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Abstract 

In science and engineering, multiscale computer models are used to investigate, simulate, and predict 

behaviors of complex systems. These models, however, are subject to epistemic (i.e., model-form) 

uncertainty as they require approximations or simplifications to maintain computational tractability. 

Kennedy-O’Hagan (KOH) hybrid models, which augment first-principles formulations with data-driven 

Gaussian processes, account for missing phenomena due to these approximations, simplifications, or lack 

of mechanistic knowledge. While there exists a corpus of literature on KOH hybrid models for prediction 

and uncertainty quantification, decision making under uncertainty is largely not considered. In this work, 

we present a reactor optimization case study to demonstrate how KOH hybrid models can be used to 

inform decision making when the underlying phenomena are unknown. We show that despite parametric 

uncertainty and model inadequacy, the hybrid model captures the unknown kinetics with less data than 

the pure machine learning approach. Further, we demonstrate how the superior predictive of performance 

of the hybrid model translates to decision making when optimizing reactor design and operation. We posit 

that KOH hybrid models offer multiscale modeling in process systems engineering a new approach to 

incorporate quantified aleatoric (e.g., parametric, random) and epistemic uncertainties into decision 

making frameworks. 
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Introduction         

Since the mathematization of process systems engineering 

(PSE) in the 1960’s, first-principles, “white-box”, or “glass-

box” models have been the dominant framework for guiding 

process development and discovery (Sansana, et al., 2021). 

These complex models, however, require expert knowledge 

to formulate and approximations to ensure computational 

tractability thereby introducing epistemic (i.e., model-form) 

uncertainty. These shortcomings coupled with the growing 

availability of data in recent years have catalyzed the 

engineering research community to utilize machine learning 

techniques to gain insight into system behaviors (Beck, 

Carothers, Subramanian, & Pfaendter, 2016). These so-

called “black-box” models have excellent predictive 

capabilities when rich, large data sets are available, 

however, they fail to utilize prior systems knowledge, have 

poor predictive performance for out-of-control samples, and 

are limited in interpretability (Shulkind, Horesh, & Avron, 

2018). At the intersection of these models are “grey-box” or 

“hybrid” models which synergize white- and black-box 

constructs to yield models with better prediction accuracy, 

model stability, or both. 

In their seminal work, statisticians Kennedy and 

O’Hagan presented a framework for Bayesian calibration of 

computer (hybrid) models (Kennedy & O'Hagan, 2002). 

Here, the relationship between the observation 𝑦𝑖 , the true 

process 𝜁(⋅), and the computer model output 𝜂(⋅) is given 

by 
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𝑦𝑖 = 𝜁(𝐱𝑖) + 𝜖𝑖 = 𝜂(𝐱𝑖, 𝜽) + 𝛿(𝐱𝑖; 𝝎) + 𝜖𝑖,                   (1) 

where 𝜖𝑖 is the observation error of the 𝑖th observation, 𝛿(⋅) 

is a model discrepancy function, 𝜽 is a vector of physically 

meaningful parameters, 𝝎 is a vector of hyperparameters, 

and 𝐱𝑖 is a vector of decision variables. It is assumed that 

the discrepancy follows a Gaussian process (GP) 𝛿 ∼

𝒢𝒫(𝑚(⋅), 𝑘(⋅,⋅)) where m(𝐱; 𝝎) = 𝔼[𝛿(𝐱; 𝝎)] (expected 

value) and 𝑘(𝐱, 𝐱′; 𝝎) = Cov[δ(𝐱; 𝝎), δ(𝐱′; 𝝎)] 
(covariance). 

Hybrid models have been predominantly used in PSE 

for process monitoring (Bui, et al., 2022; Wang, et al., 2022; 

Puliyanda, Srinivasan, Sivaramakrishnan, & Prasad, 2022), 

control & optimization (Paulson & Lu, 2022; Paulson, 

Shao, & Mesbah, 2021), and uncertainty quantification 

(Ostace, et al., 2022). Largely missing in the literature, 

however, is deploying Kennedy-O’Hagan (KOH) hybrid 

models for decision making under epistemic uncertainty. In 

this work, we apply the KOH hybrid framework to a 

reaction engineering case study to quantify the epistemic 

uncertainty of a mechanistic kinetic model to inform reactor 

design and operation. We show that KOH hybrid kinetic 

models have superior predictive power to their mechanistic 

counterparts alone. Lastly, we demonstrate how KOH 

hybrid models can be used in a decision making context to 

optimize reactor design and operation despite model 

inadequacy. 

Methods 

In this case study, we assume the true kinetics 

underlying the noisy observations are generated with time-

series, isothermal, batch kinetics of the form 

A
𝜅1
⇌
𝜅3

B
κ2
→ C.   (2) 

Model inputs 𝐱𝑖 = [t, T, cA0]⊺ represent time (h), 

temperature (K), and initial concentration of species A (M), 

respectively. The rate equations of this reaction are 

𝑑𝑐𝐴

𝑑𝑡
= −𝜅1𝑐𝐴 + 𝜅3𝑐𝐵,  (3) 

𝑑𝑐𝐵

𝑑𝑡
= 𝜅1𝑐𝐴 − 𝜅2𝑐𝐵

3 − 𝜅3𝑐𝐵, (4) 

𝑑𝑐𝐶

𝑑𝑡
= 𝜅2𝑐𝐵

3,   (5) 

where κ1, κ2, and κ3 are rate constants. Eqs. (3)-(5) are 

solved numerically using initial conditions 

𝑐𝐴(𝑡 = 0) = 𝑐𝐴0, 𝑐𝐵(𝑡 = 0) = 0, 𝑐𝐶(𝑡 = 0) = 0,   (6) 

yielding the full kinetic model ζ(⋅). We restrict the outputs 

of this model to consider only species B giving rise to the 

set of 𝑛 truth observations {𝑦𝑖}𝑖=1
𝑛  

𝑦𝑖 = ζ(⋅) + ϵi,   (7) 

where ϵ ∼ 𝒩(𝟎, σϵ
2𝐈). Alternatively, we consider a simple 

reaction mechanism 

A
k1
→ B

k2
→ C ,   (8) 

which yields rate equations 

𝑑𝑐𝐴

𝑑𝑡
= −𝑘1𝑐𝐴,         (9) 

𝑑𝑐𝐵

𝑑𝑡
= 𝑘1𝑐𝐴 − 𝑘2𝑐𝐵,   (10) 

𝑑𝑐𝐶

𝑑𝑡
= 𝑘2𝑐𝐵 .   (11) 

Here, 𝑘1 and 𝑘2 are solved with the Arrhenius equation 

𝑘 = αexp (
−𝐸

𝑅𝑇
),  (12) 

where α is the pre-exponential factor (s-1) and 𝐸 is the 

activation energy (kJ/mol) of reactions one and two. 

Employing the initial conditions in Eq. (6), Eqs. (9)-(11) 

have a known analytical solution 

𝑐𝐴 = 𝑐𝐴0exp(−𝑘1𝑡),   (13) 

𝑐𝐵 =
𝑘1

𝑘2−𝑘1
𝑐𝐴0[exp(−𝑘1𝑡) − exp(−𝑘2𝑡)],   (14) 

𝑐𝐶 = 𝑐𝐴0 − 𝑐𝐵 − 𝑐𝐴,   (15) 

where 𝑐𝐵 is taken as the simple kinetics model 𝜂(⋅,⋅) with 

parameters 𝜽 = [𝛼1, 𝛼2, 𝐸1, 𝐸2]⊺. Nonlinear least squares 

regression is used to fit {𝑦𝑖}𝑖=1
𝑛  to 𝜂(⋅,⋅) yielding parameter 

and noise variance estimates �̂� and  𝜎�̂�
2
 given by 

𝜎�̂�
2 =

∑ (𝑦𝑖−η(𝐱𝑖,�̂�))𝑛
𝑖=1

2

𝑛−4
.   (16) 

By Eq. (1), the model discrepancy function 𝛿(⋅) 

represents the difference between 𝜁(⋅) and 𝜂(⋅,⋅). We assert 

that 𝛿(⋅) follows a GP with mean zero and kernel function 

𝑘(⋅,⋅), 𝛿(⋅) ∼ 𝒢𝒫(0, 𝑘(⋅,⋅)). This choice in mean function is 

satisfied by normalizing the model inputs prior to training. 



  

Moreover, we specify the covariance 𝑘(⋅,⋅) with the ν =
3/2 Matern kernel with hyperparameters 𝝎 ∈ ℝ4. 

Figure 1 demonstrates the main steps of the proposed 

hybrid modeling framework. In the first step, the set of 

noisy observations {𝑦𝑖}𝑖=1
𝑛  is generated from 𝜁(⋅) with 

known model inputs {𝐱𝑖}𝑖=1
𝑛   in lieu of conducting 

experiments. We then propose and formulate a (simplified) 

kinetic model 𝜂(𝐱i, 𝜽) and obtain parameter and error 

estimates with nonlinear least squares regression. The noisy 

discrepancy is computed by taking the difference between 

the observations and the simple kinetic model estimates, 

𝛿(𝐱𝑖) + 𝜖𝑖 = 𝑦𝑖 − 𝜂(𝐱𝑖, �̂�). For GP regression, a training 

data set 𝒟 = {𝐗, 𝚫 + 𝑬} is assembled where 𝐗 =
[𝐱1, … , 𝐱𝑛]⊺ ∈ ℝ𝑛×3 is a matrix of the model inputs  and 

𝚫 + 𝐄 = [𝛿1 + 𝜖1, … , 𝛿𝑛 + 𝜖𝑛]⊺ ∈ ℝ𝑛 is a vector of  noisy 

discrepancy observations. Priors are posed for the 

hyperparameters 𝛚 and the measurement variance 𝜎𝜖
2 which 

we refer to collectively as 𝝍 = [𝛚⊺, σϵ
2]⊺. The maximum a 

posteriori (MAP) estimates of the hyperparameters �̂�MAP 

are obtained with Bayes’ rule to inform the discrepancy 

posterior 𝛿|𝒟 with mean 𝜇𝛿 and variance 𝜎𝛿
2. This 

concludes hybrid kinetic model calibration, enabling 

predictions 𝑦∗ to be made over model inputs outside the 

training set 𝐱∗. 

We quantify parametric uncertainty in predictions 𝑦∗ 

using nonlinear error propagation. We denote the set of 

functions given in Eqs. (13)-(15) as {𝐟(�̂�)} such that 

𝐜∗ = 𝐟(𝐱∗, �̂�),       (17) 

where 𝐜 = [𝑐𝐴, 𝑐𝐵 , 𝑐𝐶]⊺ is a vector of the concentrations. A 

first-order Taylor series expansion yields 

𝐟 = 𝐟𝟎 + 𝐉�̂�,   (18) 

where 𝐉 is the Jacobian which is approximated with a 

centered finite difference. The variance-covariance of the 

estimated parameters 𝚺�̂� is used to compute the variance-

covariance of predictions 

𝚺𝐟 = 𝔼[(𝐟 − 𝔼[𝐟]) ⊗ (𝐟 − 𝔼[𝐟])] (19) 

     = 𝐉𝔼[(�̂� − 𝔼[�̂�])⨂(�̂� − 𝔼[�̂�])]𝐉⊺  (20) 

     = 𝐉𝚺�̂�𝐉⊺.   (21) 

We are interested in the objective function 𝜙 to 

maximize the value of the products 

𝜙 = 𝐰⊺ ⋅ 𝐜(𝐱∗),                                                              (22) 

where 𝐰 = [−0.5, 1, −0.5]⊺ is a vector of weights. We seek 

Figure 1. Main steps of the hybrid modeling 

framework. 

to optimize the batch reaction time and temperature to 

maximize the value of the objective function 

max 
𝑡 ,𝑇

ϕ ,     (23) 

s. t.   𝑡 ∈ [0, 1], 𝑇 ∈ [293, 493].  (24) 

Results 

Estimated parameters �̂� were obtained via nonlinear 

least squares regression to benchmark the predictive 

performance of the hybrid model. Figure 2 shows simple (a) 

and hybrid (b) model kinetic predictions for temperatures 

300 (i), 350 (ii), 400 (iii), and 450 (iv) (K). Shaded regions 

represent time-series propagated uncertainty. Figure 2 (a) 

demonstrates that the simple kinetic model prediction 

accuracy decreases at longer times and hotter temperatures. 

Moreover, the mean squared error (MSE) and mean 

absolute error (MAE) for the simple kinetic model increase 

with temperature ranging from 0.45-2.35 and 0.41-0.71, 

respectively. We compute the percent outside the prediction 



  

 

 
(a) 

(b) 

Figure 2. Isothermal, time-series kinetics of (a) 

simple (SKM) (-) and (b) hybrid (HKM) (--) 

kinetic models considering 𝑐𝐴0= 2.0 (M) across 

T= (i) 300, (ii) 350, (iii) 400, & (iv) 450 (K). 

Concentrations of A, B, and C are shown with 

red diamonds, green squares, and blue 

triangles, respectively. Shaded regions 

represent prediction intervals (PI, ±�̂�). 

interval (POPI) as the percent of all observations outside the 

prediction ±�̂�. For the simple kinetic model, this value 

ranges from 9.09%-42.42%. Taken as a whole, these results 

demonstrate poor predictive performance of the simple 

kinetic model at certain model inputs and failure of 

frequentist statistical methods to capture uncertainty. 

In Figure 2 (b), we observe that the hybrid model 

prediction accuracy is robust to temperature fluctuations. In 

support of this observation, the MSE and MAE of the 

predictions do not demonstrate a relationship to model 

inputs, ranging from 0.10-0.31 and 0.17-0.27, respectively. 

The POPI is 0% at all four temperatures studied. Thus, 

prediction intervals for the hybrid model are sufficiently 

large to capture the variability in the training data, unlike 

the simple kinetic model. On average, the MSE, MAE, and 

POPI of the hybrid model are much less than those of its 

mechanistic counterpart alone, indicating superior 

predictive performance of the hybrid model across model 

inputs.  

With the calibrated hybrid model, the objective function 

was computed for t ∈ [0, 1] and 𝑇 ∈ [293, 493]. Figure 3 

shows contour plots of the objective function for the (a) 

true, (b) simple, and (c) hybrid kinetic models. As shown in 

Figure 3 (a), the true model predicts the maximum objective 

at low temperatures and long times. Comparing the true 

model with the simple kinetic model (Figure 3 (b)), we 

observe that the simple kinetic model optimum is also 

favored at low temperatures but underpredicts the time and 

value of the objective function. Lastly, the hybrid model 

presented in 3 (c) demonstrates results close to those of the 

true model. Taken as a whole, these results demonstrate 

how superior predictive capability of the hybrid model 

yields better decisions for optimizing the reactor controls 

under uncertainty. 

(a) 



  

(b) 

(c) 

Figure 3. Time-temperature contour plots of the 

objective function for the (a) true, (b) simple, 

and (c) hybrid kinetic models. Black stars 

represent the location of the maximum. 

Conclusions 

In this work, we utilized a batch reactor optimization 

case study to conceptualize hybrid model decision making 

under epistemic uncertainty. We found that the hybrid 

kinetic model demonstrates superior predictive 

performance when compared to its simple kinetic 

counterpart. Moreover, the GP component of the hybrid 

model successfully learns and corrects for severe model 

inadequacy. We show how superior predictive capability of 

the hybrid kinetic model yields a framework for reactor 

optimization under uncertainty. In future work, we plan to 

quantify the closed loop performance on the framework 

when new experiments are adaptively proposed and added 

to training data. In doing so, we will explore the tradeoff 

between exploration and exploitation for choice in 

acquisition function (e.g., expected improvement, lower 

confidence bound). In our previous work, we showed that a 

pure black-box surrogate (GP regression) approach requires 

careful tuning and struggles with limited data using a 

cannonball case study (Eugene, Gao, & Dowling, 2019). 

Moreover, we found that KOH hybrid models overcome 

limitations this approach. Toward extending this work, we 

will benchmark a GP-only model with the reaction case 

study. Lastly, we will demonstrate scalability of the hybrid 

kinetic model by considering discrepancy in all chemical 

species in the reaction network. Building on our previous 

work, we aim to embed our optimization problem in a 

scalable stochastic program to facilitate more sophisticated 

reactor design (Wang, Eugene, & Dowling, 2022). 
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