

PLANT WIDE STEADY STATE OPTIMIZATION

USING REINFORCEMENT LEARNING

Kalpesh M Patel* and Gabriel Winter

Saudi Aramco,

Saudi Arabia 31311

Abstract

This work applies a novel systematic methodology of implementing Reinforcement Learning (RL) for

plant wide steady state offline optimization of distillate and fuel oil pool in a refinery. Rather than adding

to the extensive research on augmenting existing RL algorithms, the work focuses on using a systematic

implementation method that incorporates domain-specific knowledge about process constraints in

formulating the RL problem resulting in reduced dimensionality, involves modified exploration process,

and is applicable to any existing model-free off-policy RL algorithm supporting continuous states and

actions. The work demonstrates and opens up the possibility of the use of RL for plant wide or refinery

wide offline optimization as the method results in smaller agent size, lesser data requirement and no need

for special hardware for training and deployment.

Keywords

Plant wide Optimization, Refinery wide Optimization, Steady State Optimization, Reinforcement

Learning,

1. Introduction

RL provides an alternative to conventional Process Control

and Optimization that is model-free and adaptive. It has

been successfully applied to playing games and gained wide

spread recognition when a computer program named

AlphaGo, based on RL, decisively defeated the word

champion at the Chinese game of Go in 2017. Despite the

success of RL in the field of games, its use in Process

Industry is not trivial as Process Control and Optimization

is not a game (Patel, 2022).

There has been some recent work towards optimization

using RL. Powell et.al. (2020) propose RL-RTO which

includes novel hybrid training techniques for the actor and

critic networks effectively focusing on augmenting RL

algorithms. Though the ability to handle constraints on

actions is proposed, the ability to handle constraints on

other process variables and the ability to handle variables to

* K, M. Patel is with Saudi Aramco, P O Box 5000, Dhahran, Saudi Arabia 31311 (phone: 966-13-8801065; fax: 966-13-8744444; e-

mail: Kalpesh.patel@aramco.com).

be held at targets is not addressed. Oh et.al. (2021) proposes

to use a surrogate deep neural network (DNN), trained using

data gathered from a first-principle mathematical model, to

train RL agent. Though the example provided includes

holding two product yields at their targets, the ability to

handle process constraints and economic optimization is not

addressed.

This work proposes a data centric approach rather than

a technology centric approach. Instead of focusing on

augmenting existing RL algorithms, the presented work

focuses on the data(information) being fed in and coming

out of RL. It uses the systematic method, introduced by

Patel. (2022) and to be published in detail in a planned

Journal paper, that

• Breaks down the problem into known and

unknown parts based on available domain-specific

knowledge. The RL agent is made to learn only the

unknown part.

• Uses a unique transformation, in formulating the

RL problem.

• Uses a unique concept of Action Adjustment to

handle constraints.

• Uses modified exploration and data generation

resulting in richer data for training.

• Proposes unique training stop criteria for Actor

network.

• Works with any model-free off-policy RL

algorithm supporting continuous states and

actions.

An overview of RL is provided in Section2 followed

by the systematic method discussion, at a high level, in

Section 3. It is used to implement RL for plant wide steady

state offline optimization of the distillate and fuel oil pool

in a refinery. Section 4 discusses the refinery process

involved and the scope of optimization. Section 5 describes

the RL problem formulation followed by discussion and

analysis of results in Section 6. The conclusions and

contributions of this work is presented in Section 7 followed

by future work in Section 8. The acknowledgements and

references are provided at the end.

2. RL overview

Reinforcement learning is a type of machine learning

algorithm that does not depend on already available data

sets or models to start learning. Its ability to generate data

and then learn from it distinguishes it from the other types

of machine learning i.e. Supervised and Unsupervised

learning. As seen in Fig. 1, RL consists of an environment,

which could be a game or a process, and an agent that is to

be trained on the environment to achieve a certain objective.

The agent reads the current state(s(t)) of the environment at

time t and generates an action(a(t)), using a policy (∏). a(t)

is sent to the environment for implementation. The

environment in return provides the agent with its next

state(s(t+1)) and a reward (r(t)) that represents the goodness

of a(t) taken by the agent. ∏ is updated using information

in tuple {s(t), a(t), s(t+1), r(t)} such that the cumulative sum

of the rewards is maximized. ∏ update can also be done

using the return (G(t)) instead of r(t). G(t) is the discounted

summation of the current reward due to action taken in

current state and future expected rewards due to actions

taken in future expected states. The use of G(t) allows RL

to consider a delayed reward in addition to the current

immediate reward when updating the policy.

𝐺(𝑡) = 𝑟(𝑡) +∑ 𝛾𝑘
∞

𝑘=1
𝑟(𝑡 + 𝑘) (1)

where 𝛾 ∈ [0,1] is the discounting factor

The other feature of RL that distinguishes it from other

machine learning algorithms is the concept of exploration

and exploitation. Initially when the agent does not know the

environment, it explores the environment by taking random

actions and generates data. As the agent learns from the

generated data it starts to exploit the knowledge it has by

taking actions that maximize the rewards. A tradeoff exists

between the two. Too much exploration will result in agent

acting randomly and too much exploitation will result in

agent not being able to learn the environment behavior

fully. Both will ultimately result in rewards not being

maximized. The appeal of RL is that it needs minimal prior

information of the environment, learns by exploration and

then acts by exploiting the knowledge gained. For more

details on RL, readers are directed to Sutton (2018).

Figure 1. Agent-Environment interaction

3. Systematic Method

The details on the systematic method is planned to be

published in a Journal paper. A high-level overview of the

method is provided here. It begins with understanding the

optimization problem at hand and formulating the RL

problem (state, action and reward). We start by listing the

following

• optimization objective and associated variables

(included in defining reward)

• independent process handles available, or to be

investigated, to achieve the objective (included in

defining actions) and

• all possible constraints, that can limit the

optimization, and targets that need to be honored

(included in defining states and reward).

The action space consist of all independent process

handles available or to be investigated. The actions could be

either incremental or absolute though incremental actions

are more suitable for exploration.

𝑎 = {𝛥𝑎1, 𝛥𝑎2, … , 𝛥𝑎𝑚} (2)

where m = number of independent variables

Thereafter all available domain-specific process

knowledge, in the form of actions to take when a process

constraint is active, is gathered. Typically, though not

necessarily, this knowledge is readily available for all

process constraints expected to be encountered. This, along

with information on variables to be held at target if any,

forms the known part of the problem. This information is

used along with a unique transformation to come up with

the RL state space that clearly distinguishes between

situations when there are no constraints versus when there

are one or more constraints active. When there are lots of

Environment

(game, process unit)

state (s) action (a)

reward (r)

Agent (policy ∏)

constraints, the use of the unique transformation, also

results in a much smaller size of RL state space and agent.
The reward is calculated as the incremental effect of

actions on the profit function shown below where p=number
of product variables, q=number of feeds and r=number of
utility variables.

𝑃𝑟𝑜𝑓𝑖𝑡 = ∑ (𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐹𝑙𝑜𝑤𝑖 ∗ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑃𝑟𝑖𝑐𝑒𝑖)
𝑝
𝑖=1 −

∑ (𝐹𝑒𝑒𝑑𝐹𝑙𝑜𝑤𝑖 ∗ 𝐹𝑒𝑒𝑑𝑃𝑟𝑖𝑐𝑒𝑖)
𝑞
𝑖=1 − ∑ (𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝐹𝑙𝑜𝑤𝑖 ∗

𝑟
𝑖=1

𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑃𝑟𝑖𝑐𝑒𝑖) (3)

The unknown part of the problem consists of how to

optimize the process when no process constraints are active

along with any unavailable knowledge in handling some

constraints which the RL agent is trained to learn.

Having formulated the RL problem, the agent can be

trained using any off-policy model free RL algorithm that

supports continuous states and actions. The exploration and

exploitation are done while incorporating a unique concept

of Action Adjustments to handle process constraints based

on domain-knowledge already gathered. It consists of

action suppression, action restriction and action

enforcement under different situations.

While exploring, efforts are made not to repeat an

action that has been taken before, if possible, thereby

providing unique data points and improving the quality of

data. This is especially the case in this work, as there is no

noise in the data due to use of a simulation model.

While training, it is ensured that only data suitable for

the purpose of learning the unknown part (when no

constraints are active) is provided to the agent thereby

enhancing the quality of data. Any reduction in quantity of

data due to this is nullified by leveraging the RL problem

formulation to modify the unsuitable data to make it suitable

and provided to the agent.

When using an Actor-Critic RL algorithm, a simple but

unique criterion is suggested to evaluate agent training and

decide when to stop training phase.

4. Process description

Figure 2 shows a block diagram of the refinery process

considered in this work. It is simulated using a

commercially available software and calibrated to match the

actual refinery operations at steady state.

The refinery feed consists of light to heavy crude oil

feed to Crude Distillation Unit (CDU) and extra light feed

to Condensate Stripper (CS). The main products produced

consists of 91 & 95 octane Gasoline, Jet fuel, Ultra low

Sulphur diesel (ULSD), low Sulphur diesel (LSD), Fuel oil

(FO) and Asphalt. The refinery consists of Catalytic

reformer unit (CCR) to achieve Gasoline specifications,

Diesel Hydrotreater (DHT) and Hydrocracker (HCR) to

enhance distillate yields.

DHT is fed by diesel cut from CDU and Vacuum Diesel

cut (VDSL) from the Vacuum Distillation Unit (VDU)

producing majority of ULSD product. The remaining diesel

cut from CDU is sent to LSD blender while the remaining

VDSL cut from VDU is sent to FO blender.

Figure 2. Refinery process block diagram

HCR upgrades the Vacuum Gas oils (LVGO and

HVGO) to valuable Gasoline and Distillate blending

components, while the remaining LVGO & HVGO are sent

to FO blender.

Asphalt Unit (AU) is fed by VDU residue while the

remaining is sent to FO blender.

The scope of optimization in this work covers the

distillate and fuel oil pool primarily consisting of VDU,

DHT, HCR and Diesel & Fuel oil blending system.

Table 1 shows the independent variables considered for

optimization. They are also shown as Orange dots in Figure

2. Though the gasoline pool optimization is not considered

in this work and the associated independent variables are

held constant, the Gasoline pool and associated blending

system is included in the optimization objective to address

the effect of HCR naphtha changes. The feed to the refinery

is also held constant in this work.

Table 1. List of Independent variables

Independent variables Abbreviations

Vacuum feed furnace coil outlet

temperature

VacCOT

Vacuum unit stripping steam VacStm

Vacuum Diesel 95% point VDSL_95

Heavy Vacuum gas oil 95% point HVGO_95

Vacuum Diesel feed to DHT VDSL_DHT

Light Vacuum gas oil feed to HCR LVGO_HCR

Heavy Vacuum gas oil feed to

HCR

HVGO_HCR

HCR 1st stage reactor inlet

Temperature

HCR_INT

HCR overall conversion HCR_CONV

5. RL problem formulation

The objective of the work is to optimize the distillate

and FO blending, in order to maximize refinery profit, by

adjusting the independent variables mentioned in Table 1.

The RL reward is calculated as incremental profit as in

Eq. (3) where the products include that from Gasoline

blending in addition to Distillate and FO blending. The feed

includes both the feeds to CDU and CS. The utilities are left

out of the profit function in the work as they are expected to

be insignificant.

The action (a) consists of incremental changes to the

nine independent variables listed in Table 1.

𝑎 = {Δ𝑎1, Δ𝑎2, … , Δ𝑎9} (4)

There are no variables to be held at targets. The

constraints considered in the work include the following

• VDSL to FO (VDSL_FO) ≥ VDSL_FO_LL

• LVGO to FO (LVGO_FO) ≥ LVGO_FO_LL

• HVGO to FO (HVGO_FO) ≥ HVGO_FO_LL

• Jet product (JET) ≥ JET_LL

• low limit ≤ independent variables ≥ high limit

 (5)

The state (s) consists of variables that represent the

process state including information on the above

constraints.

 𝑠 = {𝑠1, 𝑠2, … , 𝑠9} (6)

The RL agent was trained using the Deep Deterministic

Policy Gradient (DDPG) algorithm as presented by

Lillicrap et.al. (2016). The python code implementing the

algorithm is taken from GitHub and modified to do the

following

• Disable the built-in exploration functionality that

uses Ornstein-Uhlenbeck noise process.

• Modify the learning process as per the requirements

of the developed method.

DDPG is a model free off-policy RL algorithm for

learning using continuous states and actions employing

Actor-Critic methodology. The Actor proposes an action

given a state while the Critic estimates the reward given a

state and an action. Both Actor and Critic are deployed as

neural networks with 2 and 3 hidden layers with 32 nodes

each as shown in Fig. 3. The orange nodes represent that for

the state s, the blue nodes represent that for actions a and

the black node represents the reward r.

As the domain-specific knowledge related to handling all

the constraints mentioned in Eq. (5) is available, the

unknown part of the problem solely consists of learning

how to operate the refinery when no constraints are active.

In this specific case all the elements the state (s), mentioned

in Eq. (6), are zeros. Hence, the parts of the Actor and Critic

neural networks, shown in Fig. 3, related to the state (s) have

no effect and the associated weights are not to be learnt.

This further simplifies the RL agent learning.

6. Results

The agent training was performed on laptop with

1.9GHz Intel core i7, 8GB RAM Central Processing Unit

(CPU) while interacting with the process simulation model

also running on the same laptop. A 3-step approach is

followed for agent training.

• Generate data for training while exploring the

process.

• Preprocess to remove bad data and replace

unsuitable data by suitable data.

• Offline agent training and hyperparameter tuning.

Figure 3. Actor & Critic neural networks

As the action is incremental, each of the 9 elements can

be either increased, decreased or held constant

simultaneously. There is a total of 19,683(39) possible

combinations though all of them are not implementable due

to presence of constraints. The agent interactions with

simulation model was executed for 1200 runs, providing

1200 data points, which is approximately 6% of 19,683

combinations. Though, this step requires the most time as

the simulation model takes about half a minute for each run,

it is a onetime activity. Figure 4a shows the 9 independent

variables and Figure 4b shows the 4 constraint variables

trend when agent was exploring. The absolute values of the

independent variables have been scaled so that low limits

are 0% and high limits are 100%. Similarly, the absolute

values of constraints variables are adjusted so that the low

limits are 0 kbpd. Note that the limits on both the variables

are honored when exploring.

Subsequent data preprocessing is done to remove any

outliers. Offline agent training and hyperparameter tuning

was then performed with agent using half the data as

training data and the remaining half as validation data.

Figure 5a&b shows the trend of Critic and Actor losses

respectively. The critic loss reduces to a very small value

for both training (CL) and validation data (CL_val) after 40

steps indicating critic network is trained reasonably well.

The occasional spikes seen in CL_val are due to some data

points not getting modelled well. Thereafter at step#100, the

actor network training starts where the actor loss (AL) too

settles at a negative value within the next 30 steps indicating

actor network is also trained. A few other criterions (to be

published in the detailed Journal paper) are also used to

evaluate critic and actor network learning. Once the

hyperparameters are fixed, the RL agent training takes only

2 minutes on the laptop.

Figure 4. Agent exploration honors variable

limits; a) Independent variables; b) Constraint

variables

Table 2 summarizes the final RL hyperparameters used

in this work. Table 3 summarizes the learnings of the RL

agent in terms of direction in which it recommends each of

the 9 action elements or independent variables to be

changed to increase the operating profit. Under the heading

of “Optimized run” it also lists the total change on each

independent variable that the trained agent implemented, in

a sequence of small increments, in order to optimize the

process given the limits on independent and constraint

variables. RL agent increased the VacCOT, VDSL_95 and

HVGO_95 in order to increase the VDSL, LVGO and

HVGO product draws in VDU. It then diverts the increase

in the product draws to DHT and HCR thereby resulting in

an increase in ULSD production. RL agent also increased

the HCR_INT while decreasing the HCR_CONV which

resulted in higher aromatics content in its Naphtha product

resulting in a switch from 91 octane Gasoline to 95 octane

Gasoline.

Figure 5. a) Critic loss for training &

validation data; b) Actor loss

Table 2. Summary of RL hyperparameters

Hyperparameter name Value

Buffer size 1200

Batch size 32

Learning rate (Critic) 0.0075

Learning rate (Actor) 0.1

Discount factor 0

#Learning steps 150

Actor training start step# 100

Table 3. Optimization direction for Independent

variables

Independent

variable

 Optimization

 Direction

 Optimized

 run

VacCOT Increase +1 degf
VacStm Decrease -1600 lb/hr

VDSL_95 Increase +2.1 degf
HVGO_95 Increase +2.1 degf
VDSL_DHT Increase +1 kbpd

LVGO_HCR Increase +1 kbpd

HVGO_HCR Increase +1 kbpd

HCR_INT Increase +1 degf
HCR_CONV Decrease -1 %

The effect of the changes implemented by RL agent

mentioned in Table 3 on the change in profit function is

shown in Figure 6. It amounts to tens of millions of $ benefit

per year.

Figure 6. Change in refinery profit due to RL

agent action

Product and/or feed pricing changes in the future only

require a recalculation of the rewards, with the new profit

calculated by Eq. (3), and retraining the RL agent which

takes 2 minutes. There is no need to rerun the simulation

model. Likewise, the systematic method allows adding

more constraints in the RL formulation anytime without

affecting the RL agent.

7. Conclusions and Contributions of this work

The work demonstrates that RL is capable of learning

from a process simulation model and optimizing the process

on a plant wide or refinery wide scale. The key is to break

down the optimization problem in known and unknown

parts based on known domain-specific knowledge while

making the RL agent learn only the unknown part. Such an

approach results in smaller agent size, lesser data

requirement and no need for special hardware. Note that

even though the number of data points available for learning

is around 6% of the total action combinations possible, as

mentioned in Section 6, the RL agent was able to learn,

generalize and optimize the process.

The approach is compatible with the work of Oh et.al.

(2021) where the use of a surrogate DNN is proposed

instead of the process simulation model.

8. Future work

The work will be continued further as follows

• Present the optimized run in Table 3,

recommended by the trained RL agent, to the

refinery management for implementation and audit

of expected benefit.

• Increase the scope of optimization to cover

Gasoline blending and associated independent

variables to make it full refinery wide steady state

optimization.

• Investigate the options to deploy it online to make

it a Real Time Optimizer (RTO).

Acknowledgments

The authors gratefully acknowledge the support

provided by Saudi Aramco management in pursuing the

work.

References

Github. DDPG algorithm python program available at

https://github.com/keras-team/keras-

io/blob/master/examples/rl/ddpg_pendulum.py
Lillicrap, T.P., Hunt, J. J., Pretzel, A., Hees, N., Erez, Y., Silver,

D. and Wierstra, D. (2016). Continuous control with

deep reinforcement learning. International Conference

on Learning Representations. San Juan, Puerto Rico.

https://arxiv.org/abs/1509.02971

Oh, D, Adams, D., Vo, N. D., Gbadago, D. Q., Lee C., Oh M.

(2021). Actor-critic reinforcement learning to estimate

the optimal operating conditions of the hydrocracking

process. Computers & Chemical Engineering. 149.

107280.

https://doi.org/10.1016/j.compchemeng.2021.107280

Patel, K. M. (2022). Safe, Fast and Explainable Online

Reinforcement Learning for Continuous Process

Control. In Proceedings of the 7th IEEE International

Symposium on Advanced Control of Industrial

Processes. Vancouver, Canada.

Powell, K. M., Machalek, D., Quah, T. (2020). Real-time

optimization using reinforcement learning. Computers

& Chemical Engineering., 143, 107077.

https://doi.org/10.1016/j.compchemeng.2020.107077

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An

introduction. MIT press.

https://github.com/keras-team/keras-io/blob/master/examples/rl/ddpg_pendulum.py
https://github.com/keras-team/keras-io/blob/master/examples/rl/ddpg_pendulum.py
https://resweb.passkey.com/Resweb.do?mode=welcome_gi_new&groupID=53119545
https://arxiv.org/abs/1509.02971
https://doi.org/10.1016/j.compchemeng.2021.107280
https://doi.org/10.1016/j.compchemeng.2020.107077

