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Abstract
Recent improvements in data collection and computation have led to an increased adoption in data-driven opti-
mization methods like Bayesian optimization (BO) across many disciplines. However, there are still problems, such as
model predictive control (MPC) tuning, that are mainly optimized via heuristics or trial-and-error-based approaches,
both of which can be time-consuming; these methods are also not scalable and cannot be applied to high dimensional
problems. Recent work has shown that replacing these techniques with a more systematic and scalable algorithm like
BO can significantly reduce search times and deliver reliable performance. However, traditional BO methods tend
not make use of any of the ever-increasing preexisting information available for physical systems. We propose a new
Bayesian optimization framework that can incorporate this information via a reference model to further improve the
performance of the algorithm both by further accelerating the search and reducing the probability of converging to a
local solution. We apply our approach to the MPC tuning problem of back-off terms for energy storage tanks at a central
heating, ventilation, and air conditioning (HVAC) plant. We observe that the incorporation of the reference model results
in a 33% reduction in the computation time required to find a solution.
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Introduction

Model predictive control (MPC) is a versatile tool that
has become widely adopted across various industrial sectors.
While obtaining quality process models is key to ensuring
the success of an MPC application, its performance can also
be impacted by various hyperparameters such as the con-
trol horizon, constraint back-off terms, and the weights of
the cost objectives, see Yamashita et al. (2016); Koller et al.
(2018). Determining the optimal values for these settings,
however, can be challenging as they typically affect perfor-
mance in complex and often non-intuitive ways; as a result,
users typically rely on heuristics or trail-and-error methods
to set them. Typically, these approaches do not present any
issues if the number of parameters being tuned is small or if
changes in the performance of the application can be mea-
sured quickly. However, this is often not the case as measur-
ing performance may require the use of simulations which
take on the order of hours to run and these simulations can
involve several hyperparameters.

Black-box optimization methods are a set of algorithms
that are utilized to optimize systems that lack an explicit
model that maps inputs to outputs as well as derivative in-
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formation, as discussed in Conn et al. (2009). Several of
these approaches, such as particle swarm optimization and
genetic algorithms, have been used to solve the MPC tun-
ing problem. Issues encountered when using these methods
have included slow convergence and sensitivity to the initial
guess, see Kolda et al. (2003). As a result, there has been
a push to identify or develop black-box optimization algo-
rithms for tuning MPC applications that are more sample-
efficient and capable of consistently locating the global solu-
tion, see Forgione et al. (2019); Garriga and Soroush (2010).
One of these algorithms, Bayesian optimization (BO), has
proven to be an especially effective tool for hyperparameter
tuning in the deep-learning setting, as shown by Snoek et al.
(2015). The ability of BO to incorporate information on both
model uncertainty and performance as well as its flexibility in
accommodating mixtures of continuous and discrete inputs
have made it one of the most effective black-box optimiza-
tion algorithms; for a detailed discussion see Brochu et al.
(2010); Shariari et al. (2016).

Because BO is specifically designed to handle problems
that lack a system model and where input/output effects
are not well understood, it is purely data-driven and does
not make use of any preexisting information that may exist.
However, many systems often have some form of preexist-
ing information available and incorporating this into the opti-
mization routine could potentially improve its performance.



The incorporation of various types preexisting information
has already been shown to significantly improve the perfor-
mance of machine learning models being used for a variety
of tasks such as design of experiments (Häse et al. (2020)),
learning partial differential equation solutions (Raissi et al.
(2019)), control (Eugene et al. (2020)), and bioengineering
(Zhang et al. (2020)). In the context of BO, we believe that
the best way to capture this information is in the form of a
reference model that provides an approximation of the gen-
eral system trends. Access to this model would allow the
algorithm to identify areas of interest immediately, resulting
in a more targeted search that requires less iterations to locate
a solution. Additionally, one of the criticisms of data-driven
methods is that they are usually not capable of handling fea-
tures like constraints or feasibility considerations. A refer-
ence model can be designed to convey these features to the
algorithm, keeping it from sampling in undesired regions.

We have explored the use of BO with a reference model
for tuning an MPC application, see Lu et al. (2021). We have
demonstrated that an effective reference model can be gener-
ated can using various approaches and is therefore extendable
to several applications. Additionally, we also provide insight
over why this approach proves to be effective. We see that
when the BO algorithm has a reference model, it is able to
quickly focus in on regions indicated to be optimal rather, re-
sulting in a significantly more targeted search. Additionally,
we also determined that by using a reference model and shift-
ing to learning the residual rather than objective function, we
are able to decrease the complexity of the function that the
algorithm has to learn, which leads to improved surrogate
model estimates. We applied our method to tuning of a real-
world MPC application for a central heating, ventilation, and
air conditioning (HVAC) plant. The goal of the algorithm is
to select a set of back-off terms, β, that minimize the closed-
loop cost of the plant. The purpose of these terms is to min-
imize the occurrence of constraint violations in the hot and
cold thermal energy storage (TES) tanks by reserving a frac-
tion of the storage capacity to serve as a buffer for absorbing
errors in the MPC forecast model. Setting these parameters
can be challenging as an explicit function relating the back-
off terms and the year-long closed-loop cost is not available,
additionally setting these terms via a trial-and-error/search-
based strategy would be costly as simulating this system over
a year involves solving over 8,700 optimization problems and
requires over two hours of wall-clock time per simulation.
The results we obtained demonstrate that Bayesian optimiza-
tion is an effective tool for dealing with this class of problems
and that when we combine BO with a reference model we
can significantly improve the performance of the algorithm.
While traditional BO required approximately 30 hours to lo-
cate an optimal set of β’s, our approach took only 6; after
taking into account the time used to generate the reference
model (14 hours), this amounts to a 33% reduction in the
required computational time.

Bayesian Optimization with Reference Models

We can formulate the goal of the MPC tuning problem as:

min
ξ

f (ξ) (1a)

s.t. ξ ∈ Ω (1b)

where f (ξ) is the objective or cost function and ξ ∈ Ω, are
the MPC application hyperparameters; Ω ⊂ Rd is the design
space across which we search for a solution. Typically, f
is of the form f (ξ) = ∑

N f
i=1 wi fi (ξ) where fi represents the

ith objective and wi is a user-specified weight that measures
its relative importance. Generally, finding a solution to (1)
is challenging because an explicit relationship between the
function inputs and outputs is not available. As a result, the
cost function is treated as a black-box with every ξ of in-
terest requiring an evaluation to determine its corresponding
value. Additionally, sampling from the objective can be sig-
nificantly expensive, limiting the number of samples that can
be taken to locate a solution. Therefore, any algorithm pro-
posed for solving this problem must be capable of exploring
the design space in a systematic and efficient manner that
enables it to find an optimal set of hyperparameters using a
minimal number of samples.

Bayesian optimization is an algorithm designed for opti-
mizing complex black-box functions. Given a set of n in-
put/output observations D = {ξ1:n, f (ξ1:n)}, BO trains a sur-
rogate model that provides an estimate of f . The most fre-
quently used surrogate model, the Gaussian process (GP),
assumes that the output data have a prior multivariate nor-
mal distribution f (ξ1:n) ∼ N (m(ξ),K) where m(ξ) ∈ Rd

is the mean function and K ∈Rd×d is the covariance matrix.
A positive-definite kernel function, k (ξ,ξ′), is used to build
the covariance matrix such that Ki j = k (ξi,ξ j). There is a
wide array of options for the kernel function and selection
is largely based on which choice of k(ξ,ξ′) fits the data best;
for our work we have selected to use the Mátern kernel with a
smoothness parameter ν = 5/2. The GP estimates the value
of f at some new point ξ by assuming that f (ξ) is jointly
Gaussian with the observed output data, f (ξ1:n), resulting in
a posterior normal distribution with moments:

µ =K (ξ,ξ1:n)
[
K (ξ1:n,ξ1:n)+σ

2
nI

]−1
ξ1:n (2a)

Σ =K (ξ,ξ)+σ
2
nI−K (ξ,ξ1:n)

T[
K (ξ1:n,ξ1:n)+σ

2
nI

]−1
K (ξ1:n,ξ) (2b)

where σn measures the noise of the observations and I is
the corresponding identity matrix. These parameters provide
values for the estimated model performance, µ, and the ac-
companying model uncertainty, Σ. This estimation of Σ is
one of the features that really sets BO apart from other opti-
mization methods. By incorporating it into a utility function
that is used to select a new sample point, commonly referred
to as the acquistion function (AF), the algorithm can be made
to sample from regions that exhibit high model uncertainty,
known as exploration, as well as high performance, known
as exploitation. This feature forces the algorithm to search



Figure 1: Block-flow diagram for implementation of BO for
an MPC tuning problem

through distinct regions of Ω, even after finding a potential
solution, increasing the odds of finding the global solution.
Additionally, the AF can be constructed in a manner that al-
lows the exploration/exploitation tendencies of the algorithm
to be tuned to suit the needs of the application. In this work
we used the lower confidence bound (LCB) as our AF:

LCB(ξ) = µ(ξ)−κσ(ξ) (3)

Here, κ ∈ R+ is defined as the exploratory parameter and
serves as a weight that determines the emphasis on explo-
ration. Small values of κ will result in the BO algorithm be-
ing more focused on exploitation and large values will cause
it to focus more on exploration. The exploratory parame-
ter can either remain constant throughout the BO run or can
be dynamically set so that is is large during the initial itera-
tions to promote exploration and gradually decreases to fo-
cus on exploitation at later iterations. Regardless of the ap-
proach used, proper tuning of κ is essential for ensuring a
balanced algorithm that does not over-explore and unneces-
sarily samples from suboptimal regions, or begins exploiting
too quickly and misses the global solution. A new sampling
point, ξn+1, is selected via minimization of the AF. Figure 1
provides an graphical representation of the process for apply-
ing BO to an MPC tuning problem.

Reference models, g(ξ), can be used to incorporate preex-
isting information into the BO algorithm essentially warm-
starting the optimization routine by providing an initial ap-
proximation of the objective function. As a result, the algo-
rithm does not have to utilize as many samples as it normally
would to build up its own approximation and can quickly
move to exploring regions that the reference model indicates
are promising. The reference model can be built using vari-
ous means such as mechanistic laws, empirical correlations,
or a mix of both. In this work, we use a more coarse simu-
lation model that takes significantly less to run than the full
model while still capturing the general trends of the system.
In order to incorporate g(ξ) into the BO algorithm, we first
decompose our performance function as follows:

f (ξ) = g(ξ)+ ε(ξ) (4)

where ε(ξ) is the residual model and measures the mis-
match between the reference model and the objective func-
tion. We shift the BO algorithm from learning f (ξ) to
learning ε(ξ) which we approximate using a GP, ε(ξ) ∼
GP (m(ξ),k(ξ,ξ′). When using a GP model, the mean func-
tion is typically set to 0, meaning that function values are
drawn from N (0,Σ). While this can be achieved for any

function being modeled by normalizing the output data, if
g(ξ) is taken to be a ground truth, it then seems more rea-
sonable to model ε using this distribution, thereby making
our method a more intuitive approach. Finally, the form of
the AF in (3) must also be modified to ensure that we are
optimizing over estimates of the objective function and not
the residual function. Estimates for the average, µ(ξ) and
uncertainty σ(ξ) of ε(ξ) at any point ξ are provided by the
GP model while g(ξ) is assumed to be a deterministic model
and can be said to be distributed according to N (g(ξ),0).
Combining (4) with the closure of normal distributions un-
der linear operations, for some input, ξ, we obtain

g(ξ) + ε(ξ)∼ N (g(ξ),0)+N (µ(ξ),σ(ξ)2) (5a)

N (g(ξ),0)+N (µ(ξ),σ(ξ)2)

= N (g(ξ)+µ(ξ),σ(ξ)2) (5b)

f (ξ) ∼ N (g(ξ)+µ(ξ),σ(ξ)2) (5c)

This allows us to update the LCB AF to accommodate the
reference model:

LCB(ξ) = g(ξ)+µ(ξ)−κσ(ξ) (6)

MPC Tuning for an HVAC Plant

The goal of the MPC application at a central HVAC plant
is to minimize utility consumption while ensuring that heat-
ing and cooling demands are met. The plant mainly uses
three utilities, water, natural gas, and electricity; the pur-
chase costs of water and natural gas are fixed but electric-
ity prices vary throughout the day and can be significantly
higher at peak hours relative to non-peak hours. The MPC
formulation and HVAC plant model can be found in Kumar
et al. (2020). In order to shift production to non-peak hours,
the HVAC facility is equipped with hot and cold water ther-
mal energy storage tanks. The MPC uses a forecast model
to predict demand and set production targets when electricity
prices are low. However, forecasting demand is difficult re-
sulting in frequent modeling errors which can result in TES
tank constraint violations where production targets are either
too high and the tanks overfill or too low and they dry up.
To reduce the occurrence of these events, a set of back-off
terms is introduced that reserves an upper and lower fraction
of the hot and cold water tanks to provide a buffer that can
absorb the impacts of forecasting errors; a graphical repre-
sentation of this approach can be seen in Figure 4. Select-
ing appropriate values for the back-off terms is essential to
ensure that they fulfill their intended purpose. If the values
are too small, the buffer will not be large enough to absorb
forecasting errors and constraint violations will continue to
occur. Conversely, if the values are too large, they will signif-
icantly limit the amount of production that can be shifted to
off-peak hours, forcing the facility to purchase more electric-
ity during peak hours. Typically, these parameters, labelled
as β j, where β j ∈ [0,0.5] and j ∈ {cw,hw} corresponds to
the cold and hot TES tanks respectively, are set manually us-
ing a combination of trial-and-error and heuristics-based ap-
proaches. However, these methods can require a significant



Figure 2: f (ξ) and g(ξ) for a 2-D system (top) and the cor-
responding residual, ε(ξ) (bottom)

number of year-long closed-loop simulations, making them
computationally intensive.

We set the year-long annual closed-loop cost as our ob-
jective function, f (ξ), and the cold and hot water back-off
terms as our input parameters, ξ = [βcw,βhw]. Due to the fact
that a model mapping back-off settings to the annual cost is
not available, a simulation must be performed to determine
f at every ξ of interest. Additionally, because every simu-
lation requires approximately two hours of wall-clock time
to run, we also wish to minimize the number of samples re-
quired to identify a solution. The reference model is obtained
using a shortened prediction horizon simulation. In the full
simulation, the prediction horizon is set to 168 hours as this
appeared to be the periodicity at which electricity prices and
load demand fluctuated. We determined that by reducing this
horizon to 24 hours, we could decrease the simulation time

Figure 3: Schematic diagram of central HVAC plant

Figure 4: Cold (cw) and hot (hw) water TES tank with buffer
fraction set by the back-off term, β j ∈ [0,0.5] , j ∈ {cw,hw}

by over 50% without significantly compromising the accu-
racy of the output. We use this coarser simulation model to
run an instance of the BO algorithm that is heavily focused
of exploration and collects 21 samples; the GP model trained
at the end of the BO run is used as g(ξ). Figure 5 provides
a graphical comparison between the true objective and the
reference model.

The convergence plot shown in Figure 6 illustrates the
performance of traditional and reference model-guided BO.
Both algorithms are able to quickly locate solutions that im-
prove upon the baseline cost (black dashed-line) demonstrat-
ing the BO can serve as an effective tool for tuning the hy-
perparameters of MPC applications. When comparing the
two algorithms, it is clear that our approach performs sig-
nificantly better, requiring only three iterations to locate the
optimal region, while traditional BO requires 15. After tak-
ing into account the time spent creating the reference model
(14 hours), reference model-guided BO took about 20 hours
to converge while BO alone took approximately 30, this
amounts to reduction in wall-clock time of 33%. As pre-
viously mentioned, the driving force behind the performance
gaps is the initial model structure provided by g(ξ). Figure
5 the clearly demonstrates that the reference model approxi-
mates the objective well and indicates that the cost is minimal
in a region near where the true global minimum exists. This
causes the algorithm to move to quickly sample from this re-
gion; in fact, Figure 6 indicates that BO samples almost ex-



Figure 5: f (ξ) (left) and g(ξ) (right) for the MPC tuning
problem. The white marker in the left plot is the location
of the baseline cost for the expert-selected back-off terms as
seen in Kumar et al. (2020).

Figure 6: Iteration number vs annual closed-loop cost for
traditional and reference model-guided BO with comparison
to baseline cost. Close-up view provides visual confirmation
that solutions obtained improve upon the base cost.

clusively from the region where g(ξ)≤ 13.5 MM USD. The
plots showing the distribution of samples in Figure 7 confirm
this to be true: only five of the samples are taken from outside
of this region. Of the remaining samples, the vast majority
are taken from lower left portion of this region which is the
area closest to the true solution. By comparison, the sampling
distribution is significantly more dispersed when traditional
BO is used; a significant number of samples are taken at or
near the design space boundaries. This is because initially,
the algorithm must build a more descriptive surrogate model
that has enough structure and shape to point out regions that
could be exploited. By preloading BO with g(ξ), we are able
to mostly bypass this initial exploratory phase and move di-
rectly onto sampling from high-potential regions.

In addition to making BO faster and more sample-efficient,

Figure 7: Distribution of function evaluations for traditional
BO (left) and reference model-guided BO (right)

Figure 8: Optimal closed-loop annual cost for traditional
and reference model-based BO across 25 different initializa-
tion points on a 5×5 grid of the design space.

incorporation of a reference model also makes the algorithm
significantly more robust. While BO was designed to be a
global optimizer, like other optimization methods, it is sensi-
tive to the initialization point. While the degree of this sen-
sitivity can be lessened by selecting an appropriate set of hy-
perparameters (kernel length scale and AF exploratory pa-
rameter), tuning these can be challenging as data is required
to do so. As previously mentioned, a potential solution is
to make these parameters, dynamic, progressively modifying
them as the algorithm progresses and data becomes avail-
able. Almost all BO/GP modeling software, including the
package we used (Scikitlearn’s gaussian process), are set
to re-learn the kernel parameters when more data is made
available. However, this still leaves the challenge of select-
ing the appropriate range for these hyperparameters and how
many optimizer restarts to use; additionally, how and when to
change the exploratory parameter is a task left largely to the
user. We have observed that the use of g(ξ) significantly de-
creases the sensitivity of the BO algorithm to the initial guess
without requiring extensive hyperparameter tuning. Figure
8 demonstrates the value of the best solution found by tra-
ditional and reference model-guided BO when initialized at
different points on a 5 by 5 grid. One can clearly see that even
at initialization points where traditional BO clearly fails to lo-
cate the global optimum, reference model-guided BO is still
successful while using the same value for κ and having the
same upper and lower bounds for the kernel parameters. In
fact, our method delivered very consistent performance, con-
verging essentially the same solution every run. Again, this
is largely due to the fact that BO can use g(ξ) to quickly iden-
tify potentially high-value regions. In addition to providing
this benefit, the reference model also captures the structure
of the coarser features of f (ξ), thereby significantly reduc-
ing the complexity of ε(ξ) and simplifying the learning task
of the algorithm. These results allow us to be more confident
that the solution returned by our method is highly likely to be
the global optimum.

Conclusions

We have developed a framework for incorporating preex-
isting system information into the BO algorithm via a refer-
ence model. This information can be in the form of mecha-
nistic models, empirical correlations, historical data, or sim-
plified simulation models. BO uses this model to quickly
identify and sample from potentially high-value regions, re-



sulting in a significantly more targeted search. Additionally,
we shift the learning task of the algorithm from learning the
objective function to learning the residual function which
captures the mismatch between the objective and the refer-
ence model. We observe that the structure provided by the
reference model significantly reduces the complexity of the
residual, making it easier to learn.

We applied this framework to an MPC tuning problem
where we wished to select the set of back-off terms for a
pair of thermal energy storage tanks that minimized that an-
nual closed-loop cost at a central HVAC plant. Due to the
lack of an explicit model relating these terms to the cost, the
system must be simulated at every input of interest. The du-
ration and computational intensity of the simulation makes
manual or grid search approaches very expensive, forcing us
to turn to more efficient algorithms like Bayesian optimiza-
tion. We establish that BO is capable of solving MPC tun-
ing problems within a reasonable time-frame, requiring only
30 hours to find a solution that improved upon an expert-
selected one. Moreover, we clearly demonstrate that when
we combine BO with a reference model (from a coarser and
faster simulation model), we see a significant improvement in
performance when compared to traditional BO: the algorithm
locates the region containing the global optimum in only 20
hours (a 33% reduction in computational time). We also ob-
serve that our version of BO is significantly less sensitive to
the initialization point than traditional BO, converging to es-
sentially the same solution regardless of where it takes its
first sample. Our results show that the incorporation of a ref-
erence model into BO make it a fast, sample-efficient, and ro-
bust global optimization algorithm that consistently delivers
excellent results. Looking towards the future, we would like
to test our framework on higher dimension problems such as
MPC tuning with a larger number of tuning parameters to
determine potential areas for improvement. Additionally, we
would also like to investigate the minimal quality of the ref-
erence model needed to provide the algorithm with enough
guidance to maintain the improvements we have observed.
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