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Abstract 

This work applies a novel systematic methodology of implementing Reinforcement Learning (RL) for 

plant wide steady state offline optimization of distillate and fuel oil pool in a refinery. Rather than adding 

to the extensive research on augmenting existing RL algorithms, the work focuses on using a systematic 

implementation method that incorporates domain-specific knowledge about process constraints in 

formulating the RL problem resulting in reduced dimensionality, involves modified exploration process, 

and is applicable to any existing model-free off-policy RL algorithm supporting continuous states and 

actions. The work demonstrates and opens up the possibility of the use of RL for plant wide or refinery 

wide offline optimization as the method results in smaller agent size, lesser data requirement and no need 

for special hardware for training and deployment. 
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1. Introduction

RL provides an alternative to conventional Process Control 

and Optimization that is model-free and adaptive. It has 

been successfully applied to playing games and gained wide 

spread recognition when a computer program named 

AlphaGo, based on RL, decisively defeated the word 

champion at the Chinese game of Go in 2017. Despite the 

success of RL in the field of games, its use in Process 

Industry is not trivial as Process Control and Optimization 

is not a game (Patel, 2022). 

There has been some recent work towards optimization 

using RL. Powell et.al. (2020) propose RL-RTO which 

includes novel hybrid training techniques for the actor and 

critic networks effectively focusing on augmenting RL 

algorithms. Though the ability to handle constraints on 

actions is proposed, the ability to handle constraints on 

other process variables and the ability to handle variables to 
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be held at targets is not addressed. Oh et.al. (2021) proposes 

to use a surrogate deep neural network (DNN), trained using 

data gathered from a first-principle mathematical model, to 

train RL agent. Though the example provided includes 

holding two product yields at their targets, the ability to 

handle process constraints and economic optimization is not 

addressed.  

This work proposes a data centric approach rather than 

a technology centric approach. Instead of focusing on 

augmenting existing RL algorithms, the presented work 

focuses on the data(information) being fed in and coming 

out of RL. It uses the systematic method, introduced by 

Patel. (2022) and to be published in detail in a planned 

Journal paper, that 

• Breaks down the problem into known and 

unknown parts based on available domain-specific 



  

 

 

  

knowledge. The RL agent is made to learn only the 

unknown part.  

• Uses a unique transformation, in formulating the 

RL problem. 

• Uses a unique concept of Action Adjustment to 

handle constraints.  

• Uses modified exploration and data generation 

resulting in richer data for training. 

• Proposes unique training stop criteria for Actor 

network.  

• Works with any model-free off-policy RL 

algorithm supporting continuous states and 

actions. 

An overview of RL is provided in Section2 followed 

by the systematic method discussion, at a high level, in 

Section 3. It is used to implement RL for plant wide steady 

state offline optimization of the distillate and fuel oil pool 

in a refinery. Section 4 discusses the refinery process 

involved and the scope of optimization. Section 5 describes 

the RL problem formulation followed by discussion and 

analysis of results in Section 6. The conclusions and 

contributions of this work is presented in Section 7 followed 

by future work in Section 8. The acknowledgements and 

references are provided at the end. 

2. RL overview 

Reinforcement learning is a type of machine learning 

algorithm that does not depend on already available data 

sets or models to start learning. Its ability to generate data 

and then learn from it distinguishes it from the other types 

of machine learning i.e. Supervised and Unsupervised 

learning. As seen in Fig. 1, RL consists of an environment, 

which could be a game or a process, and an agent that is to 

be trained on the environment to achieve a certain objective. 

The agent reads the current state(s(t)) of the environment at 

time t and generates an action(a(t)), using a policy (∏). a(t) 

is sent to the environment for implementation. The 

environment in return provides the agent with its next 

state(s(t+1)) and a reward (r(t)) that represents the goodness 

of a(t) taken by the agent. ∏ is updated using information 

in tuple {s(t), a(t), s(t+1), r(t)} such that the cumulative sum 

of the rewards is maximized. ∏ update can also be done 

using the return (G(t)) instead of r(t). G(t) is the discounted 

summation of the current reward due to action taken in 

current state and future expected rewards due to actions 

taken in future expected states. The use of G(t) allows RL 

to consider a delayed reward in addition to the current 

immediate reward when updating the policy.  

𝐺(𝑡) = 𝑟(𝑡) +∑ 𝛾𝑘
∞

𝑘=1
𝑟(𝑡 + 𝑘)      (1)  

where 𝛾 ∈ [0,1] is the discounting factor   

The other feature of RL that distinguishes it from other 

machine learning algorithms is the concept of exploration 

and exploitation. Initially when the agent does not know the 

environment, it explores the environment by taking random 

actions and generates data. As the agent learns from the 

generated data it starts to exploit the knowledge it has by 

taking actions that maximize the rewards. A tradeoff exists 

between the two. Too much exploration will result in agent 

acting randomly and too much exploitation will result in 

agent not being able to learn the environment behavior 

fully. Both will ultimately result in rewards not being 

maximized. The appeal of RL is that it needs minimal prior 

information of the environment, learns by exploration and 

then acts by exploiting the knowledge gained. For more 

details on RL, readers are directed to Sutton (2018).  

 

 

Figure 1.   Agent-Environment interaction 

3. Systematic Method 

The details on the systematic method is planned to be 

published in a Journal paper. A high-level overview of the 

method is provided here. It begins with understanding the 

optimization problem at hand and formulating the RL 

problem (state, action and reward). We start by listing the 

following  

• optimization objective and associated variables 

(included in defining reward)  

• independent process handles available, or to be 

investigated, to achieve the objective (included in 

defining actions) and 

• all possible constraints, that can limit the 

optimization, and targets that need to be honored 

(included in defining states and reward). 

The action space consist of all independent process 

handles available or to be investigated. The actions could be 

either incremental or absolute though incremental actions 

are more suitable for exploration.   

𝑎 = {𝛥𝑎1, 𝛥𝑎2, … , 𝛥𝑎𝑚}                      (2) 

where m = number of independent variables 

Thereafter all available domain-specific process 

knowledge, in the form of actions to take when a process 

constraint is active, is gathered. Typically, though not 

necessarily, this knowledge is readily available for all 

process constraints expected to be encountered. This, along 

with information on variables to be held at target if any, 

forms the known part of the problem. This information is 

used along with a unique transformation to come up with 

the RL state space that clearly distinguishes between 

situations when there are no constraints versus when there 

are one or more constraints active. When there are lots of 

Environment 

(game, process unit) 

state (s) action (a) 

reward (r) 

Agent (policy ∏) 



  

 

  

constraints, the use of the unique transformation, also 

results in a much smaller size of RL state space and agent. 
The reward is calculated as the incremental effect of 

actions on the profit function shown below where p=number 
of product variables, q=number of feeds and r=number of 
utility variables.   

𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ (𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐹𝑙𝑜𝑤𝑖 ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑃𝑟𝑖𝑐𝑒𝑖)
𝑝
𝑖=1 −

∑ (𝐹𝑒𝑒𝑑𝐹𝑙𝑜𝑤𝑖 ∗ 𝐹𝑒𝑒𝑑𝑃𝑟𝑖𝑐𝑒𝑖)
𝑞
𝑖=1 − ∑ (𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝐹𝑙𝑜𝑤𝑖 ∗

𝑟
𝑖=1

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑃𝑟𝑖𝑐𝑒𝑖)           (3) 

The unknown part of the problem consists of how to 

optimize the process when no process constraints are active 

along with any unavailable knowledge in handling some 

constraints which the RL agent is trained to learn. 

Having formulated the RL problem, the agent can be 

trained using any off-policy model free RL algorithm that 

supports continuous states and actions. The exploration and 

exploitation are done while incorporating a unique concept 

of Action Adjustments to handle process constraints based 

on domain-knowledge already gathered. It consists of 

action suppression, action restriction and action 

enforcement under different situations.  

While exploring, efforts are made not to repeat an 

action that has been taken before, if possible, thereby 

providing unique data points and improving the quality of 

data. This is especially the case in this work, as there is no 

noise in the data due to use of a simulation model.  

While training, it is ensured that only data suitable for 

the purpose of learning the unknown part (when no 

constraints are active) is provided to the agent thereby 

enhancing the quality of data. Any reduction in quantity of 

data due to this is nullified by leveraging the RL problem 

formulation to modify the unsuitable data to make it suitable 

and provided to the agent.  

When using an Actor-Critic RL algorithm, a simple but 

unique criterion is suggested to evaluate agent training and 

decide when to stop training phase. 

4. Process description 

Figure 2 shows a block diagram of the refinery process 

considered in this work. It is simulated using a 

commercially available software and calibrated to match the 

actual refinery operations at steady state. 

The refinery feed consists of light to heavy crude oil 

feed to Crude Distillation Unit (CDU) and extra light feed 

to Condensate Stripper (CS). The main products produced 

consists of 91 & 95 octane Gasoline, Jet fuel, Ultra low 

Sulphur diesel (ULSD), low Sulphur diesel (LSD), Fuel oil 

(FO) and Asphalt. The refinery consists of Catalytic 

reformer unit (CCR) to achieve Gasoline specifications, 

Diesel Hydrotreater (DHT) and Hydrocracker (HCR) to 

enhance distillate yields.  

DHT is fed by diesel cut from CDU and Vacuum Diesel 

cut (VDSL) from the Vacuum Distillation Unit (VDU) 

producing majority of ULSD product. The remaining diesel 

cut from CDU is sent to LSD blender while the remaining 

VDSL cut from VDU is sent to FO blender.  

 

Figure 2.   Refinery process block diagram 

HCR upgrades the Vacuum Gas oils (LVGO and 

HVGO) to valuable Gasoline and Distillate blending 

components, while the remaining LVGO & HVGO are sent 

to FO blender.  

Asphalt Unit (AU) is fed by VDU residue while the 

remaining is sent to FO blender. 

The scope of optimization in this work covers the 

distillate and fuel oil pool primarily consisting of VDU, 

DHT, HCR and Diesel & Fuel oil blending system.  

Table 1 shows the independent variables considered for 

optimization. They are also shown as Orange dots in Figure 

2. Though the gasoline pool optimization is not considered 

in this work and the associated independent variables are 

held constant, the Gasoline pool and associated blending 

system is included in the optimization objective to address 

the effect of HCR naphtha changes. The feed to the refinery 

is also held constant in this work. 

Table 1. List of Independent variables 

Independent variables Abbreviations 

Vacuum feed furnace coil outlet 

temperature 

VacCOT 

Vacuum unit stripping steam VacStm 

Vacuum Diesel 95% point VDSL_95 

Heavy Vacuum gas oil 95% point HVGO_95 

Vacuum Diesel feed to DHT VDSL_DHT 

Light Vacuum gas oil feed to HCR LVGO_HCR 

Heavy Vacuum gas oil feed to 

HCR 

HVGO_HCR 

HCR 1st stage reactor inlet 

Temperature 

HCR_INT 

HCR overall conversion HCR_CONV 

  



  

 

 

  

5. RL problem formulation 

The objective of the work is to optimize the distillate 

and FO blending, in order to maximize refinery profit, by 

adjusting the independent variables mentioned in Table 1.  

The RL reward is calculated as incremental profit as in 

Eq. (3) where the products include that from Gasoline 

blending in addition to Distillate and FO blending. The feed 

includes both the feeds to CDU and CS. The utilities are left 

out of the profit function in the work as they are expected to 

be insignificant.  

The action (a) consists of incremental changes to the 

nine independent variables listed in Table 1. 

𝑎 = {Δ𝑎1, Δ𝑎2, … , Δ𝑎9}                                                    (4) 

There are no variables to be held at targets. The 

constraints considered in the work include the following 

• VDSL to FO (VDSL_FO) ≥ VDSL_FO_LL 

• LVGO to FO (LVGO_FO) ≥ LVGO_FO_LL 

• HVGO to FO (HVGO_FO) ≥ HVGO_FO_LL 

• Jet product (JET) ≥ JET_LL 

• low limit ≤ independent variables ≥ high limit 

   (5) 

The state (s) consists of variables that represent the 

process state including information on the above 

constraints. 

 𝑠 = {𝑠1, 𝑠2, … , 𝑠9}                                                           (6) 

 

The RL agent was trained using the Deep Deterministic 

Policy Gradient (DDPG) algorithm as presented by 

Lillicrap et.al. (2016). The python code implementing the 

algorithm is taken from GitHub and modified to do the 

following 

• Disable the built-in exploration functionality that 

uses Ornstein-Uhlenbeck noise process.   

• Modify the learning process as per the requirements 

of the developed method. 

DDPG is a model free off-policy RL algorithm for 

learning using continuous states and actions employing 

Actor-Critic methodology. The Actor proposes an action 

given a state while the Critic estimates the reward given a 

state and an action. Both Actor and Critic are deployed as 

neural networks with 2 and 3 hidden layers with 32 nodes 

each as shown in Fig. 3. The orange nodes represent that for 

the state s, the blue nodes represent that for actions a and 

the black node represents the reward r.  

As the domain-specific knowledge related to handling all 

the constraints mentioned in Eq. (5) is available, the 

unknown part of the problem solely consists of learning 

how to operate the refinery when no constraints are active. 

In this specific case all the elements the state (s), mentioned 

in Eq. (6), are zeros. Hence, the parts of the Actor and Critic 

neural networks, shown in Fig. 3, related to the state (s) have 

no effect and the associated weights are not to be learnt. 

This further simplifies the RL agent learning. 

 

6. Results 

The agent training was performed on laptop with 

1.9GHz Intel core i7, 8GB RAM Central Processing Unit 

(CPU) while interacting with the process simulation model 

also running on the same laptop. A 3-step approach is 

followed for agent training. 

• Generate data for training while exploring the 

process. 

• Preprocess to remove bad data and replace 

unsuitable data by suitable data. 

• Offline agent training and hyperparameter tuning.  

 

               

Figure 3.   Actor & Critic neural networks 

As the action is incremental, each of the 9 elements can 

be either increased, decreased or held constant 

simultaneously. There is a total of 19,683(39) possible 

combinations though all of them are not implementable due 

to presence of constraints. The agent interactions with 

simulation model was executed for 1200 runs, providing 

1200 data points, which is approximately 6% of 19,683 

combinations.  Though, this step requires the most time as 

the simulation model takes about half a minute for each run, 

it is a onetime activity. Figure 4a shows the 9 independent 

variables and Figure 4b shows the 4 constraint variables 

trend when agent was exploring. The absolute values of the 

independent variables have been scaled so that low limits 

are 0% and high limits are 100%. Similarly, the absolute 

values of constraints variables are adjusted so that the low 

limits are 0 kbpd. Note that the limits on both the variables 

are honored when exploring.  

Subsequent data preprocessing is done to remove any 

outliers. Offline agent training and hyperparameter tuning 

was then performed with agent using half the data as 

training data and the remaining half as validation data. 

Figure 5a&b shows the trend of Critic and Actor losses 

respectively. The critic loss reduces to a very small value 

for both training (CL) and validation data (CL_val) after 40 

steps indicating critic network is trained reasonably well. 

The occasional spikes seen in CL_val are due to some data 



  

 

  

points not getting modelled well. Thereafter at step#100, the 

actor network training starts where the actor loss (AL) too 

settles at a negative value within the next 30 steps indicating 

actor network is also trained. A few other criterions (to be 

published in the detailed Journal paper) are also used to 

evaluate critic and actor network learning. Once the 

hyperparameters are fixed, the RL agent training takes only 

2 minutes on the laptop. 

 

  

 

Figure 4.   Agent exploration honors variable 

limits; a) Independent variables; b) Constraint 

variables 

Table 2 summarizes the final RL hyperparameters used 

in this work. Table 3 summarizes the learnings of the RL 

agent in terms of direction in which it recommends each of 

the 9 action elements or independent variables to be 

changed to increase the operating profit. Under the heading 

of “Optimized run” it also lists the total change on each 

independent variable that the trained agent implemented, in 

a sequence of small increments, in order to optimize the 

process given the limits on independent and constraint 

variables. RL agent increased the VacCOT, VDSL_95 and 

HVGO_95 in order to increase the VDSL, LVGO and 

HVGO product draws in VDU. It then diverts the increase 

in the product draws to DHT and HCR thereby resulting in 

an increase in ULSD production. RL agent also increased 

the HCR_INT while decreasing the HCR_CONV which 

resulted in higher aromatics content in its Naphtha product 

resulting in a switch from 91 octane Gasoline to 95 octane 

Gasoline. 

 

 
 

 

Figure 5.   a) Critic loss for training & 

validation data; b) Actor loss  

Table 2. Summary of RL hyperparameters 

Hyperparameter name Value 

Buffer size 1200 

Batch size 32 

Learning rate (Critic) 0.0075 

Learning rate (Actor) 0.1 

Discount factor 0 

#Learning steps 150 

Actor training start step# 100 

  

Table 3. Optimization direction for Independent 

variables 

Independent          

variable 

   Optimization 

   Direction 

      Optimized  

      run 

VacCOT Increase +1 degf 
VacStm Decrease -1600 lb/hr 

VDSL_95 Increase +2.1 degf 
HVGO_95 Increase +2.1 degf 
VDSL_DHT Increase +1 kbpd 

LVGO_HCR Increase +1 kbpd 

HVGO_HCR Increase +1 kbpd 

HCR_INT Increase +1 degf 
HCR_CONV Decrease -1 % 

   

 

The effect of the changes implemented by RL agent 

mentioned in Table 3 on the change in profit function is 



  

 

 

  

shown in Figure 6. It amounts to tens of millions of $ benefit 

per year.  

 

 

Figure 6.   Change in refinery profit due to RL 

agent action 

Product and/or feed pricing changes in the future only 

require a recalculation of the rewards, with the new profit 

calculated by Eq. (3), and retraining the RL agent which 

takes 2 minutes. There is no need to rerun the simulation 

model. Likewise, the systematic method allows adding 

more constraints in the RL formulation anytime without 

affecting the RL agent. 

7. Conclusions and Contributions of this work 

The work demonstrates that RL is capable of learning 

from a process simulation model and optimizing the process 

on a plant wide or refinery wide scale. The key is to break 

down the optimization problem in known and unknown 

parts based on known domain-specific knowledge while 

making the RL agent learn only the unknown part. Such an 

approach results in smaller agent size, lesser data 

requirement and no need for special hardware. Note that 

even though the number of data points available for learning 

is around 6% of the total action combinations possible, as 

mentioned in Section 6, the RL agent was able to learn, 

generalize and optimize the process.  

The approach is compatible with the work of Oh et.al. 

(2021) where the use of a surrogate DNN is proposed 

instead of the process simulation model.  

8. Future work 

The work will be continued further as follows 

• Present the optimized run in Table 3, 

recommended by the trained RL agent, to the 

refinery management for implementation and audit 

of expected benefit. 

• Increase the scope of optimization to cover 

Gasoline blending and associated independent 

variables to make it full refinery wide steady state 

optimization. 

• Investigate the options to deploy it online to make 

it a Real Time Optimizer (RTO).  
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