V̄ and ψ̄tr will reflect the new
steady state automatically and the controller will stabilize the
system by driving the state to it.
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Figure 5: Concentrations of A (top) and B (bottom) of CSTR
under the closed-loop control by the proposed eNMPC with
parameter update at k = 50.

Conclusions and Future Work
In this work, we formulate a new economic NMPC with-

out the requirement of pre-calculated steady states. This for-
mulation ensures asymptotic stability of the closed-loop con-
trol by constructing a stabilizing constraint with optimality
conditions of the steady-state problem. Therefore, once pa-
rameters or disturbances are estimated and updated in the dy-
namic model, the plant state is driven to the new steady state
automatically. In addition, this formulation does not modify
the economic stage cost, which allows the NMPC controller
to give the best economic performance within the feasible
region defined by the stabilizing constraint and the conver-
gence rate parameter δ. We also investigate the effect of ter-
minal conditions in the case study by comparing the results
with either the terminal cost or endpoint constraints, as well
as without any terminal conditions.

Our continuing work focuses on applying the proposed
eNMPC formulation to large-scale dynamic models for dis-
tillation and membrane reactor systems. For these applica-
tions modern AD and sensitivity tools facilitate and simplify
the tasks of processing gradients for large Differential Al-
gebraic Equation (DAE) systems and assembling the KKT
conditions in Eq. (13). These tools allow us to build effi-
cient strategies to formulate and apply our proposed eNMPC
approach to solve challenging dynamic applications in real-
time.

In addition, we have observed satisfying results for stabil-
ity with current terminal cost and endpoint constraints, and
we are developing more general terminal conditions that are
less strict. An example of this would be to define a termi-
nal region that would enclose the end states for each horizon.
Again, the anticipated advantage would be to avoid comput-
ing steady state optima for these terminal conditions.
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