
Approximation of Nonlinear Model Predictive Control Using Mixture Density
Networks

Morimasa Okamoto a, Jiayang Ren a, Qiangqiang Mao a and Yankai Cao a,1

a Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada

Abstract
Model Predictive Control (MPC) is an advanced control method broadly applied to chemical processes. How-
ever, the prohibitive online computation time limits its application to nonlinear systems. Although the approximation
of the MPC control law via deep neural networks (DNNs) has been studied in these recent years, this approach cannot
be applied to nonlinear systems if the optimal control problems have multiple optima. When the MPC control law
follows one-to-many mappings, it cannot be effectively approximated via DNNs, which provide one-to-one mappings.
In this paper, we propose a mixture density network(MDN)-based approximation method for nonlinear MPC. MDNs
approximate the MPC control law through conditional probabilities by mixing several estimated Gaussians and then
generate several control inputs with the highest probabilities, which means that the network can realize the one-to-many
mappings. We also investigate a case study of a nonlinear benchmark process, which demonstrates that our proposed
scheme exhibits better control performance than the DNN-based approximation method.

Keywords
Model Predictive Control, Mixture Density Networks, Nonlinear systems.

Introduction

Model Predictive Control (MPC) is an advanced control
method applied in various industrial processes, such as chem-
ical plants and power systems (Qin and Badgwell, 2003;
Xi et al., 2013). Compared with traditional control meth-
ods such as PID controllers, MPC typically provides better
performance while satisfying a set of constraints. It is re-
alized by optimizing a finite time horizon control problem
and implementing the first control input. However, the pro-
hibitive online computation time limits its real-world appli-
cations, especially for nonlinear systems. To achieve fast on-
line control, explicit MPC is proposed by pre-computing the
explicit optimal control law using parametric programming
techniques (Tøndel et al., 2003). In this way, online com-
putations are reduced to a simple function evaluation. How-
ever, offline computing scales poorly with the number of con-
straints and prediction horizon. Moreover, the application of
this approach to nonlinear systems is not straightforward.

In recent years, machine-learning and deep-learning meth-
ods have proliferated in many fields, such as image recogni-
tion (Krizhevsky et al., 2012) and system identification (Wu
et al., 2019). Inspired by these advances, realizing fast on-
line control while maintaining scalability in offline comput-
ing by approximating the complex MPC control law via deep
neural networks (DNNs) has attracted many focuses. Karg

1 Corresponding author: Yankai Cao (E-mail: yankai.cao
@ubc.ca).

and Lucia (2020) showed that a neural network with recti-
fier units could exactly approximate the MPC control law of
linear time-invariant systems. They further demonstrated that
DNNs with several hidden layers could robustly approximate
the nonlinear MPC control law (Lucia and Karg, 2018). Con-
sidering the time series nature of the process states, Kumar
et al. (2018) proposed utilizing Long Short-Term Memory
(LSTM) networks to approximate the MPC control law more
accurately.

While these DNN-based approximation methods can sig-
nificantly accelerate online control with acceptable offline
computing costs, they cannot address set-valued optimal in-
puts for nonlinear systems (Cao and Gopaluni, 2020; Li et al.,
2022). It is possible that a system with complex nonlinear
dynamics has multiple global optima. Therefore, the cal-
culated optimal MPC control laws are usually one-to-many
mappings, one state corresponding to several optimal control
inputs (which is also called set-valued optimal inputs). Addi-
tionally, since the lack of efficient global optimal solvers for
the nonlinear MPC problems, when generating the training
datasets, we often rely on the local optimal solvers such as
Ipopt (Wächter and Biegler, 2006). In that case, the solver
computes one of the multiple local optima; thus, the com-
puted MPC control laws also follow one-to-many mappings.
The aforementioned DNN-based approximation methods can
only approximate one-to-one mappings and are not suitable
for one-to-many mappings (as demonstrated in Example 1).

To address the potential set-valued optimal inputs, we pro-
pose a mixture density network(MDN)-based approximation

method (MDN-based MPC) for nonlinear MPC. MDNs with
several Gaussian components in the output layer can predict
the conditional probabilities of possible control inputs by
mixing multiple estimated Gaussians, then generate several
control inputs with the highest probabilities (Bishop, 1994).
Therefore, the network can implement the one-to-many map-
pings and approximate the nonlinear MPC control law with
set-valued optimal inputs.

This paper is organized as follows. Section 2 introduces
the DNN-based MPC that has already been proposed and
studied. Section 3 describes the proposed MDN-based MPC.
We investigate a case study of a nonlinear benchmark process
in section 4, which demonstrates that our proposed scheme
exhibits better control performance than conventional DNN-
based MPC. Finally, section 5 concludes this paper.

Deep Neural Network-based Model Predictive Control
(DNN-based MPC)

MPC is a method that determines control inputs by solv-
ing optimization problems repeatedly at each sampling time
(Rawlings et al., 2020). Given the initial state x0 and the pre-
diction horizon N, the optimal control problem PN(x0) can
be formulated as following

min
u(k)

N−1

∑
k=0

l(x(k),u(k))+Vf (x(N))

s. t. x(k+1) = f (x(k),u(k)), x(0) = x0
x(k) ∈ X, x(N) ∈ X f , u(k) ∈ U, ∀k ∈ T

(1)

where x ∈ Rn is the state vector of the dimension n, u ∈ Rm

is the control input vector of the dimension m, l(·) is the
stage cost function, Vf (·) is the terminal penalty function,
k is the sampling time, f (·) is the function representing pro-
cess dynamics, X is the state constraint set, X f is the ter-
minal state constraint set, U is the input constraint set, and
T := {0,1, · · · ,N −1} is the prediction step set.

We denote the optimal control inputs for PN(x0) as
u◦(x0) = (u◦(0;x0),u◦(1;x0), · · · ,u◦(N − 1;x0)). Based on
the receding horizon scheme, MPC applies the first step in-
put u◦(0;x0) of the optimal control input vector. Therefore,
the MPC control law κN(·) is a mapping from the initial state
to the control input, and is defined as κN(x0) := u◦(0;x0).

DNN-based MPC approximates these mappings in MPC
control law via DNNs. Here, DNNs are neural networks with
multiple hidden neurons and layers, which are formulated as

h(l) = g(l)(W (l)h(l−1)+b(l)) (2)

where l is the layer number, g(l) is the activation function
for the layer l, W (l) is the weight of the layer l, h(l) is the
hidden variables of the layer l, and b(l) is the bias of layer
l (Goodfellow et al., 2016). h(0) corresponds to the system
states of the training samples. By learning the parameter set
composed of W (l) and b(l), DNNs can represent complex re-
lationships between the system states and the control inputs
as nonlinear approximation functions. Therefore, DNNs can
approximate the MPC control law κN(·) by the pairs of the
initial states x0 and the optimal control inputs u◦(0;x0). In

Figure 1: Comparison of MPC and DNN control laws for
Example 1.

this way, DNN-based MPC can dramatically reduce online
computation time because we can obtain the control inputs
predicted directly by pre-trained DNNs.

One drawback of the DNN-based MPC is that it can only
approximate one-to-one mappings between the system states
and the control inputs. When multiple optimal control inputs
exist for some system states (called set-valued MPC control
law), it will fail to give an accurate approximation. The fol-
lowing example shows a simple nonlinear optimal control
problem introduced by Cao and Gopaluni (2020) and Li et al.
(2022), in which a set-valued MPC control law is approxi-
mated.
Example 1: Approximating set-valued MPC control law of
the optimal control problem.

min
u(k)

1

∑
k=0

x(k)2

s. t. x(1) = x(0)2 −u(0)2, x(0) = x0

(3)

The prediction horizon of this problem is one step. We do
not consider the state and input constraint. We generated
10000 training samples by solving the above optimal control
problem for 10000 randomly generated initial system states
x0. We also generated 10000 test samples in the same way.
Since this problem obviously has a set-valued MPC control
law κN(x0) := ±x0, two optimal inputs for one initial state
x0, the optimization solver selects any one of two optimal
control inputs based on the randomly chosen initial guess.

Figure 1 illustrates the MPC control law and the approx-
imated DNN control law with 10 hidden neurons, 1 hidden
layer and tanh activation function. From the figure, it seems
that the DNN control law is approximately the average of
the multiple inputs in the training samples and is close to
û(x0) = 0, where û is the control input predicted by the DNN.
It is clear that the trained DNN control law deviates far from
the original MPC control law. That is because we try to fit the
one-to-many mapping via the DNN, which can only provide
the one-to-one mapping.

Table 1 shows the training and test errors of the trained
DNN controller with increased hidden layers. To consider
the set-valued results, we calculate the mean squared errors

Table 1: Training and test errors of DNN controllers for Ex-
ample 1.

Hidden layers (10 neurons) Training error Test error
1 0.3311 0.3311
2 0.3277 0.3277
3 0.3294 0.3294

(MSE) in the following way:

MSE =
1
S ∑

s∈S
min

(
(ûs −u1

s)
2, · · · ,(ûs −up

s)
2) (4)

where s is the index of training samples, S := {1,2, · · · ,S} is
the set, S is the total number of training samples, and ûs is the
predicted control input from DNN for state xs. Each state xs
has multiple optimal MPC control inputs up

s , where p is the
number of optimal inputs (p = 2 for this example). Table 1
highlights that the discrepancy between the MPC controller
and the DNN approximation cannot be alleviated by tuning
the DNN structures.

Mixture Density Network-based Model Predictive Con-
trol (MDN-based MPC)

MDNs are neural networks with several Gaussian com-
ponents in the output layer (Bishop, 1994). Figure 2a is a
MDN with 2 Gaussian components for the one-dimensional
target variable. As Figure 2b shows, the MDN can calculate
the conditional probability of the target variable by superpos-
ing these Gaussians. The function for computing conditional
probabilities is

p(u|x) =
K

∑
i=1

αi(x) ·φi(u|x) (5)

where i is the Gaussian index, K is the total number of Gaus-
sians, x is the system state, u is the control input, and αi(x)
is the contribution of Gaussian i for x, with ∑

K
i=1 αi(x) = 1.

φi(u|x) is the function computing the conditional probability
density of the control input u, given x.

Assuming the control input is a multivariate vector, the
function φi(u|x) is the probability density of multivariate
Gaussian distribution:

φi(u|x) =

√
|Σi(x)−1|√
(2π)m

(6)

·exp
(
−1

2
· (u−µi(x))T ·Σi(x)−1 · (u−µi(x))

)
where Σi(x) is the covariance matrix of Gaussian i for x.

The loss function for training MDNs is the negative loga-
rithm of the likelihood:

E = ∑
s∈S

[
− ln

(
K

∑
i=1

αi(xs)φi(us|xs)

)]
(7)

The parameter set minimizing this loss function is the opti-
mal MDNs parameter.

(a) Mixture density network with 2 Gaussians

(b) Conditional probability density of mixture model

Figure 2: Example of mixture density networks.

The inverse of the covariance matrix Σi(x)−1 needs to be
positive-definite. We can ensure this by Cholesky decom-
position: Σi(x)−1 = Ui(x)T ·Ui(x) where Ui(x) is the upper
triangular matrix. Following this idea, the output layer in-
cludes not the elements of Σi(x)−1 but the elements of Ui(x)
(Kruse, 2020).

One feature of the MDN architecture is that the activation
functions of the output layer are different for each output neu-
ron. Firstly, the activation function for the output neurons
corresponding to the contribution αi is set to be the softmax
function because the sum of contributions is 1. Then, the
identity function is often chosen to be the activation function
for the output neurons corresponding to the mean µi. Finally,
for the covariance matrix, if the values of its elements are
too small, then the probabilities of the target vectors may be
almost zero. In this case, since the loss function Eq. (7) in-
cludes the logarithm of the conditional probability, MDNs
cannot be trained because the loss becomes negative infinity.
Therefore, we introduce a tailored sigmoid function with a
variable range transformation as the activation function g(L)σii
for the diagonal elements of the covariance matrix:

gσii(z) = z+
z̄− z

1+ exp(−z)
(8)

where z is the lower limit and z̄ is the upper limit. This func-
tion project z to the range between z and z̄. Also, for the
non-diagonal elements of the covariance matrix, the activa-
tion function is often tanh.

Table 2: Training and test errors of MDN controllers for Ex-
ample 1.

Number of Gaussians Training error Test error
1 0.3074 0.3031
2 0.0013 0.0013

The MDN control law is the control input with the highest
conditional probability:κN(x0) := argmaxu∈Q p(u|x), where
Q is the possible control input set. To obtain the control in-
put using the MDN control law, we can directly apply opti-
mization methods to find the control inputs by maximizing
p(u|x). Alternatively, we can generate a control input table
for each state in advance and use the table to decide the con-
trol inputs in the online situation. However, these methods
are time-consuming when possible system states and control
input dimensions are numerous. To conquer this problem,
we find that the control inputs with the highest probabilities
are generally among the mean value set of all the Gaussians.
Therefore, we can compute the probabilities of mean values
of the Gaussians based on Eq. (5), then obtain the control
inputs by selecting the mean value with the maximum prob-
ability.

We demonstrated that MDNs could approximate the MPC
control law with set-valued inputs using the same training
samples in Example 1. Specifically, the MDNs have one hid-
den layer with 30 hidden neurons. The activation function,
except for the output layer, is tanh. Besides, we deployed
MDNs with 1 and 2 Gaussians to check the advantage of
multiple Gaussians. Table 2 illustrates the training and test
errors of the MDNs. In these experiments, MDNs with 1
Gaussian have similar errors to DNNs in Table 1 because
1 Gaussian can only achieve one-to-one mapping as DNN
does. On the contrary, MDNs with 2 Gaussians have signif-
icantly smaller errors. That is because 2 Gaussians can ap-
proximate a one-to-two mapping as shown in Figure 3. The
MDN with 2 Gaussians can approximate the MPC control
law with a shape of ”×”. The first Gaussian is in charge of
estimating ” / ” and the second Gaussian is responsible for
estimating ” /” so that the overall network can represent the
one-to-two mapping. These results imply that MDNs with
the same number of Gaussians as the number of the multi-
ple control inputs can ideally represent the set-valued MPC
control law.

In summary, MDN-based MPC has three steps: 1) training
sample generation: generate several pairs of system states
and optimal control inputs as training samples by solving
MPC optimal problems for multiple initial states. 2) offline
training: train MDNs offline and acquire the MDN control
law approximating the MPC control law. 3) online control:
repeatedly utilize the pre-trained MDNs to decide the control
inputs for the current states.

Numerical Case Study

Problem Description

In the case study, we consider a nonlinear system based
on a benchmark problem introduced by Morari and Maeder

Figure 3: Comparison of MPC and MDN control laws for
Example 1.

(2012). The plant model is

x1(k+1) = 1.05x1(k)−0.25x1(k)x2(k)+ x2(k) (9)

x2(k+1) = 0.7x2(k)+u(k) (10)

where x1 and x2 are elements of the system state and u is
the control input which has a constraint −10 ≤ u ≤ 10. We
change the coefficient in the first term of Eq. (9) from 0.95
to 1.05. Since this system converges from any states to
(x1, x2) = (0, 0), we set the terminal cost Vf (x(N)) to 0.
The stage cost is

l(x(k),u(k)) = x1(k)2 + x2(k)2. (11)

The prediction horizon N is 20.

Training and Evaluation

Data Generation: To check the control abilities of DNN
and MDN-based MPC from various system states, we divide
the state range between −10 and 10 into 321 sub-ranges, such
as −10,−9.9375, · · · ,10. Then, we solve the corresponding
optimal control problem for all 103041 initial states and store
all pairs of system states and control inputs as the dataset.
Since this problem has lots of local optima for one state, the
optimization solver will generate different control inputs for
one system state if we solve the optimal problem multi-times
with random initial guesses. Therefore, we store up to three
best inputs with a difference of more than one. Consequently,
the number of the stored pairs is 158225, which has 10163
states with three control inputs, 34858 states with two control
inputs, and 58020 states with one control input. To compare
the difference in performance between DNNs and MDNs, we
divided the stored pairs into a training dataset (40%), a vali-
dation dataset (30%), and a test dataset (30%).

Training Setting: The settings for training DNNs and
MDNs are shown in Table 3. We evaluated different settings
for both DNNs and MDNs on the validation dataset and then
report the best settings. We limit σii to the range between 0.3
and 0.9 by adjusting z and z̄. σi j does not exist because the
dimension of u is one.

Table 3: Training setting for DNNs and MDNs.

DNNs MDNs
Loss function MSE (7)

Activation (output) Linear Mixed
Activation (others) tanh tanh

Optimizer Adam Adam
Learning rate 0.01 0.01

Epoch 200 200
Mini-batch 512 512

Hidden neuron 20 20
Hidden layer 2 2

Number of Gaussians — 1, 2, 3

Evaluation: We evaluate the performance from two per-
spectives. The first one is to evaluate the deviation of the
predicted control input from the optimal MPC control input.
We use the tailored MSE in Eq. (4) to compute the train-
ing and test errors. The second one is to evaluate the over-
all closed-loop performance of the controller. Specifically,
different controllers are simulated in the closed-loop system
over 20 time steps, starting from every state in test sets. Then
we calculate the average values of the cost function. The av-
erage cost of ideal MPC is 256.3. Here, because of the input
constraints, the predicted inputs from DNNs and MDNs are
all projected to be between −10 and 10.

Simulation Result

Since each state may have more than one local optimal
input, we prepare the dataset in two ways.

In the first case, for each state, we randomly select one
control input from up to 3 best local optimal inputs. This is to
simulate the case when we use local solvers to solve optimal
control problems only once for each state. Figure 4 shows
the MPC control law, and the DNN approximation, and the
MDN approximation, when x1 is fixed to 0. As we expected,
the training and test errors of the MDNs reduce as the num-
ber of Gaussians increases. In addition, while the DNN can
approximate the MPC control law when a state has a unique
control input (x2 ∈ [−5,4]), the DNN cannot represent the
MPC control law when multiple control inputs exist for one
state (x2 ∈ [4,10]), despite lots of training samples. The same
as the phenomenon we observed in Figure 1 of the Example
1, the predicted input via the DNN is closely the average of
multiple inputs. In contrast, the MDN with 3 Gaussians can
capture the MPC control law and estimate one of the multiple
control inputs. As shown in Table 4, the training errors, test
errors, and the average cost of the MDN with 3 Gaussians
are all smaller than the DNN. This result shows that DNN-
based MPC does not work well if the solver cannot compute
a unique optimum because of multiple global or local optima.

In the second case, for each state, we select the control in-
put with the smallest cost from multiple local optimal inputs.
This is to simulate the case when we use multi-start to ob-
tain a unique close-to-global-optimal solution. The computa-
tional cost of generating data using this approach in practice
can be quite high for complicated systems. Figure 5 illus-

Table 4: Training and test errors of DNN and MDN trained
by the dataset with one randomly selected local optimal input
for each state.

Model DNN MDN
Gaussian – 1 2 3

Training error 2.819 2.999 0.536 0.303
Test error 2.810 2.974 0.519 0.343

Average cost 426.5 480.4 265.0 262.3

Figure 4: Comparison of MPC and DNN and MDN control
law trained by the dataset with one randomly selected local
optimal input for each state (x1 = 0).

trates the MPC control law and control laws of the DNN and
the MDN trained in this way, when x1 is fixed to 0. Over-
all, both the DNN and the MDN with 3 Gaussians can ap-
proximate the MPC control law relatively accurately. Fig-
ure 5b inspects the performance when x2 ∈ [2,6] in detail,
where the MPC control law is discontinuous over three seg-
ments. We observe that the MDN can approximate the dis-
continuity quite accurately by combining 3 Gaussians while
the DNN tends to have errors at the point where the control
law changes significantly. Additionally, as shown in Table
5, MDN-based MPC with several Gaussians exhibits better
control performance than DNN-based MPC. These results
imply that MDN-based MPC with adequate Gaussians out-
performs DNN-based MPC unless MPC control laws are reg-
ularly lined up.

Finally, in terms of online computation time, which is crit-
ical for online control, one step computation time of MDN-
based MPC with 3 Gaussians is 0.00265 (sec) in Python en-
vironment. Compared with the other methods in the same
condition, it was slower than the DNN-based MPC, 0.00083
(sec), but faster than the ideal MPC, 0.05513 (sec). The run-
time gap between MDN-based MPC and ideal MPC will fur-
ther expand as the prediction horizon N of the optimization
problem increases.

Conclusions

MPC is a control strategy widely applied to a variety of
industrial processes. It is challenging for DNNs to approx-
imate the MPC control law of nonlinear systems with set-
valued optimal inputs. We propose the approximation of the
MPC control law via MDNs to enable approximating the
one-to-many mappings. In the case study of the nonlinear
benchmark process, MDN-based MPC exhibits high control
performance for general nonlinear processes with multiple

Table 5: Training and test errors of DNN and MDN trained
by the dataset including one input with the smallest cost for
each state.

Model DNN MDN
Gaussian – 1 2 3

Training error 0.463 0.464 0.190 0.145
Test error 0.453 0.455 0.177 0.161

Average cost 275.6 276.3 263.1 265.4

(a) Overall control law

(b) Detailed control law

Figure 5: Comparison of MPC and DNN and MDN control
law trained by the dataset including one input with the small-
est cost for each state (x1 = 0).

global or local optima.

Although MDNs with several Gaussians are highly expres-
sive and can represent complex MPC control laws, our pro-
posed method has its limitations. One limitation is that the
training of MDNs can be computationally expensive. Al-
though this issue is not fatal for the case study because of
its simplicity, it will be very expensive if the dimension of
the control inputs is numerous. That is because neurons in
the output layer increase as the dimension of the control in-
put increases, which means that the networks have numerous
parameters to be learned. In the future, we need to investigate
efficient approaches to train MDNs with a large network.

Acknowledgment

Y. C. acknowledges funding from the discovery program
of the Natural Science and Engineering Research Council of
Canada under grant RGPIN-2019-05499. The authors also
gratefully acknowledge the computing resources provided by
SciNet (www.scinethpc.ca) and Digital Research Alliance of
Canada (www.alliancecan.ca).

References

Bishop, C. M. (1994). Mixture density networks. Tech-
nical Report NCRG/94/004, Neural Computing Research
Group, Aston University.

Cao, Y. and R. B. Gopaluni (2020). Deep neural network ap-
proximation of nonlinear model predictive control. IFAC-
PapersOnLine 53(2), 11319–11324.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep
learning. MIT Press.

Karg, B. and S. Lucia (2020). Efficient representation and
approximation of model predictive control laws via deep
learning. IEEE Transactions on Cybernetics 50(9), 3866–
3878.

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Im-
agenet classification with deep convolutional neural net-
works. Advances in Neural Information Processing Sys-
tems 25.

Kruse, J. (2020). Training mixture density networks with
full covariance matrices. Visual Learning Lab, Heidelberg
University.

Kumar, S. S. P., A. Tulsyan, B. Gopaluni, and P. Loewen
(2018). A deep learning architecture for predictive control.
IFAC-PapersOnLine 51(18), 512–517.

Li, Y., K. Hua, and Y. Cao (2022). Using stochastic program-
ming to train neural network approximation of nonlinear
mpc laws. Automatica 146, 110665.

Lucia, S. and B. Karg (2018). A deep learning-based ap-
proach to robust nonlinear model predictive control. IFAC-
PapersOnLine 51(20), 511–516.

Morari, M. and U. Maeder (2012). Nonlinear offset-free
model predictive control. Automatica 48(9), 2059–2067.

Qin, S. J. and T. A. Badgwell (2003). A survey of industrial
model predictive control technology. Control Engineering
Practice 11(7), 733–764.

Rawlings, J. B., D. Q. Mayne, and M. M. Diehl (2020).
Model predictive control: Theory, computation, and de-
sign 2nd edition. Nob Hill Publishing 3rd printing.

Tøndel, P., T. A. Johansen, and A. Bemporad (2003). An al-
gorithm for multi-parametric quadratic programming and
explicit mpc solutions. Automatica 39(3), 489–497.

Wu, Z., A. Tran, D. Rincon, and P. D. Christofides (2019).
Machine learning-based predictive control of nonlinear
processes. part i: Theory. AIChE Journal 65(11).

Wächter, A. and L. T. Biegler (2006). On the implemen-
tation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical Pro-
gramming 106(1), 25–57.

Xi, Y. G., D. W. Li, and S. Lin (2013). Model predic-
tive control — status and challenges. Acta Automatica
Sinica 39(3), 222–236.

