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Abstract
Simultaneous scheduling of production processes and their multi-energy systems could provide demand response. How-
ever, such scheduling results in nonlinear mixed-integer dynamic optimization problems, which are hard to solve in real
time. The optimization problem can be simplified by dynamic ramping constraints (DRCs) that limit the rate of change
of scheduling-relevant quantities instead of modeling nonlinear process dynamics. By employing piecewise affine limits,
DRCs allow a mixed-integer linear programming (MILP) formulation. In this contribution, we present a heuristic pa-
rameterization of DRCs for processes with uncontrolled internal dynamics for which DRCs cannot be derived rigorously.
First, the true ramping limits are derived as a function of all process states. Based on simulation experiments, DRCs are
then parameterized to hold for all simulation points. We apply this heuristic approach to a distillation column, which
can shift heat demand in time by varying its purity. This column is scheduled simultaneously with three energy system
units. The simultaneous scheduling problem can be solved in less than 3 minutes, leading to a feasible operation on
the full-order column model. Furthermore, the operational costs are reduced substantially compared to the steady-state
benchmark.
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Introduction

Volatile electricity prices due to an increasing share of re-
newable electricity production render demand response (DR)
attractive for energy-intensive production processes (Zhang
and Grossmann, 2016). If processes can shift energy de-
mand in time, flexible production scheduling reacting to elec-
tricity prices may reduce operational costs. However, many
processes have scheduling-relevant dynamics. Incorporating
nonlinear process dynamics leads to hard-to-solve schedul-
ing optimization problems. Moreover, processes that do not
only consume electricity but also heating or cooling need to
be scheduled simultaneously with their local multi-energy
supply system (Baader et al., 2022a). The discrete on/off
decisions of energy system components add further combi-
natorial complexity and thus lead to mixed-integer dynamic
optimization (MIDO) problems. At the same time, optimiza-
tion must often be performed within 5-20 minutes for real-
time scheduling (Harjunkoski et al., 2014). For this purpose,

the process dynamics are often simplified by simple ramp-
ing constraints with constant limits (Adamson et al., 2017),
data-driven surrogate models (Burnak et al., 2018), or low-
order scale-bridging models (Du et al., 2015) in scheduling
to avoid optimization with the full-order process model.

To bridge the gap between nonlinear process dynamics
and simple ramping constraints, we introduced high-order
dynamic ramping constraints (DRCs) (Baader et al., 2022b).
Instead of modelling all process states x as a function of the
inputs u, DRCs only model the feasible space of the main
scheduled variable ρ, e.g., the process production rate. The
aim is to ensure that a set-point trajectory for the scheduled
variable ρ, resulting from the optimization, can be realized
by the closed-loop process, i.e., the process and its control.
To this end, DRCs use an alternative coordinate system in
which the process is linear, and the δ-th time derivative of
the scheduled variable ρ is defined as ramping degree of
freedom ν. The lower derivatives ρ(γ) (γ = 1, ...,δ− 1) are
ramping states. However, the new ramping-coordinate sys-

1 Corresponding author. Email: fbaader@ethz.ch.



tem has nonlinear constraints even for originally linear in-
put bounds (umin ≤ u ≤ umax). If input bounds are violated,
the underlying control cannot realize the set-point trajectory.
Thus, the ramping degree of freedom ν = ρ(δ) and all lower
time derivatives ρ(γ) need to be bounded by nonlinear func-
tions of the scheduled variable ρ and lower time derivatives
ρ̇, ...,ρ(γ−1). The resulting DRCs read:

ρ(δ) = ν

ρ̇min(ρ)≤ ρ̇ ≤ ρ̇max(ρ)

(ρ(2))min(ρ, ρ̇)≤ ρ(2) ≤ (ρ(2))max(ρ, ρ̇)
...

νmin(ρ, ρ̇, ...,ρ(δ−1))≤ ν ≤ νmax(ρ, , ρ̇, ...,ρ(δ−1))

(1)

The nonlinear functions (ρ(γ))min, (ρ(γ))max can be derived
rigorously for the special case of flat processes (Baader et al.,
2022b).

DRCs have the advantage compared to nonlinear process
models that approximating the nonlinear functions (ρ(γ))min,
(ρ(γ))max conservatively by piecewise affine (PWA) func-
tions, gives a mixed-integer linear programming (MILP) for-
mulation. Solving the mixed-integer linear program leads to
feasible operation on the original nonlinear model and is suf-
ficiently fast for real-time application (Baader et al., 2022b).
Due to their ability to capture high-order dynamics and non-
constant ramping limits, DRCs can capture more flexibility
than static first-order ramping constraints. However, the rig-
orous derivation of DRCs is restricted to flat process models
(Baader et al., 2022b). For non-flat processes, uncontrolled
internal states require ramping limits that are functions of all
process states, not only of the scheduled variable ρ and its
derivatives.

The present paper presents a heuristic extension of dy-
namic ramping constraints for non-flat processes with un-
controlled internal states. First, we introduce a distillation
column with variable purity ρ as a motivating example. We
show that ramping limits can be derived as functions of all
process states but not as functions of the purity ρ only due to
uncontrolled internal states. Then, we present a simulation-
based heuristic to parameterize DRCs that depend on the pu-
rity ρ only. Based on these DRCs, we perform a demand re-
sponse case study scheduling the operation of the distillation
column simultaneously with two combined heat and power
plants (CHPs) and an electricity-driven boiler. Finally, we
conclude the paper.

Motivating Example: Distillation Column

We consider a generic model of a binary distillation col-
umn based on Skogestad and Morari (1988) together with a
liquid flow model from Skogestad et al. (1990). In our pre-
vious work, we considered the same column and varied its
purity ρ with a simple linear scale-bridging model tuned in
simulations (Baader et al., 2022a). In the present contribu-
tion, we derive dynamic ramping constraints for the purity
of the column. We assume that the purity ρ can be varied
within bounds ρmin, ρmax, as long as the nominal purity ρnom

is reached on average over the time horizon of one day. By
varying the purity, heating demand can be shifted in time. We

couple the vapor mole fraction of the light component enter-
ing the total condenser YD with the purity ρ, and the liquid
mole fraction in the bottom flow XB with 1−ρ. Note that this
coupling YD = 1−XB is possible as the column has a 50/50
split and the feed flow has a mole fraction of XF = 0.5. A
more general coupling is discussed in Baader et al. (2022a).
We assume that the feed flow F is fixed by an upstream pro-
cess, and the control inputs u are the four flow rates: reflux
L, boilup V , distillate flow D, and bottom flow B. Apart from
the mole fractions YD and XB, the controlled outputs y are the
condenser hold-up MD and the reboiler hold-up MB, which
must be maintained at their respective nominal values Mnom

D
and Mnom

B , irrespective of the current purity ρ, to avoid deple-
tion. Thus, the set-points for all four outputs y are specified
as a function π(ρ) of the purity ρ, only. Moreover, the output
vector y can be given as a function of the states x,

y(x) =


αXN

1+(α−1)XN
(= YD)

XB
MD
MB

 !
= π(ρ) =


ρ

1−ρ

Mnom
D

Mnom
B

 , (2)

where XN is the liquid mole fraction in the tray below the con-
denser, N = 40 is the number of trays, and α is the constant
relative volatility. In total, the distillation column model has
n = 2N +2 = 82 differential states x, i.e., N +1 liquid mole
fractions Xk, and N + 1 liquid hold-ups Mk. The model can
be written in input-affine control normal form

ẋ = f1(x)+ f2(x)u, (3)

with nonlinear functions f1: Rn → Rn and f2: Rn → R4×n.
In the following sections, we discuss the derivation of

ramping limits for the purity ρ as functions of all states x and
subsequently present a simulation-based heuristic to model
the ramping limits as functions of the purity ρ only.

True Ramping Limits

DRCs should limit the derivatives of the purity ρ such
that an underlying control can realize the chosen set-point
trajectory on the original nonlinear process model (3). To
derive DRCs, we first need to analyze which derivatives of
the controlled process outputs y depend on the process in-
puts u. As the output vector y is coupled with the purity ρ,
the dependency between y and u allows us to analyze how
the bounds on u limit the derivatives of the purity ρ. In the
motivating example, all 4 components of the output vector
can be controlled with first-order dynamics as after one time
differentiation at least one of the inputs u = (L,V,D,B) ap-
pears:

ẏ =
∂y(x)

∂x
ẋ =

(
∂YD

∂XN
ẊN , ẊB,ṀD,ṀB

)T

(4)

=


∂YD
∂XN

1
MN

(LXN+1 +VYN−1 −LNXN −VYN)
1

MB
(L2X2 −VYB −BXB)

V −D−L
L2 −V −B

 ,

with
∂YD

∂XN
=

α

1+(α−1)XN
− (α−1)αXN

(1+(α−1)XN)2



In Eq. (4), Yk is the vapor mole fraction leaving tray k and
a function of Xk. Lk is the liquid flow leaving tray k and a
function of Mk. Setting the derivative of the outputs ẏ equal
to the total time differential of π(ρ), Eq. (4) becomes

∂π(ρ)

∂ρ
ρ̇ =α(x)+β(x)u, (5)

with nonlinear functions α: Rn → R4 and β: Rn → R4×4,
where n = 82 is the number of states. The matrix β(x) is
structurally invertible, and we find that it is, in fact, invert-
ible for any state vector x that we study. Thus, from Eq. (5),
the input vector u can be expressed as function of the states
x and the first derivative of the purity ρ̇:

u(x, ρ̇) = β−1(x)
(

∂π(ρ)

∂ρ
ρ̇−α(x)

)
(6)

Note that applying the input vector u(x, ρ̇) on the pro-
cess constitutes an exact input-output linearization (Corriou,
2018). The total relative degree is 4, as all four outputs are
differentiated once with respect to time to receive Eq. (4).
Thus, 78 of the 82 states remain as uncontrolled internal
states, namely the compositions X2, ...XN−1 and hold-ups
M2, ...,MN−1. Exact input-output linearization is only ap-
plicable if the internal dynamics are asymptotically stable
(Corriou, 2018). Here, we assume that the internal column
dynamics are stable as we did not find any indication of un-
stable dynamics in our simulations.

Based on the above analysis, we conclude that the ramp-
ing degree of freedom ν is equal to the first derivative of the
purity, ρ̇, i.e., for a given state of the process x, the ramp-
ing degree of freedom ν = ρ̇ can be chosen freely. Thus,
first-order ramping (δ = 1 in Eq. (1)) is appropriate. The in-
put vector u to achieve this ramping rate can be calculated
from Eq. (6). However, the resulting input vector u must
be within its bounds umin and umax. Consequently, ramping
limits νmin,νmax are needed. If the state vector x is known,
the true ramping limits νmin

true(x),νmax
true (x) can be calculated:

If any of the inputs ui (i ∈ {1, ...,4}) is specified, the 4× 4
Equation system (5) can be solved for the three other inputs
u j ( j ∈ {1, ...,4}\{i}) and the derivative of the purity ρ̇. By
inserting the bounds umin

i , and umax
i for every of the four out-

put components i ∈ {1, ...,4}, we receive four upper ramp-
ing limits νmax

i (x) and four lower ramping limits νmin
i (x).

The true ramping limits are given by the lowest upper limit,
νmax

i (x), and the highest lower limit, νmin
i (x), as all four in-

puts need to be within bounds.
In the following, we simplify the first-order ramping lim-

its to

ρ̇ = ν, with ν
min(ρ)≤ ν ≤ ν

max(ρ), (7)

compare to Eq. (1), because this form is computationally
cheap. As the uncontrolled internal states X2, ...XN−1 and
M2, ...,MN−1 cannot be expressed as functions of purity ρ

and ramping degree of freedom ν, we first study the ramping
limits in steady state, as in steady state, the states xsteady de-
pend on the purity ρ only. During transitions, the state vec-
tor deviates from xsteady(ρ), and therefore also the ramping

limits differ from their steady-state limits. To illustrate this
effect, we perform simulation experiments: Starting from the
lower purity bound ρmin = 0.85, the purity is ramped up until
the upper bound ρmax = 0.95 is reached. During the transi-
tion, the ramping speed is always set equal to the true ramp-
ing limit νmax

true (x), calculated from the current state vector
x, multiplied with a relative ramping rate νrel between zero
and one. In the simulations, we study three relative ramp-
ing rates: νrel = 1, νrel = 0.25, νrel = 0.01 (Figure 1). For
νrel = 1, the upper ramping limit νmax

true (x) quickly drops and
even becomes negative for a certain amount of time such
that after 3 min the purity has to be reduced again (bot-
tom plot). Interestingly, the ramping with νrel = 0.25 is not
much slower compared to νrel = 1. For instance, after 5 min,
νrel = 1 reaches ρ= 0.906 and νrel = 0.25 reaches ρ= 0.901.
The complete transitions take 32 min (νrel = 1) and 42 min
(νrel = 0.25). On the other hand, for νrel = 0.01, the tran-
sition is much slower (421 min), and the ramping limits are
nearly identical to the steady-state ramping limits. This find-
ing is explainable for stable internal dynamics: If the purity
is ramped very slowly, the state vector and thus the ramping
limits are nearly in steady state.

Robust Ramping Limits

The aim is to find ramping limits that only depend on
the purity ρ (Eq. (7)) and, at the same time, cover as much
flexibility as possible without violating the true ramping lim-
its derived above. Accordingly, we want to choose a func-
tion for the upper ramping limit νmax(ρ) that is equal to or
smaller than the true upper ramping limit νmax

true (x) for every
state vector x that can occur for a given purity ρ. The fol-
lowing discussion focuses on the upper ramping limit to ease
readability. The extension to the lower ramping limit νmin is
straightforward. Formally, the function for the upper ramp-
ing limit would ideally by chosen by solving the semi-infinite
optimization problem:

max
p

∫
ρmax

ρmin
ν

max(ρ,p)dρ (8)

s.t. ν
max(ρ,p)≤ν

max
true (x) ∀x ∈ X (ρ) ∀ρ ∈ [ρmin,ρmax],

where p are the parameters of the function νmax(ρ), which
must be a linear or PWA function as we aim for an overall
MILP formulation. The set X (ρ) consists of all state vectors
x than can occur for a given purity ρ. The challenge is that
this set X (ρ) is unknown. Moreover, the above-stated ramp-
ing experiments have shown that the set X (ρ) depends on
the relative ramping rate νrel : If the purity ρ is ramped with
a high speed, possible state vectors spread widely around the
steady state; in contrary, if the purity ρ is ramped slowly, pos-
sible state vectors are close to the steady state. The follow-
ing section presents a heuristic procedure to choose dynamic
ramping limits.

Heuristic Parameterization

Our heuristic procedure is based on the observation that
the deviation of the true ramping limits from the steady-
state limits heavily depends on the relative ramping rate νrel .
Thus, if we limit the relative ramping rate, the deviation from
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Figure 1: Numerical ramping experiments: The rate of change ρ̇ is always set equal to the fraction νrel of the true maximum
ramping limit νmax

true(x) with νrel ∈ {1,0.25,0.01} (left to right). The upper plots show the trajectory of ρ̇ over the purity ρ and
the corresponding true and steady-state ramping limits. The lower plots show the purity ρ over time. Note that the x-axis
extends to 500 min for νrel = 0.01, while it only reaches 60 min for νrel = 0.1 and νrel = 0.25.

steady-state limits is limited as well. To study the maxi-
mum deviation from the steady-state ramping limits, we per-
form another round of numerical ramping experiments. More
specifically, we first perform several ramping experiments as
in Figure 1 for a fixed relative ramping rate νrel , which is a
tuning factor. The ramping experiments result in a set of data
points J, where a data point j consists of purity ρ j and state
vector x j. Based on these data points, we determine the pa-
rameters p for the upper ramping limits νmax(ρ,p) by solving
the optimization problem

max
p ∑

j∈J
ν

max(ρ j,p) (9)

s.t. ν
max(ρ j,p)≤ νrelν

max
true (x j) ∀j ∈ J,

which is a discretized variant of Problem (8).
The tuning factor νrel should neither be too large be-

cause then upper and lower ramping limits can overlap nor
too small because then the ramping would be unreasonably
slow. For our motivating example, we continue to study the
three relative ramp rates νrel = 1, νrel = 0.25 and νrel = 0.01.
We split the purity range into 11 equally distributed points
and ramp between every combination of points, leading to
110 experiments for each relative rate νrel . While upper and
lower ramping limit overlap for νrel = 1, the ramping limits
stay close to their steady-state values for νrel = 0.01 (Fig-
ure 2). Thus, our heuristic cannot be applied with νrel = 1 but
νrel = 0.01 would be a feasible choice. However, νrel = 0.01
would lead to an extremely conservative ramping. Here,
νrel = 0.25 offers a reasonable compromise as ramping is not
much slower than with νrel = 1 (Figure 1) but the true upper
and lower ramping limits no longer overlap (Figure 2). Thus,

we proceed with νrel = 0.25 and choose piece-wise affine up-
per and lower ramping limits with two segments each and a
breakpoint at the nominal purity ρnom = 0.9. These ramping
limits are used in the following case study.
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Figure 2: True ramping limits νmax
true , νmin

true observed during
simulations with νrel = 1 (top), νrel = 0.25 (center), and
νrel = 0.01 (bottom).

Case Study

To study the developed DRCs in an application, we con-



sider a case study from our previous publication (Baader
et al., 2022a), where the distillation column from the mo-
tivating example is supplied by an energy system consist-
ing of two combined heat and power plants (CHPs) and an
electricity-driven boiler (EB). Electricity can be bought from
and sold to the grid at the current market price. Thus, time-
varying prices provide an incentive to shift the heat demand
of the column in time by varying the purity ρ.

First, a simultaneous scheduling optimization is per-
formed in which the piecewise affine (PWA) dynamic ramp-
ing constraints limit the rate of change of the purity. The
heat demand of the column is approximated by a data-driven
model from our previous work (Baader et al., 2022a) that
takes the purity ρ and the rate of change ρ̇ as inputs. This heat
demand model has an internal state to account for internal dy-
namics because, after a purity transition, the heat demand de-
viates from the steady-state heat demand for a certain amount
of time. We assume that an approximate heat demand model
is sufficient as small deviations between the predicted heat
demand and the real heat demand can be compensated by the
energy system units. The combined heat and power plants
and the electricity-driven boiler have a part-load-dependent
efficiency and a minimum part-load. The energy system is
modeled by a standard MILP energy system model, see, e.g.,
Sass et al. (2020). The simultaneous scheduling optimization
problem can be summarized as:

min Energy costs
s.t. PWA dynamic ramping constraints (DRCs)

PWA heat demand model (10)
MILP energy system model
Production target

The production target is to reach the nominal purity on aver-
age over the one-day time horizon. As all models are linear
or piecewise affine, discretization with collocation on finite
elements leads to an overall MILP formulation that we solve
with gurobi version 9.12 and an 1 % optimality gap.

Second, the resulting purity trajectory is used as set-point
ρSP for a simulation of the controlled full-order distillation
column model. The compositions YD and XB are controlled
by two PI-controllers that manipulate the flow rates L and V .
Moreover, perfect level control is assumed for the controlled
hold-ups MD and MB, i.e., the flow rates D and B are set such
that these hold-ups stay at their nominal values. The simula-
tion allows us to study the performance of our scheduling op-
timization result on the original nonlinear process model. We
compare the resulting energy costs to a benchmark scenario
in which the distillation column is operated in steady state
and thus has a constant heat demand. Moreover, we bench-
mark the DRCs against the results from our previous paper
(Baader et al., 2022a), where we used a linear scale-bridging
model (SBM) instead of DRCs in Problem (10). The time
constant of this SBM was tuned in closed-loop simulation
experiments to achieve as-fast-as-possible linear dynamics.

Results

The simultaneous scheduling optimization Problem (10)

is solved to 1 % optimality gap within 159 seconds, which
is below the typical 5-20 minutes maximum runtime for
scheduling applications (Harjunkoski et al., 2014). In the
closed-loop simulation, the purity set-point ρSP from the
scheduling optimization can be tracked well for both com-
positions YD and XB (Figure 3). Both top and bottom product
reach the nominal purity ρnom = 0.9 on average.

Xaverage
D =

∫ t=24h
t=0h XDDdt∫ t=24h

t=0h Ddt
= 0.9004 > ρ

nom = 0.9 (11)

Xaverage
B =

∫ t=24h
t=0h XBBdt∫ t=24h

t=0h Bdt
= 0.0997 < 1−ρ

nom = 0.1 (12)
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Figure 3: Resulting operation with dynamic ramping con-
straints. Top: Electricity price Kelec in C/MWh. Center:
Heat demand Q of the column (bold black line) and nominal
value (dashed-dotted line). The portions of the heat demand
supplied by the two combined heat and power plants (CHP1
and CHP2) and the electricity-driven boiler (EB) are indi-
cated with colors. Bottom: Actual values of bottom composi-
tion XB and top composition YD together with their respective
filtered set-points ρSP from scheduling optimization.

Compared to the steady-state benchmark, energy costs
are reduced by 4.1 % through demand response. Both at
times of high electricity prices and at times of low electric-
ity prices, the distillation column operates at a high heat de-
mand. However, while at times of high electricity prices,
the high heat demand leads to high electricity production by
the combined heat and power plants with the electricity be-
ing sold to the grid, at times of low prices, the electricity-
driven boiler operates close to its maximum load (Figure 3).
At times of medium prices, the column is operated with low
heat demand.

With the SBM from our previous work (Baader et al.,
2022a), we received a slightly higher cost reduction of 4.3 %
as we applied a more aggressive tuning. As a result, the con-
trol inputs V and L saturated at their bounds several times.
Still, in our simulations, this saturation does not lead to any
problems, and thus the SBM reaches a better overall perfor-
mance. With the new DRCs, the control inputs keep dis-
tance to their bounds, as shown for the case of V in Figure 4.
Thus, the heuristic parameterization applied here introduces
some conservatism. While this conservatism leads to slightly
smaller cost reductions, it might be preferable from a practi-
cal point of view because when the inputs are saturated, the



underlying control can no longer react to disturbances.
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Figure 4: Boilup rate V normalized to the feed F for
scheduling optimization with scale-bridging model (SBM)
from Baader et al. (2022a) and the newly developed dynamic
ramping constraints (DRCs).

Conclusions

Nonlinear process dynamics make scheduling optimiza-
tion challenging, especially if processes need to be scheduled
simultaneously with their multi-energy systems that intro-
duce discrete decisions. Thus, simplified process represen-
tations are needed to enable real-time scheduling optimiza-
tion. In this paper, we extend our dynamic ramping constraint
(DRC) approach for the case of processes with uncontrolled
internal dynamics. To this end, the ramping limits are de-
rived from the full-order process model as a function of all
process states and then studied in simulation experiments to
allow a heuristic parameterization of the DRCs. For the dis-
tillation column example with variable purity, the DRCs lead
to feasible operation on the full-order process model. At the
same time, optimization is fast enough for real-time schedul-
ing and leads to substantial cost reduction through demand
response compared to a steady-state operation benchmark.
Studying the resulting control inputs shows that the heuristic
parameterization leads to a slightly conservative operation.

In the future, it should be further investigated to which
class of processes the presented heuristic can be applied. One
requirement is that the process is exact input-output lineariz-
able with stable internal dynamics (compare to the remark af-
ter Eq. (6)). In general, the output components are controlled
with dynamics of different orders, and the input bounds can
give ramping limits on multiple derivatives. For instance, one
input could give ramping limits on the first derivative ρ̇, and
another input could give ramping limits on the second deriva-
tive ρ(2). Then, generating simulation data for Problem (9)
is more challenging, as not only does the acceleration ρ(2)

has to be within bounds, but also the speed ρ̇. Small acceler-
ations ρ(2) might be a straightforward option here but carry
the risk of poor performance due to an overly conservative
parameterization of the DRCs. Hence, a more sophisticated
procedure to generate simulation data might be needed.

Overall, the promising results from our case study moti-
vate future research in dynamic ramping constraints.
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