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Abstract 

Membrane characterization provides essential information for the scale-up, design, and optimization of 

new separation systems. We recently proposed the Diafiltration Apparatus for high-Throughput Analysis 

(DATA) framework, which enables a 10-times reduction in the time necessary to characterize neutral 

membrane transport properties by integrating experiments, a new sensor, dynamic modeling, and 

parameter estimation. In this work, we extend the DATA framework to consider charged membranes. We 

postulate different physics-informed models to capture the concentration-dependent membrane 

performance. Using the tools of data science, we intelligently compare these model alternatives, and show 

that the solute permeability coefficient of NF270 membranes exhibits quadratic behaviors as a function of 

upstream conditions. Moreover, we extend the modeling framework to consider experiment start-up to 

leverage additional data to elucidate the physical system and improve the parameter precision. Using 

Fisher information matrix (FIM) analysis, we quantitatively compare the information gained for different 

experimental operating modes, i.e., “lag” or “overflow” startup. Additionally, a time correction for 

permeate product collected is introduced to improve the model predictions. Finally, we use model-based 

design of experiments (MBDoE) techniques to contemplate the benefits of modulating the applied 

pressure during experiments. 
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Introduction

As their applications continue to expand, membrane 

processes have improved the sustainability and energy 

efficiency of modern separations. To achieve separations of 

similar-sized molecules with higher selectivity, the recent 

material design efforts focus on two directions: the precise 

control of membrane nanostructures and the identification 

of chemical functions that highlight the desired transport 

properties (Hoffman and Phillip, 2020; Sadeghi et al., 
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2018). A detailed and realistic description of the underlying 

thermodynamic and transport phenomena can elucidate the 

molecular interactions and mechanisms that affect the 

macroscopic performance of membranes (Geise et al., 2014; 

Yaroshchuk et al., 2018). In this regard, developing 

membrane characterization techniques that explore the 

dependency of membrane transport properties on upstream 

conditions can greatly accelerate the development of new 



  

 

 

materials (Ghosh et al., 2000). Furthermore, membrane 

characterization elucidating the underlying mechanism 

provides essential and reliable information for scale-up, 

design, and optimization, facilitating the development of 

separation systems. 

Design of Experiments (DoE) methods optimize 

(computational or physical) experiments to maximize the 

information gain and minimize time and resource costs in a 

way that facilitates statistical inference. Classical “black-

box” DoE approaches such as factorial designs or response 

surface methods explore the input-output relationship 

without directly exploiting scientific knowledge. In 

contrast, model-based DoE (MBDoE) leverage high-

fidelity models constructed from underlying scientific 

principles, to optimize experimental campaigns that 

discriminate between scientific hypotheses (posed as 

mathematical models) or improve parameter estimation 

precision (Franceschini and Macchietto, 2008). The 

emergence of new MBDoE software (Wang and Dowling, 

2022) has great potential to optimize the design of 

instruments and experimental conditions to better 

characterize the performance of separation devices as a 

function of operating conditions (e.g., feed concentrations) 

in complex feed streams. However, to date, their application 

to problems in membrane science remains limited. 

We recently proposed the automated Diafiltration 

Apparatus for high-Throughput Analysis (DATA), which 

enables a 10-times reduction in the time, realized with fewer 

experiments necessary to characterize the transport 

properties of neutral membranes (Ouimet et al., 2022; 

Muetzel et al., 2022). In a subsequent conference paper, we 

mathematically quantified these improvements in the form 

of information gain using MBDoE and further refine the 

static (i.e., time-invariant) experimental conditions for 

DATA to characterize the transport properties of neutral 

membranes (Liu et al., 2022). In this presentation, we 

quantify the prediction improvements and information gain 

from modeling process startup. 

Methods 

In the dynamic diafiltration experiments deployed in 

the DATA framework (Ouimet et al., 2022) and shown in 

Figure 1, a concentrated diafiltrate is continuously injected 

into a stirred cell under applied pressure, 𝛥𝑃 , and the 

resulting permeate is collected in several scintillation vials. 

The mass of the sample vial, 𝑚𝑣, and the concentration of 

retentate in the stirred cell, 𝑐𝑓, are measured at a rate of 0.2 

Hz while the final concentration in the sample vial, 𝑐𝑣, is 

measured for every 1 g permeate. 

Using these measurements, three model parameters are 

estimated via a weighted least-square nonlinear regression 

problem in Eq. (1), 𝜽 = {𝐿𝑝, 𝐵, 𝜎} : (i) hydraulic 

permeability, 𝐿𝑝; (ii) the solute permeability coefficient, 𝐵; 

and (iii) the reflection coefficient, 𝜎 . Both 𝐿𝑝  and 𝐵 

correspond to the membrane transport properties while 𝜎 

depends on the thermodynamics of the membrane-solution 

interface. Here each type of data is normalized by the 

weight 𝑤𝑚𝑣,𝑖
, 𝑤𝑐𝑣,𝑗

, and 𝑤𝑐𝑓,𝑘
. These parameters are related 

to the volumetric flux of water, 𝐽𝑤, and the molar flux of the 

solute,  𝐽𝑠, across the membrane in Eqs. (2) & (3), where ∆𝑃 

and ∆𝜋 are the applied pressure and osmotic pressure, 𝑏𝑖 is 

the factor associated with 𝑖th order of 𝑐𝑓 , respectively. 

 

 

Figure 1.   Dynamic diafiltration apparatus 
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The Fisher information matrix (FIM), 𝐌, defined as the 

inverse of the parameter covariance matrix 𝐕, Eq. (4), is 

computed at the best fit parameter values �̂� based on local 

sensitivities 𝐐𝑟  of the model predictions 𝑦𝑟  to each 

parameter �̂�  at experimental conditions 𝝓 . The 

eigendecomposition of the FIM reveals which parameters 

are identifiable (Rothenberg, 1971). 

𝐌 = [𝐕(�̂�, 𝝓)]
−1

= ∑ ∑𝑣𝑚,𝑟𝑠
−1𝐐𝑟

𝑇𝐐𝑠

𝑁𝑦

𝑠=1

𝑁𝑦

𝑟=1

,

𝐐𝑟 =

[
 
 
 
 
 
𝜕𝑦𝑟

𝜕�̂�1

|
𝑡1

⋯
𝜕𝑦𝑟

𝜕�̂�𝑚

|
𝑡1

⋮ ⋱ ⋮
𝜕𝑦𝑟

𝜕�̂�1

|
𝑡𝑛

⋯
𝜕𝑦𝑟

𝜕�̂�𝑚

|
𝑡𝑛]

 
 
 
 
 

 

(4) 

MBDoE techniques improve parameter precision by 

minimizing a metric of 𝐕  or equivalently maximizing a 

metric of 𝐌. The most common criteria are the so-called 



  

 

alphabetical design criteria, e.g., A-, D-, E-optimal criteria 

corresponding to minimizing the trace, the determinant, and 

the maximum eigenvalue of 𝐕, respectively (or maximizing 

the trace, the determinant, and the maximum eigenvalue of 

𝐌). The determinant and trace of the covariance matrix 𝐕 

can be interpreted as the volume of the covariance ellipsoid 

under feasible experimental conditions, while the maximum 

eigenvalue represents the size of the major axis, minimizing 

them reduces the uncertainty of model parameters.  

Results and Discussion 

In this work, we apply the Fisher information matrix 

(FIM) analyses and MBDoE to further improve the DATA 

framework. We highlight two non-ideal phenomena, 

namely “lag” and “overflow”, which occur when increasing 

the system pressure to the desired operating pressure, e.g., 

at the start of an experiment. Ideally, during the startup, the 

change in the pressure of the system is a step function and 

the increase in pressure brings the diafiltrate to the entrance 

of the stirred cell. However, in many cases, this is not 

physically realizable. If the targeted operating pressure is 

undershot, the diafiltrate does not make it to the entrance of 

the stirred cell on time - there is an extended amount of time 

(“lag” time) before the diafiltrate drips into the stirred cell. 

These conditions emulate a filtration experiment (without 

diafiltrate introduction), and lead to little change in 

concentration within the stirred cell 𝑐𝑓  during the “lag” 

time. Dripping of diafiltrate into the stirred cell at the end 

of the “lag” time will cause a significant change in 𝑐𝑓. When 

the target operating pressure is overshot, bolus of diafiltrate 

enters the stirred cell, and causes a sudden increase in the 

retentate concentration 𝑐𝑓 . This bolus is called the 

“overflow”. Both phenomena lead to a change in the mass 

of solution in the stirred cell, 𝑚𝑓.  

We extend the differential equation model proposed in 

DATA to consider both “lag” and “overflow” startup 

modes. For example, during “lag” time, no diafiltrate 𝑚𝑑 

enters the stirred cell while the solution in the stirred cell is 

still permeating, Eq. (5). 

𝑑𝑚𝑓

𝑑𝑡
= −

𝑑𝑚𝑑

𝑑𝑡
  − 𝐴𝑚 𝜌 𝐽𝑤 = −𝐴𝑚 𝜌 𝐽𝑤 (5) 

where 𝐴𝑚  is the membrane area, 𝜌  is the density of the 

solution. Then the diafiltrate entering the stirred cell and the 

permeate leaving the stirred cell becomes steady with a slow 

air leaking, where the air volume in the stirred cell is slowly 

decreasing and the solution volume increases. We assume  

𝑚𝑓 is changing with a constant rate 𝑆 over the experiment,  

Eq. (6). Initial and final 𝑚𝑓 are measured to estimate 𝑆. 

𝑑𝑚𝑓

𝑑𝑡
= −

𝑑𝑚𝑑

𝑑𝑡
  − 𝐴𝑚 𝜌 𝐽𝑤 = 𝑆 > 0 (6) 

 

From FIM-based analyses, we find that modeling these 

phenomena can leverage the additional data (measurements 

of retentate concentration 𝑐𝑓) within the startup process to 

elucidate the physical system, i.e., the mass changing in the 

stirred cell from Figure 2. The membrane performance 

characteristic parameters are identified with 5, 6, and 2 

orders of magnitude increases in information content 

evaluated by A-, D-, E-optimality, respectively, and over 

one order of magnitude improvement in the precision of the 

parameters associated with solute permeability B. 

Perception of “lag” and “overflow” phenomena brings 

insights to design a time-varying applied pressure in DATA. 

A time correction for permeate product collected is also 

introduced to describe a time delay in the collecting tube, 

which improve the normalized residual squares of the three 

kinds of model predictions by 10% with “lag” or “overflow” 

start-up and 20% in the original DATA mode (which does 

not model startup).  

 

Figure 2.   Mass changing in the stirred cell in 

“lag” mode 

 

Next, we extend the DATA framework to investigate 

concentration-dependent membrane performance. We start 

by postulating a series of power law models, shown in Eq. 

(3b), to model how the solute permeability 𝐵 depends on 

the feed side concentration 𝑐𝑓  for surface-charged 

membranes. Different order polynomials 𝐼 ∈ [{0, -0.5}, {0, 

0.5}, {0, 1}, {0, 1, 2}] were considered for Eq. (3b). Each 

set of 𝐼 corresponds to different phenomenological models. 

For example, 𝐼 = {0, 1} can be related to models with 

Donnan equilibrium for charged membranes. Models with 

different 𝐼  are compared to the original model, which 

assumes a constant solute permeability assumption, shown 

in Eq. (3a), that adequately describes the behavior of neutral 

membranes (Ouimet et al., 2022). Figures 3a and 3b show 

the best fit for the original model and proposed model (𝐼 =
 {0, 1, 2}). The proposed model improves permeate 

concentration predictions by 64% while preserving the 

quality of mass and retentate concentration predictions. 

Results for only the best fit model are reported here for 

brevity.  



  

 

 

 

Figure 3a.   Model inadequacy with constant 

solute permeability for charged membranes, 

Eq. (3a). 𝐿𝑝 = 9.75 𝐿 ∙ 𝑚−2 ∙ ℎ−1 ∙ 𝑏𝑎𝑟−1; 𝐵 = 

9.50 𝜇𝑚 ∙ 𝑠−1; 𝜎 = 0.69. 

 
 

 

Figure 3b.   Best fit model with concentration-

dependent solute permeability for charged 

membranes, Eq. (3b). 𝐿𝑝 = 9.50 𝐿 ∙ 𝑚−2 ∙ ℎ−1 ∙

𝑏𝑎𝑟−1; 𝐵 = 7.98 + 0.27𝑐𝑓 + 0.0087𝑐𝑓
2 𝜇𝑚 ∙

𝑠−1 (𝑐𝑓 in unit of mM); 𝜎 = 0.55. 

 

Conclusions and Future Opportunities 

Charged membrane can offer selective transport of 

electrolytes, however, it is difficult to delve into a detailed 

understanding of the underlying phenomena, e.g., the 

molecular interactions between the charged functionality 

and the free ions in solution that affect the macroscopic 

transport properties. With the improved DATA, we are able 

to characterize the dependencies of membrane transport 

properties with high fidelity. The calibrated model is ready 

to be embedded in the scale-up, design, and optimization of 

separation systems with high computing performance.  

The improved DATA also provides promising tools, 

including both hardware and data analytics workflows, to 

study the nanostructure-property-performance relationship 

for material design purposes by model discrimination 

between possible phenomena and mechanisms in the 

system. The best fit correlation model shown in Eq. (2b) 

acts as a good approximation of realities that can be applied 

to inform and select the phenomena combinations imported 

into model discrimination problems. As future work, we 

plan to develop a fully physics-based model that is 

analogous to the best fit instance (𝐼 = {0, 1, 2}) of Eq. (2b). 

Modeling the “lag” and “overflow” phenomena enables 

accurate prediction for future experiments with time-

varying operating pressure, which could introduce more 

freedom in the design of experiments for both model 

discrimination and parameter precision problems. 
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