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Abstract 

To alleviate the greenhouse gas emissions by the chemical industry, electrification has been proposed as 
a solution where electricity from renewable sources is used to power processes. The adoption of renewable 
energy is complicated by its spatial and temporal variations. Millions of dollars might be saved if 
electrified processes can be designed to adapt to these variations. To address this challenge, we investigate 
the potential of distributed manufacturing of electrified chemical processes installed in a microgrid.  We 
propose an MILP (Mixed Integer Linear Programming) model for locating and designing modular 
electrified plants and transmission lines in a microgrid. The proposed model has three-time scales which 
include single-time investment decisions, monthly decisions, such as transportation of chemicals to meet 
customer demand, and hourly decisions, such as chemical production, mode switching, and power flow.  
The model is tested using a case study with 5 candidate locations in Western Texas.  A bi-level 
decomposition algorithm is developed which can obtain a solution within 1.4% time of solving the MILP 
model while maintaining an optimality gap of 0.042%. The optimal solution can locate the chemical plants 
such that the plants are operated to take advantage of the spatial and temporal variations of renewable 
output and electricity price. 
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Introduction

Chemical industries are a major source of greenhouse 
gas emissions and are responsible for 7% of global 
greenhouse emissions (Tickner et al., 2021) as they are 
mostly powered by the combustion of fossil fuels. To solve 
this problem, electrification of the chemical industry is a 
solution that is currently being explored by researchers 
across the world. Electrification helps decarbonize the 
chemical industry and move from fossil fuels to renewable 
energy sources such as solar and wind. Electrification can 
be done in different parts of the process including reaction 
and separation. A number of works have been done on 
electrification focusing on the optimization of process 
scheduling and design such as (Kelley et al., 2022), (Allman 
& Daoutidis, 2018), (Wang et al., 2021), (He et al., 2021), 

(Guerra et al., 2019), (Demirhan et al., 2019) and (Cooper 
et al., 2022). 

Distributed Chemical Manufacturing (DCheM) aims to 
improve chemical process industries by developing 
modular process plants, which take advantage of distributed 
resources and/or address distributed environmental 
problems. DCheM paves way for the introduction of 
numerous new process technologies and simultaneously 
supports and enables energy and environmental 
sustainability while reducing transportation costs. Modular 
processes increase the flexibility in dealing with the 
variability of conditions. Work has been done in this field, 
such as (Sampat et al., 2021), (Lara & Grossmann, 2016), 
and (Palys et al., 2019).  



  

While work has been done on the design and 
optimization of electrified plants, one of the areas which can 
be explored more is the spatial features of such plants as 
renewable resources such as wind and solar vary with 
location. While some research has been done on the supply 
chain optimization of a particular set of chemicals produced 
by electricity such as (Ochoa Bique & Zondervan, 2018), 
(Welder et al., 2018) and (He et al., 2021), these models do 
not consider the monthly demand variability or in some 
cases the hourly variability.  

In this paper, we address this gap, where we model a 
network of plants and power generating units with three-
time scales, single-time, monthly, and hourly. The problem 
is considered under the context of a microgrid, which 
typically consists of a network of low voltage power 
generating units, storage devices, and loads capable of 
supplying a local area such as a suburban area, industry, or 
any commercial area with electric power and heat 
(Mahmoud et al., 2014).  The objective of this research is to 
design a network to facilitate DCheM for electrified 
chemical processes with the power demand satisfied by 
renewable sources as well as power from a utility grid 
coordinated by a microgrid operator by using an MILP 
(Mixed Integer Linear Programming) model. The major 
contributions of this paper are listed below:  

 The proposed model encompasses three-time 
scales taking into account investment 
decisions, as well as monthly decisions and 
hourly decisions incorporating them into the 
same model and thus capturing temporal 
variations as well as spatial variations in all 
time scales.  

 The model incorporates both the microgrid 
(generating units and transmission lines) and 
chemical plant expansion in a single model. 
Therefore, the tradeoffs between the 
transportation of chemicals and the 
transmission of power are considered. 

 The size of the model can easily exceed 
millions of variables. We develop a bi-level 
decomposition method to solve the model 
efficiently while maintaining a small 
optimality gap. 

Problem Statement  

We are given a set of candidate locations. At each 
location, we can set up at most one modular chemical plant 
and/or multiple power-generating units. Modular chemical 
plants can be selected from several given technologies that 
involve electrochemical processes. For each plant, we are 
given the chemicals involved, the associated 
electrochemical reactions under different operating modes, 
and the equations to determine the power requirements. The 
modular power generating units are all renewable-based 
like solar panels and wind turbines.  The wind speeds for 
the wind turbines and the solar radiation for the solar panels 
for several historical years are given on an hourly basis. 

Transmission lines can be installed between any two 
different locations or between any of the locations and the 
utility grid whose location is predetermined. The time span 
of our problem is a given year.  

Raw materials are obtained from suppliers with fixed 
locations and transported to the installed chemical plants. 
The required chemicals are produced in the plants and 
transported to consumers in certain given locations. The 
electrochemical reactions in the plants consume the power 
obtained through the connected transmission lines.  The 
consumed power can come from the installed generating 
units. In addition, when the microgrid produces excess 
electricity, the excess electricity can be sold to the utility. 
On the other hand, the microgrid operator has the option of 
purchasing electricity from the utility grid as well. The 
monthly demand forecasts for each chemical for each of the 
consumers are also given. In addition, we are also given the 
resistance and inductance of the candidate transmission 
lines, the electricity price at each hour, the variable 
transportation costs, the cost of capital, and the cost of 
different chemicals. We are also given the limits on 
production rates in different plants, power transmission, and 
power generation of the generating units. 

The proposed MILP model makes decisions across 
three-time scales: investment decisions at the beginning of 
the time horizon, monthly delivery of the chemical products 
to the customers as well as the monthly purchase of raw 
materials, and hourly operating decisions of chemical 
plants, power generating units and power through 
transmission lines. To simplify the problem, we consider 
one year of operating decisions. The investment decisions 
include (a) which chemical plants and power generating 
units to install and the locations to install them, (b) which 
transmission lines should be installed. The monthly 
decisions include (a) the amount of each chemical sold from 
each plant to each consumer on a monthly basis, (b) the 
amount of each chemical purchased or outsourced from 
other sellers. The hourly operating decisions include (a) The 
amount of power produced by the generating units, (b) the 
power flow and power loss of all the installed transmission 
lines, (c) the amount of each chemical produced in each 
plant, (d) the amount of net electricity purchased/sold to the 
utility. There is a monthly demand for each consumer and a 
penalty of twice the price is paid for the part of the demand 
not met. 

As an illustrative example, in the region considered as 
shown in Figure 1, we are given three candidate locations 
denoted by rectangles. Three modular technologies 
including chemical plants, wind turbines, and solar panels 
are given with the maximum number of each technology 
that can be installed being one. We can install at most one 
chemical plant, and/or multiple solar panels, and wind 
turbines in each of these candidate locations. Also, in the 
region shown, there are 2 consumers and 2 suppliers of raw 
materials and a utility grid whose locations are known. 
Transmission lines can be installed between any two 
different locations and between any of the locations and the 
utility grid. A solution to the problem is shown in Figure 2. 



  

In the solution, one chemical plant is placed at R1, one solar 
panel at R3, and one wind turbine at R2 to meet the demand 
of the consumers most economically with appropriate 
transmission lines connected. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 - Region representation 

 
 
 
 
 
 
 
 
 
 
 
 
 

        Figure 2 - Solution representation 

MILP Formulation 

In a full-scale model, there will be variables associated 
with all the 365 days. To reduce the number of variables 
while preserving the information in the data associated with 
the 365 days, 5 representative days are chosen for each 
month by applying a k-means clustering algorithm on the 
normalized solar and wind power output, and electricity 
prices for 3 years. Figure 3 is a representation of the various 
time scales of the decisions. 

 
 
 
 
 
 
 
 
 
 
Figure 3 - Time representation 
 
A succinct representation of the MILP formulation is 

shown in Equations (1)-(5).  Integer variables y represent 
the investment decisions. Continuous variables x represent 

the monthly decisions for each month 𝑡. Continuous 
variables w and binary variables z represent the hourly 
decisions for each hour 𝑠 on representative day 𝑘 of month 
𝑡. The formulation can be written as follows: 

Max 𝑐 𝑦 + ∑ 𝑑 𝑥 + ∑ ∑ ∑ ℎ , , 𝑤 , ,   (1) 

Subject to: 

𝐴𝑦 ≤ 𝑏 (2) 

𝐷𝑥 + ∑ ∑ 𝐸 , , 𝑤 , ,  = 𝐹𝑥  ∀𝑡 (3) 

𝐺 , , 𝑦 + 𝐻𝑤 , , + 𝐽𝑧 , , ≤ 𝑔 , ,  ∀𝑡, 𝑘, 𝑠     (4) 

𝐿𝑤 , , + 𝑀𝑧 , , ≥ 𝑃𝑤 , , + 𝑄𝑧 , ,  ∀𝑡, 𝑘, 𝑠 ≥ 1     (5) 

Equation (1) represents the objective which is to 
maximize the total profit for a year. Equation (2) represents 
the constraints on the investment decisions, i.e., 
constraining the maximum number of each type of unit 
installed at each location. Equation (3) represents the 
monthly constraints such as the mass balance of the 
chemical inventory, transportation of the chemicals from 
the suppliers to the installed plants, and from the plants to 
the customers, and demand satisfaction. Equation (4) 
represents the constraints connecting the investment 
decisions and the hourly operating variables to enforce that 
a plant or transmission line can only be operated if it has 
been installed. Equation (5) represents the constraints only 
with hourly operating variables like mode transition 
constraints, stochiometric constraints, and power loss 
constraints for each hour. 

In order to model the power flow through transmission 
lines, we apply the DC power flow model with losses for 
which we assume that the difference in voltage angles 
between 2 locations is very small using big-M formulation 
of DC power flow equation with a piecewise linear 
approximation of the quadratic power loss (Ahlhaus & 
Stursberg, 2013).  The MILP model is optimized for a time 
scale of a year to determine the optimal investments. 

Case Study 

We implement the MILP model on a case study in 
Western Texas with there are 5 candidate locations whose 
coordinates are known. We are given three 1500 KW solar 
panels, three 100KW wind turbines, modular chlorine 
plants operating in 3 modes, and 12 kV transmission lines. 
We have also been given the location of the utility grid and 
the location of 3 consumers/suppliers.  

The chlorine plant operates in 3 modes - standard 
cathodes (STCs), oxygen depolarized cathodes (ODCs), 
and shut down. The reaction with STC producing H2 as by-
product is: 2 NaCl + 2H2O ⇌ 2NaOH + Cl2 + H2. The net 
reaction of the chlor-alkali electrolysis using an ODC is: 
2NaCl + H2O + 0.5O2 ⇌ 2NaOH + Cl2.  The energy 
requirement and the capacity of the chlorine plant are 



  

obtained from Brée et al., (2019). The monthly demand data 
is randomly generated based on the capacity of the plant. 
The capital costs are estimated using ASPEN with fixed 
capital added for mode switching.  The fixed capital cost is 
amortized for a year. We assume that the plant remains in 
one mode for at least 2 hours after switching to it in a day. 

The power output for the wind turbines and solar panels 
at the candidate locations for 3 historical years as well as 
the capital costs of these power generating units are 
obtained from the software SAM (System Advisor Model) 
after obtaining the weather-related data from NREL 
(National Renewable Energy Laboratory) website. The 
electricity price for west Texas for 3 historical years is 
obtained from the website Energy Online (“ERCOT: Real-
Time Price - LCG Consulting,” n.d.). The electric properties 
of transmission lines such as resistance and inductance are 
obtained from the DERCAM (Distributed Energy Resource 
Customer Adoption Model) (Deforest et al., 2018).  

Results 

The proposed MILP model is implemented in 
Julia/JuMP and solved using Gurobi version 9.0.3. The 
MILP has 632,514 continuous and 86,565 integer (86,550 
binary) variables and 2,737,439 constraints. The MILP 
model is solved on a PC laptop Intel (R) Xeon (R) W-
1195M CPU with 16 x64- based processors and 128 GB 
2.61 GHz memory with a time limit of 36,000 secs. At the 
time limit, it returns a solution with an MIP gap of 0.05%. 
The profit obtained is 2.6221 M $.  

Because of the large amount of time taken to run the 
entire MILP model, we propose a bi-level decomposition 
algorithm as shown in Figure 4 

 
 
 
 
 
 
 
 
 
 

 

Figure 4 - Bilevel Decomposition Algorithm 

In the first step which gives an upper bound, we obtain 
an optimum objective profit of 2.6229M$ in 509 seconds 
with an MIP gap of 0.56%, and the optimum configuration 
(investment decisions) which is the same as that obtained in 
the optimal investment decisions obtained from solving the 
full MILP model. In the second step, we deduce the mode 
decision variables for periodic intervals. In the third step 
which gives a lower bound and a feasible solution, we get 
an optimal profit of 2.6218 M$ in 11 seconds with an 
optimality gap of 0.042%. 

Split of Profit                                              

The split of the profit is shown below. 
Table 1. Profit and cost breakdown 

 
Split up of profit (for a 

year) 
Cost/Revenue in M $ 

Net revenue from materials 3.17 
Net transportation cost 0.036 
Net profit from electricity       0.23 
Total fixed operating cost 
Total capital cost 

0.14 
0.60 

 
An important observation from the split up of the profit 

is that the materials (raw materials and products) are the 
highest contributor to the profit followed by the total capital 
cost. The profit from the electricity makes a considerable 
contribution to the profit and thus the location of the plant 
and the power generating units could influence the profit.  

Optimal Configuration 

Figure 4 is a representation of the optimal configuration 
obtained from the MILP model. r1, r2, r3, r4, and r5 
represent the candidate locations, ru represents the location 
of the utility grid while, j1, j2, and j3 represent the location 
of 3 consumers/suppliers. In the optimal configuration, one 
plant, three solar panels, and three wind turbines are 
installed at location r2, and 9 transmission lines are placed 
between r2 and ru. 

 
 

 

 

 

 

Figure 5 - Optimal configuration 

Trends Discovered 
 
 
 

 

 
 

 
 

Figure 6 – Graph representing the electricity price 
 
 
 
 

Solve the MILP Problem with 
operating decision variables z 

relaxed and obtain the solution y

From the solution obtained fix the 
mode decision variables for periodic 
intervals (here every alternate hour) 

using a rounding heuristic

Rerun the MILP fixing the periodic 
operating decisions and investment 

decisions and keeping the other 
operating decisions binary



  

 
 
 
 
 
 
 
 
 

 
 

 
Figure 7 – Graph representing the mode decision 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 8 – Graph representing power flow and power 
loss through a transmission line 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9 – Power produced or consumed 

Figure 10 – Profit from electricity 
 
As an illustrative example, several hourly decisions and 

parameters of day 1 month 1 are shown in Figures 6-10. The 
effect of the mode switching can be seen from the result. An 
example is illustrated above in Figure 7 where all the blue 
dots represent the mode at each hour. When the electricity 
price is low, the STC mode is preferred, when the price is 
moderately high the ODC mode is preferred and when the 
price is extremely high the shutdown mode is preferred. 
This is because the STC mode consumes high power but 
does not consume any oxygen, while the ODC mode 
consumes relatively lower power and consumes oxygen. 
Thus, these two competing effects (consumption of oxygen 
and power) choose the mode appropriately for each hour.  

Figure 9 is a plot of the power consumed and power 
produced by the entire system for representative day 1 of 
month 1. Figure 10 shows the profit from electricity for 
representative day 1 of month 1. Power is sold or bought 
from the utility grid depending on the net effect of the power 
consumed by the plant, the power generated by the solar 
panels and wind turbines, and the power loss through the 
transmission lines. 

These trends apply for each hour. What can be seen 
from Figure 6 is that there is a peak in the electricity price 
in hour 7. The power produced in hour 7 is negligible and 
thus electricity must be taken from the grid if required. To 
make the model profitable, the plant runs in Shut down 
mode as seen in Figure 7 and the profit is close to 0 as seen 
in Figure 10.  Thus, when the electricity price is at its 
highest and the power produced is relatively small, the plant 
chooses the Shutdown mode and the profit from electricity 
is negligible. 

Another interesting observation is in hour 13 when the 
profit from electricity is at its peak for the day. The 
electricity price is at a moderate price and hence the ODC 
mode is chosen. The power produced is the second highest 
of the day as seen in Figure 9, The peak for the power 
produced occurs at hour 14, where the electricity price is 
lower than that of hour 13 and this price makes the profit in 
hour 14 lower as compared to the profit in hour 13.  



  

Conclusions 

Electrification is a solution being explored to tackle the 
problem of greenhouse gas emissions by the chemical 
industry. Electrification using renewable sources of energy 
includes spatial and temporal variations which can affect 
plant production. An MILP model is proposed to deduce the 
optimum configuration of a network of modular plants, 
power generating units, and transmission lines connected by 
a microgrid considering spatial and temporal variations in 
electricity price as well as weather conditions. The model 
takes decisions in three-time scales: one-time investment 
decisions, monthly decisions like transportation as well as 
hourly operating decisions. A bi-level decomposition 
method is proposed to obtain a near-optimal solution 
efficiently. 

The model is tested on a case study with 5 candidate 
locations in Western Texas with data obtained from various 
sources. The mode of the plant is chosen depending on the 
power produced and the electricity price. The power 
produced, power consumed/lost, and electricity price 
decides the profit. The major contributor to the profit is 
found to be the materials (products and raw materials). 
Electricity is found to have a significant contribution and 
thus the spatial location can affect the profit. The mode 
switching and the profit from electricity are found to be 
consistent with the theoretical trends. In the future, we 
would like to test the model on a larger dataset (more 
candidate locations) and test the bi-level decomposition 
algorithm on these cases to evaluate its computational 
performance. 
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