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Abstract
Online machine learning (ML) method updates ML models at each time step when data becomes available in a sequential
order, and has shown its potential for improving modeling of nonlinear chemical processes using real-time data. This
paper highlights our recent work on the analysis of generalization performance of online learning of recurrent neural
network (RNN) models for nonlinear dynamic systems, and the development of ML-based model predictive control
(MPC) using online learning models for switched nonlinear systems. We first develop the generalization error bounds
for online learning RNNs using independent and identically distributed (i.i.d.) and non-i.i.d. data samples, respectively.
Then, online learning models are incorporated into MPC and probabilistic closed-loop stability results are derived for
switched nonlinear systems. Finally, we conclude with discussions on a practical implementation strategy of online
learning within ML-based MPC via event-trigger and error-trigger mechanisms.
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Introduction
Online learning algorithms have been widely used to de-
velop machine learning (ML) models for large-scale prob-
lems with a tremendous amount of data, since the training
process is more computationally efficient than batch algo-
rithms. In addition to the considerations of computational
efficiency, online learning has demonstrated its benefits in
improving model prediction and closed-loop performance in
many real-time control problems (Schwenkel et al. (2020)).
However, an ongoing challenge for the practical implemen-
tation of online learning models in real-world chemical pro-
cesses is their generalization performance on unseen data, for
which a fundamental understanding needs to be developed.
Generalization error bound is commonly used in statistical
machine learning to quantitatively characterize the general-
ization performance of machine learning models. Online-to-
batch conversion is a common technique in machine learning
theory to evaluate the generalization performance of online
learning algorithms, which has been studied in the setting
of i.i.d. data samples (Cesa-Bianchi et al. (2004)) and of
non-i.i.d. data samples (Kuznetsov and Mohri (2016)) for
conventional ML methods such as kernal perceptron models.
However, the generalization error bounds for online learning
of recurrent neural networks (RNNs) that model nonlinear
dynamic systems have not been studied.

In addition, online learning of RNN models has been utilized

in MPC to achieve real-time control of nonlinear processes
(Wu et al. (2019), Zheng et al. (2022)). Despite an increas-
ing number of successful applications of ML-based MPC to
real-world chemical processes, theoretical stability analysis
for the MPC using online learning of RNN models has not
been investigated. Motivated by the above considerations,
this work summarizes our recent work on the derivation of
generalization error bounds for online learning RNN mod-
els and closed-loop stability analysis for the ML-based MPC
scheme. Specifically, we first derive the generalization error
bounds for online learning of RNNs using i.i.d. and non-i.i.d.
data samples, respectively. Closed-loop stability analysis for
switched nonlinear systems under ML-based MPC using on-
line learning is provided based on the generalization error
results derived for online learning models. Finally, a practi-
cal implementation strategy that determines when to trigger
the online update of RNN models is discussed.

Class of nonlinear process systems
We consider the class of continuous-time switched nonlinear
systems represented by the following state-space form:

ẋ(t) = Fσ(t)(x,uσ(t)) := fσ(t)(x)+gσ(t)(x)uσ(t)(t) (1)

where x(t) ∈ Rn denotes the state vector, uσ(t) ∈ Rnu denotes
the control input vector that is constrained by a nonempty
set Uσ(t) :=

{
uσ(t) ∈ Rnu | umin

σ(t) ≤ uσ(t) ≤ umax
σ(t)

}
, where umin

σ(t)
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and umax
σ(t) represent the minimum and maximum magni-

tude of the input constraint. We define a finite index set
ψ = {1,2, . . . , p}, where p denotes the number of switch-
ing modes. σ(t) : [0,∞)→ ψ denotes the switching function.
Throughout this manuscript, we use t in

k and tout
k to denote the

time when the nonlinear system of Eq. 1 is switched in and
out of the k-th mode, respectively. Without loss of general-
ity, we assume that the initial time is zero (t0 = 0) and the
initial state is given by x(t0) = x0. Additionally, we also as-
sume that the vector functions fk : Rn → Rn and the matrix
functions gk : Rn → Rn×nu , k ∈ ψ, are sufficiently smooth.

Recurrent neural networks (RNN)
We consider the following one-hidden-layer RNN with T se-
quences of Lnn-time-length data (xt,ℓ,yt,ℓ), t = 1, . . . ,T and
ℓ= 1, . . . ,Lnn, to model the nonlinear system of Eq. 1:

ht,ℓ = σh (Qht,ℓ−1 +Wxt,ℓ) , yt,ℓ = σy (V ht,ℓ) (2)

where xt,ℓ ∈Rdx , ht,ℓ ∈Rdh , and yt,ℓ ∈Rdy are the RNN input,
RNN state in the hidden layer, and the RNN output, respec-
tively, t = 1, . . . ,T and ℓ = 1, . . . ,Lnn. We use W ∈ Rdh×dx ,
Q ∈ Rdh×dh , and V ∈ Rdy×dh to denote the weight matri-
ces associated with the input layer, the hidden layer, and
the output layer, respectively. The element-wise nonlinear
activation functions in the hidden and output layers are de-
noted by σh and σy, respectively. Without loss of generality,
the development of RNN models are based on the follow-
ing standard assumptions: 1) the RNN inputs are bounded
by
∣∣xt,ℓ

∣∣ ≤ BX , for all t = 1, . . . ,T and ℓ = 1, . . . ,Lnn, 2) the
Frobenius norms of the RNN weight matrices are bounded
as follows: ∥W∥F ≤ BW,F ,∥Q∥F ≤ BQ,F ,∥V∥F ≤ BV,F , and
3) σh is a 1-Lipschitz continuous and positive-homogeneous
activation function, i.e., σh(αz) = ασh(z) for all α ≥ 0 and
z ∈ R. The mean squared error (MSE) is considered as the
loss function L(h(x), ȳ) in this work, where ȳ is the true
output, and h(·) represents the RNN model from a hypoth-
esis class H that predicts the output y ∈ Rdy for the input
x ∈ Rdx . Since the RNN model is trained using a dataset of
bounded states and inputs for the nonlinear system of Eq. 1,
the locally Lipschitz property holds for the MSE loss func-
tion, i.e., the following inequality holds for all |yℓ|, |ȳℓ| ≤ rℓ,
ℓ= 1, . . . ,Lnn.∣∣L(yℓ, ȳℓ)−L

(
y′ℓ, ȳℓ

)∣∣≤ Lr
∣∣y′ℓ−yℓ

∣∣ (3)

where rℓ > 0 represents the upper bound of |yℓ| and |ȳℓ|, and
Lr denotes the local Lipschitz constant.

Generalization error of online learning RNNs using i.i.d.
data samples
Generalization error is used in statistical learning theory to
measure how accurately a neural network model learned
from training data can generalize to new data that has not
been seen previously. In this section, we first consider a spe-
cial case of switched nonlinear systems, where the system
dynamics of Eq. 1 does not vary over time, and thus, Eq. 1
can be simplified to the following state-space model:

ẋ = F(x,u) := f (x)+g(x)u (4)

The nonlinear system of Eq. 4 is assumed to have multiple
steady-states xsk under u = us (i.e., ẋsk = f (xsk)+g(xsk)us ≡
0), where k ∈ψ= {1,2, . . . , p} and p is the number of steady-
states. The nonlinear system of Eq. 4 is switched between
different steady-states and is said to operate in mode k, i.e.,
t ∈
[
t in
k , tout

k

)
, if it is required to stabilize at the steady-state

xsk , ∀k ∈ ψ. In this case, online RNN models are developed
using real-time process data drawn i.i.d. from the same sys-
tem of Eq. 4.
Consider a set of T labeled samples collected in T rounds
(X1,Y1), . . ., (XT ,YT ) that are drawn i.i.d. from a distribu-
tion D . Zt = (Xt ,Yt) ∈ Z = X ×Y , t = 1, . . . ,T , is the pair
of input and output data samples, where X and Y denote
the input space and the output space, respectively. To sim-
plify the notation, we use Zm

n to denote a sequence of sam-
ples Zn,Zn+1, . . . ,Zm. Given a hypothesis class H of RNN
models that map X to Y , and a loss function L : Y ×Y →R
from a class of loss functions F associated to H , i.e., F ={
(x,y)→ L(h(x),y) : h ∈ H

}
, in each round t = 1, . . . ,T .

Starting with an initial hypothesis h1 ∈ H , an online algo-
rithm A generates a hypothesis ht+1 after processing the sam-
ple (Xt ,Yt). We use L(ht ,Zt) to represent L(ht(Xt),Yt) for any
Zt = (Xt ,Yt) ∈ Z. The aim of the online algorithm A is to
minimize the following regret after T rounds (Rakhlin et al.
(2015)):

RegA (T ) =
T

∑
t=1

L(ht ,Zt)−
T

∑
t=1

L(h⋆,Zt) (5)

where h⋆ is the best model achieving the minimum cumu-
lative loss from a hypothesis class H in hindsight after all
samples are received, i.e., h⋆ = argmin

h∈H
∑

T
t=1 L(h,Zt). The

generalization error of h ∈ H in online learning is defined as
the expectation of L at a new data point:

R(h) = E(X ,Y )∼D [L(h(X),Y )] (6)

Following the idea in Kuznetsov and Mohri (2016), Lemma 1
develops a generalization error bound for online learning
models using i.i.d. training samples drawn from the nonlin-
ear system of Eq. 4.

Lemma 1. Given a set of labeled samples ZT
1 = Z1, . . . ,ZT

drawn i.i.d. from a distribution D , and a loss function
L(·, ·) that is convex with respect to its first argument and is
bounded by M for some M ≥ 0, let h1, . . . ,hT be a sequence
of hypotheses from the hypothesis class H generated by an
online algorithm A processing samples ZT

1 sequentially. Us-
ing the ensemble of online learning models, the following in-
equalities hold, with probability at least 1−δ for any δ > 0,
for the hypothesis h = ∑

T
t=1 λtht , where λ = (λ1 . . . λT )

is a weight vector bounded by a unit simplex, i.e., ΩT =:{
λ ∈ RT | ∑

T
t=1 λt = 1 and λt ≥ 0 for t = 1, . . . ,T

}
, and h⋆

be the optimal hypothesis from a hypothesis class H .

R(h)≤
T

∑
t=1

λtL(ht ,Zt)+M|λ|
√

2log
1
δ

(7)

R(h)≤RegA (T )
T

+
T

∑
t=1

λtL(h⋆,Zt)

+
T

∑
t=1

M|λt −
1
T
|+M|λ|

√
2log

1
δ

(8)



It is noted from Eq. 7 that the generalization error bound for
an ensemble hypothesis h = ∑

T
t=1 λtht consists of two terms.

The first term in the RHS of Eq. 7 represents the cumula-
tive loss in T rounds, and the second term is an error func-
tion associated with the bound M of the loss function, the
weight vector λ, and the confidence δ. Eq. 8 is derived to
connect regret with generalization error using the definition
of regret in Eq. 5. Specifically, the generalization error can
be bounded by regret (the first term), the loss suffered by the
optimal model h⋆ (the second term), and the error functions
with respect to M,λ,δ, and T (the third and last terms). The
third and last terms in the RHS of Eq. 8 are readily known
once a weight vector λ and a confidence level δ are chosen.
Therefore, if an online algorithm A ensures that its regret is
a sublinear function of T , i.e., RegA(T ) = O(

√
T ), the regret

term RegA (T )
T in Eq. 8 converges to zero as T → ∞, and the

loss suffered by an ensemble hypothesis h = ∑
T
t=1 λtht is suf-

ficiently close to the minimum loss achieved by the optimal
hypothesis h⋆ using the entire dataset ZT

1 .

Remark 1. To achieve a better generalization performance
in practice, the weight vector λ can be optimized for the se-
quence of hypotheses h1, . . . ,hT obtained using the online al-
gorithm A . Specifically, we can choose a weight vector λ by
solving the following optimization problem:

min
λ∈ΩT

T

∑
t=1

λtL(ht ,Zt) s.t.
T

∑
t=1

|λt −
1
T
| ≤ α (9)

where α ≥ 0 is a hyperparameter that constrains the differ-
ence between λt and 1/T , and can be predetermined through
a validation process. The final ensemble hypothesis is devel-
oped as h = ∑

T
t=1 λtht .

Generalization error of online learning RNNs using non-
i.i.d. data samples
In this section, we consider the switched systems of Eq. 1,
where the system is switched between different modes with
time-varying system dynamics. Since the i.i.d. assumption
on training samples does not hold for the switched system of
Eq. 1, the generalization error bound developed for the i.i.d.
case in the previous section cannot be applied directly to the
general setting of non-i.i.d. stochastic processes. Similarly
to the procedure of online learning using i.i.d. data samples,
we receive non-i.i.d. data samples (X1,Y1), . . ., (XT ,YT ) in
T rounds from the switched system of Eq. 1 in a sequen-
tial order. The aim of the learner is to choose a hypothesis
h from the hypothesis class H to minimize the regret de-
fined in Eq. 5. Given a hypothesis h ∈ H with a new data
point (XT+1,YT+1) conditioned on the past data collected in
T rounds, the generalization error is given by (Kuznetsov and
Mohri (2016)):

RT+1
(
h,ZT

1
)
= E

[
L(h(XT+1) ,YT+1) | ZT

1
]

(10)

The following lemma establishes the generalization error
bound for the ensemble of online learning hypotheses using
non-i.i.d. training samples.

Lemma 2. [Kuznetsov and Mohri (2016)] Given a sequence
of non-i.i.d. training samples ZT

1 = Z1, . . . ,ZT drawn from
the switched system of Eq. 1, h1, . . . ,hT ∈ H are the se-
quence of hypotheses developed using an online algorithm
A , a bounded loss function and a weight vector λ that sat-
isfy the conditions in Theorem 1. Then, for any δ > 0, the
following inequalities hold with probability at least 1−δ for
h = ∑

T
t=1 λtht+1:

RT+1

(
h,ZT

1

)
≤

T

∑
t=1

λtL(ht+1,Zt+1)+disc(λ)+M|λ|
√

2log
1
δ

(11)

RT+1

(
h,ZT

1

)
≤RegA (T )

T
+

T

∑
t=1

λtL(h⋆,Zt+1)+disc(λ)

+
T

∑
t=1

M|λt −
1
T
|+M|λ|

√
2log

1
δ

(12)

Compared to the generalization error bound for the i.i.d. case
in Eqs. 7-8, the generalization error bound of Eq. 11 includes
an additional term disc(λ), which represents the discrepancy
between target and sample distributions, and is defined as
follows.

disc(λ)= sup
ht∈H

∣∣∣∣∣ T

∑
t=1

λt

(
RT+1

(
ht+1,ZT

1

)
−Rt+1

(
ht+1,Zt

1
))∣∣∣∣∣ (13)

The discrepancy term characterizes the variation of data dis-
tributions due to time-varying disturbances and model un-
certainty. Therefore, in addition to the optimization of the
weight parameters λ and the convergence of regret, we also
need to obtain an upper bound for the discrepancy term of
Eq. 13 to ensure the boundedness of the generalization er-
ror of Eq. 12. The next lemma derives an upper bound for
the discrepancy term following the results of Lemma 7 in
Kuznetsov and Mohri (2016) and Theorem 2 in Kuznetsov
and Mohri (2020):

Lemma 3. Given a class of loss functions F and a sequence
of labeled samples ZT

1 = Z1, . . . ,ZT , for any δ > 0, the fol-
lowing inequality holds with probability at least 1−δ:

disc(λ)≤ d̂iscH (λ)+Λ+ |λ|+6M
√

π logT R seq
T (F )

+M|λ|
√

2log
1
δ

(14)

where Λ := infh̄⋆∈H E
[(

Lr
∣∣ZT+1 − h̄⋆ (XT+1)

∣∣) | ZT
1
]
, d̂iscH (λ) :=

suph̄,ht∈H
∣∣∑T

t=1 λt
(
L
(
ht+1 (XT+1) , h̄(XT+1)

)
−L(ht+1,Zt+1)

)∣∣
can be estimated by the samples, and R seq

T (F ) denotes the se-
quential Rademacher complexity of the hypothesis class F .

Therefore, it remains to show that there exists an upper bound
for the sequential Rademacher complexity term R seq

T (F ).
Since non-i.i.d. samples in online learning are sequentially
dependent, sequential Rademacher complexity is often used
to measure the richness of RNN hypothesis class while cap-
turing sequential dependence. The definition of sequential
Rademacher complexity is given below.

Definition 1. Given a Z-valued binary tree z with depth T
and a function class G that maps from Z to R, the sequential
Rademacher complexity of G on z is defined as follows:

R seq
T (G ,z) = E

[
sup
g∈G

T

∑
t=1

εtλtg(zt(ϵ))

]
(15)



where ϵ = (ε1, . . . ,εT−1) is a sequence of i.i.d. Rademacher
random variables taken values in {±1}. We use zt(ϵ) to de-
note zt(ε1, . . . ,εt−1) and define R seq

T (G) = supz R seq
T (G ,z)

as the worst-case sequential Rademacher complexity.

Let Fℓ, ℓ = 1, . . . ,Lnn, be the class of loss functions associ-
ated to the RNN hypothesis class Hℓ of vector-valued func-
tions that predicts the ℓ-th RNN output yℓ ∈ Rdy for the first
ℓ-time-step RNN inputs {x1,x2, . . . ,xℓ} ∈ Rdx×ℓ.

Fℓ =
{

z = (x, ȳ)→ L(h(x), ȳ) = L(h,z),h ∈ Hℓ

}
(16)

where x and ȳ denote the RNN input vector and the true out-
put vector. Let H j,ℓ, j = 1, . . . ,dy, be the class of real-valued
functions corresponding to the j-th component of the RNN
output at the ℓ-th time step. Since the Rademacher complex-
ity of Eq. 14 is associated with the class of loss functions,
we have the following contraction inequality from Rakhlin
et al. (2015) to derive an upper bound for R seq

T (F ) using the
sequential Rademacher complexity of the hypothesis of real-
valued RNN functions H j,ℓ.

R seq
T (Fℓ)≤8Lr

(
1+4

√
2log3/2

(
eT 2
)) dy

∑
j=1

R seq
T (H j,ℓ) (17)

We next develop an upper bound for R seq
T (H j,ℓ) following the

methods in Wu et al. (2021) that peel off the weight matrices
and the nonlinear activation functions layer by layer.

Lemma 4. Given a hypothesis class H j,ℓ of real-valued func-
tions corresponding to the j-th component of a hypothesis
class Hℓ of vector-valued functions, and the weight matrices
and activation functions satisfying the conditions in Eq. 2,
the following inequality holds for the RNN model trained us-
ing a sequence of non-i.i.d. samples ZT

1 = Z1, . . . ,ZT :

R seq
T (H j,ℓ)≤ Γ

(√
2log(2)(ℓ+1)+1

)
|λ|BX (18)

where Γ = BV,F BW,F
(BQ,F )

ℓ−1
BQ,F−1 .

Finally, based on Lemmas 2-4, the following theorem derives
a generalization error bound for the RNN models using non-
i.i.d. training samples.

Theorem 1. Let Fℓ, ℓ= 1, . . . ,Lnn, be the class of loss func-
tions associated to the RNN hypothesis class Hℓ of vector-
valued functions that predict the RNN output at the ℓ-th time
step, and h1, . . . ,hT be a sequence of hypotheses from the hy-
pothesis class Hℓ that is generated by an online algorithm A
and meet all the conditions in Lemmas 2-4. Given a sequence
of non-i.i.d. training samples ZT

1 = Z1, . . . ,ZT , and δ > 0, the
following inequality holds for h = ∑

T
t=1 λtht+1 with probabil-

ity at least 1−δ:

RT+1
(
h,ZT

1
)
≤

T

∑
t=1

λt L(ht+1,Zt+1)+d̂iscH (λ)+Λ+ |λ|

+2M|λ|
√

2log
1
δ
+MLrCT dyΓ

(√
2log(2)(ℓ+1)+1

)
|λ|BX

(19)

where CT = O
(√

π logT
(

1+4
√

2log3/2 (eT 2))).

The weight vector λ can be optimized by solving Eq. 20 with
α ≥ 0 (Kuznetsov and Mohri (2016)):

min
λ∈ΩT

T

∑
t=1

λtL(ht+1,Zt+1)+ d̂iscH (λ)

s.t.
T

∑
t=1

|λt −
1
T
| ≤ α, λT = 0

(20)

Compared to Eq. 9 for the i.i.d. case, the objective func-
tion of Eq. 20 accounts for the empirical discrepancy term
d̂iscH (λ) for non-i.i.d samples. Additionally, since the ob-
jective function of Eq. 20 depends on the sample ZT+1 that
is unknown at t = T , the optimization problem of Eq. 20
includes an additional equality constraint that lets λT = 0.

RNN-based MPC of Switched Nonlinear Systems
In this section, we develop a Lyapunov-based MPC (LMPC)
scheme using online learning RNN models for the nonlinear
system of Eq. 4 with closed-loop stability analysis. Due to
space limitations, we will discuss the case of online learning
using i.i.d. data samples for the nonlinear system of Eq. 4
under scheduled mode transitions between multiple steady-
states. To simplify the discussion of stability properties for
RNN-based MPC, the RNN model of Eq. 2 is written by the
following continuous-time nonlinear system:

˙̂x = Fnn(x̂,u) (21)

where x̂ ∈ Rn is the state vector of the RNN model and
u ∈ Rnu is the control input vector. Using the deviation vari-
ables ẑk := x̂− xsk for all k ∈ ψ, the RNN model of Eq. 21
can be rewritten in the deviation form of ˙̂zk = F ′

nnk
(ẑk,u) for

each steady-state xsk . We assume that there exists a stabiliz-
ing feedback controller uk = Φnnk(zk) ∈ U for each steady-
state xsk , k ∈ ψ such that the steady-state of the RNN model
of Eq. 21 is rendered exponentially stable. This stabilizabil-
ity assumption implies that for each steady-state xsk , k ∈ ψ,
there exists a C 1 control Lyapunov function V̂k(zk) such that
the following inequalities hold for all zk in an open neighbor-
hood D̂k around the origin:

ĉ1k |zk|2 ≤ V̂k(zk)≤ ĉ2k |zk|2, (22a)

∂V̂k(zk)

∂zk
F ′

nnk
(zk,Φnnk(zk))≤−ĉ3k |zk|2, (22b)∣∣∣∣∂V̂k(zk)

∂zk

∣∣∣∣≤ ĉ4k |zk|, (22c)

where ĉ1k , ĉ2k , ĉ3k , and ĉ4k , k ∈ ψ, are positive constants.
A level set of Lyapunov function inside D̂k, i.e., Ωρ̂k :={

zk ∈ D̂k | V̂k(zk)≤ ρ̂k
}
, ρ̂k > 0, k ∈ ψ, is characterized as

an estimate of the closed-loop stability region for the RNN
model around each steady-state. While the closed-loop sta-
bility regions are defined with respect to the states in devia-
tion variable form, in the following text, we will use x ∈ Ωρ̂k
to represent that the state x is inside the stability region Ωρ̂k
around the steady-state xsk , with a slight abuse of notation.

1) LMPC formulation
The LMPC using RNN models for the nonlinear system of



Eq. 4 with switching modes is formulated as follows:

J = min
u∈S(∆)

∫ tout
k

tq
LMPC(x̃(t),u(t))dt (23a)

s.t. ˙̃x(t) = Fnn(x̃(t),u(t)) (23b)

u(t) ∈U, ∀ t ∈ [tq, tout
k ) (23c)

x̃(tq) = x(tq) (23d)
˙̂Vk(x(tq)− xsk ,u)≤

˙̂Vk(x(tq)− xsk ,Φnnk (x(tq)− xsk )),

if x(tq) ∈ Ωρ̂k\Ωρnnk
(23e)

V̂k(x̃(t)− xsk )≤ ρnnk , ∀ t ∈ [tq, tout
k ), if x(tq) ∈ Ωρnnk

(23f)

V̂ f (x̃(tout
k )− xs f )+ fe(EP)≤ ρ̂ f (23g)

where x̃ and S(∆) denote the predicted state obtained from
the RNN model and the class of piecewise constant func-
tions with sampling period ∆, respectively. The RNN-MPC
of Eq. 23 is implemented with a shrinking prediction horizon,
which is calculated by the difference between the switch-
ing out time tout

k and the current time tq. The objective
of the RNN-MPC of Eq. 23 is to minimize the cost func-
tion of Eq. 23a and subject to the constraints of Eqs. 23b-
Eq. 23g. Specifically, Eq. 23b uses the RNN model of Eq. 21
to predict the state evolution. Eq. 23c defines the input con-
straint. Eq. 23d defines the initial state x̃(tq) at each sam-
pling step. Eqs. 23e-23f are the two Lyapunov-based con-
straints used to ensure the closed-loop stability of the non-
linear system of Eq. 4. Eq. 23g ensures that the closed-loop
system state can enter the stability region Ωρ̂ f of the sub-
sequent mode f at the switching time t = tout

k . fe(EP) :=
ĉ4k

√
ρ̂k√

ĉ1k

√
EP +κEP represents the upper bound for the differ-

ence between V̂f (x(tout
k )−xs f ) and V̂f (x̃(tout

k )−xs f ), where κ

is a positive constant and EP denotes the generalization error
bound (i.e., the RHS of Eq. 11 for online learning models,
where |x− x̃| ≤

√
EP holds provided that the MSE loss func-

tion is used). When Eq. 23g is removed and the shrinking
prediction horizon is replaced by a fixed prediction horizon,
the RNN-MPC of Eq. 23 is reduced to the LMPC design us-
ing RNN models for the system of Eq. 4 operated in a fixed
mode k (i.e., the system of Eq. 4 is operated at the same
steady-state for all times).

2) Integration of online learning into MPC
An RNN model is initially developed offline using the his-
torical data for the RNN-MPC of Eq. 23 following the con-
struction method in Wu et al. (2021), and will be updated
online using real-time process data. Specifically, the initial
RNN model is trained offline to approximate the nonlinear
system of Eq. 4 using the data collected in the stability re-
gion around a certain steady-state. The dataset consists of
time-series data generated from extensive open-loop simu-
lation of Eq. 4 using various initial states and manipulated
inputs, where u(t) = u(tq) ,∀t ∈ [tq, tq+1), tq+1 := tq +∆ is
implemented in a sample-and-hold fashion. The explicit Eu-
ler method is used to integrate the nonlinear system of Eq. 4
with a sufficiently small integration time step h̄c < ∆. The
RNN inputs are the state measurement at the current time
step and the manipulated input that will be applied for the
next sampling period, and the RNN output is the predicted

state trajectory over one sampling period with Lnn = ∆/h̄c.
Subsequently, we apply the online-to-batch conversion by us-
ing online algorithms in the batch setting to update the RNN
models. Specifically, instead of using randomly initialized
weights to update the RNN model, the weights of the previ-
ous RNN model are used as the initial guess for the current
RNN model. The updated RNN models are developed us-
ing only the most recent process data in a rolling window
that is collected from the real-time process operation. The
updated RNN models will be incorporated in RNN-MPC to
replace the previous RNN models (i.e., Fnn in Eq. 23b) to
provide a better prediction of future states. Although RNN
models are updated online using real-time data of the process
variables, the stability regions Ωρ̂k , k ∈ ψ, characterized us-
ing the initial offline-learning RNN model remains the same
for all times. As a result, feasibility is no longer guaranteed
for the RNN-MPC of Eq. 23 using the updated RNN models
under the controller uk = Φnnk(x− xsk) ∈ U . Therefore, the
online learning within RNN-MPC is implemented using the
following strategy: applying the optimal solution of Eq. 23
whenever it is feasible, and applying the stabilizing controller
uk(t) = Φnnk(x(tq)− xsk) when RNN-MPC is infeasible.

3) Closed-loop stability under RNN-MPC
Consider the nonlinear system of Eq. 4 with switching modes
according to a prescribed switching schedule defined by
switching times, i.e., the system is operated in the current
mode k for t ∈ [t in

k , tout
k ) and is switched to a subsequent mode

f for some k, f ∈ ψ at t = tout
k = t in

f . Closed-loop stability in
the sense that the state is bounded in the stability region for
all times and is ultimately bounded in the terminal set can
be guaranteed for the system of Eq. 4 under the RNN-MPC
of Eq. 23. In our previous work, we proved closed-loop sta-
bility for the nonlinear system at a fixed mode using offline
learning RNN models (Wu et al., 2021). To prove closed-
loop stability for the switched nonlinear system using online
learning models, we first derive the following proposition to
ensure that the closed-loop state under sample-and-hold im-
plementation of the controller uk = Φnnk(x− xsk) ∈U enters
the stability region of the subsequent mode f in t = tout

k = t in
f .

Proposition 1. Consider the nonlinear system of Eq. 4 and
the RNN model of Eq. 21 under the controller uk = Φnnk(x−
xsk) ∈ U. Given t in

k ≤ t < tout
k = t in

f and (x(t in
k )− xsk) ∈ Ωρ̂k ,

if there exist ρ̂k, εk, Nk, ∆ > 0, ∀k ∈ ψ, such that

ĉ2 f

(√
ρ̂k − εkNk∆

ĉ1k

+
∣∣∣xsk − xs f

∣∣∣)2

≤ ρ̂ f , (24)

then (x(t in
f )− xs f ) ∈ Ωρ̂ f .

The following theorem demonstrates that under the RNN-
MPC scheme, closed-loop stability of the nonlinear system
of Eq. 4 can be achieved.

Theorem 2. Consider the closed-loop system of Eq. 4
switched between different modes for some k, f ∈ ψ under
the RNN-MPC of Eq. 23, and ultimately operated in a spe-
cific terminal mode for some z ∈ ψ. Given any initial state
x(t in

k ) ∈ Ωρ̂k at t = t in
k , if the generalization error bound EP



is sufficiently small such that the modeling error constraint
|F(x,u)−Fnn(x,u))| ≤ γ|x− xsk | is met, γ > 0, then for each
sampling time step, closed-loop stability for the nonlinear
system of Eq. 4 under the RNN-MPC of Eq. 23 is achieved
with a probability at least 1 − δ in the sense that closed-
loop state x(t) is bounded in Ωρ̂k for each switching interval
t ∈ [t in

k , tout
k ) and enters the stability region Ωρ̂ f of the subse-

quent mode f at t = tout
k = t in

f and ultimately converges to the
terminal set Ωρminz

defined by the terminal mode z.

It should be noted that the stability results in this section are
derived for the nonlinear system of Eq. 4 switched between
different steady-states with the process dynamics remaining
unchanged. Closed-loop stability properties can be general-
ized to the switched nonlinear system of Eq. 1 with varying
dynamics using the generalization error results in Theorem 1
for non-i.i.d. case, and appropriate assumptions and design
of RNN-based MPC.
Event-triggered online machine learning within MPC
While the generalization error bounds developed for learn-
ing using i.i.d. and non-i.i.d. data samples provide theoret-
ical accuracy guarantees for online learning RNN models, a
practical implementation strategy of online learning within
RNN-MPC is needed to determine when and how the on-
line update of RNN models is triggered. In this section, we
discuss two triggering mechanisms to improve the efficiency
and applicability of RNN-MPC.
1) Event-trigger mechanism
Event-triggered mechanism has been applied in a number
of works to reduce the frequency of the online update and
adjustment of process models and control actions (Tabuada,
2007). Event-triggered control system triggers an update of
control actions if a triggering condition based on state mea-
surements is violated. In Wu et al. (2019), the event-triggered
online learning is incorporated into MPC to improve RNN
prediction accuracy using previously received data of closed-
loop states in the presence of bounded process disturbances.
Specifically, the on-line update of RNN is triggered by the vi-
olation of the following equation such that the minimal inter-
event time between two triggers is not sufficiently small:

V (x(t))≤V (x(tk))− εw(t − tk), t ∈ [tk, tk+1) (25)

where εw > 0 is the predefined decreasing rate of the Lya-
punov function value under the MPC of Eq. 23, and ρs is a
small neighborhood around the origin. Eq. 25 implies that
an RNN model needs to be updated when the the Lyapunov
function value cannot decrease at the predefined rate under
the stabilizing controller due to poor predictions. In Wu et al.
(2019), we further demonstrate that when the MPC sampling
period ∆ is bounded and sufficiently small, closed-loop sta-
bility is guaranteed for the nonlinear system of Eq. 4 using
event-triggered online learning of Eq. 25.
2) Error-trigger mechanism
Additionally, error-trigger mechanism can be incorporated in
MPC to update RNN models online based on a moving hori-
zon error metric Ernn(tk) that indicates the prediction accu-
racy of RNN models at t = tk as follows (Wu et al., 2019):

Ernn(tk) =
Nb

∑
i=0

|xp(tk−i)− x(tk−i)|
|x(tk−i)|+δ

(26)

where Nb is the number of sampling periods before tk
that contribute to the quantification of the prediction error.
xp(tk−i), i = 0, ...,Nb are the predictions of the past states
using RNN models, while x(tk−i) are the past state mea-
surements from the actual nonlinear system of Eq. 4 under
the same control actions. δ is a small positive real number
added to avoid the division by small numbers when x(tk−i)
approaches zero. Based on the error metric Ernn(tk), we up-
date RNN models if the accumulated error Ernn(tk) exceeds
the predetermined threshold ET .
Conclusions
This work presented a summary of our recent research results
on online learning of RNN models and ML-based MPC for
switched nonlinear systems. The generalization error bounds
for online learning RNN models using i.i.d. and non-i.i.d.
data samples were first derived. Then, the online learning
RNN models were incorporated into the design of MPC,
with probabilistic closed-loop stability properties developed
for switched nonlinear system. Finally, we discussed event-
trigger and error-trigger mechanisms for practical implemen-
tation of online learning models within MPC.
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