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Abstract 

Wastewater treatment plants (WWTP) were invented to treat wastewater pollutants from various industrial 

sector; in nowadays, it is also required to deal with sustainable efficiency considering energy consumption 

and environmental benefits under climate change. In this context, autonomous control system for 

sequencing batch reactor (SBR), which is one of the advanced WWTP, was proposed using multi-agent 

reinforcement learning (MARL). To train the MARL agents, the SBR was modeled based on the activated 

sludge model No. 1 (ASM1); then various dataset of influent characteristic was generated.  A game 

abstraction method based on a two-stage attention network (G2ANET) algorithm was employed to search 

the setpoints of aeration and extra carbon (EC) injection for SBR operation. To explain control 

performance of G2ANET, layer-wise relevance propagation (LRP) which is one of the explainable AI 

(XAI) methods was adopted. The result indicated that the G2ANET agents control the SBR to reduce 14.6% 

of energy consumptions, while maintaining effluent quality criteria. Furthermore, it was guaranteed that 

the G2ANET agents can recognize the mechanism in SBR operation without human intervention by LRP. 

Hence the XAI-assisted MARL approach to control SBR system can be applicated to real WWTP with 

guaranteed control performance considering sustainable efficiency.  
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Introduction

 

Environmental process systems are devised to prevent and 

remove the pollution from industrial, commercial, domestic, 

and agricultural sectors by human behaviors. Among the 

environmental process systems, a wastewater treatment 

system is a remarkable invention from the 19th century to 

solve an anthropological crisis that alleviates sanitation and 

protects human health from waterborne epidemic disease. 

 

* To whom all correspondence should be addressed 

In the 21st century, global water challenges have shifted and 

intensified from water quality to water affordability, 

scarcity, and resilience to climate change and the increasing 

demand for a growing human population and urbanization. 

Under climate change, wastewater treatment plant (WWTP) 

has been highly required to be operated with sustainable 

efficiency in energy consumption and environmental 

resilience.  



  

 

 

In this context, wastewater utilities require innovative 

solutions to tackle these issues by adopting novel digital 

technologies including big data, artificial intelligence (AI), 

and machine learning (ML). Especially, reinforcement 

learning related to optimal control is highlighted machine 

learning algorithm which is feasible to solve the task 

without human intervention.  

Numerous investigations have already been studied to 

control the WWTP using the RL. Nam et al. (2019) applied 

deep Q-network to the membrane bio-reactor process and it 

can reduce 34% of aeration energy consumption. Chen et al. 

(2022) developed dynamic control strategy of conventional 

WWTP by utilizing a multi-agent deep deterministic policy 

gradient. This novel strategy can guide the operation of 

WWTP considering energy consumption, eutrophication 

potential, and greenhouse gas emission (GHG) 

simultaneously. The previous researches showed the RL 

can be applicated to WWTP for sustainable operation; 

furthermore, the feasibility of autonomous operation is 

accomplished. However, the previous researches cannot 

represent how to solve the limitation of RL which do not 

guarantee the reliable operation of RL agent due to the 

black-box problem in training a policy of RL agent. Hence, 

to accomplish the sustainable and autonomous operation in 

wastewater sector, guaranteed RL algorithm should be 

developed. 

To tackle those issues, we suggested multi-agent RL 

(MARL) assisted by explainable AI (XAI) and applicated 

to the sequencing batch reactor (SBR) process which is one 

of the novel WWTP with complex operational tasks. This 

research represented that XAI-assisted MARL can 

autonomously operate the SBR system by considering 

sustainable objectives including energy efficiency and 

effluent quality. 

Materials and methods 

Proposed method 

Figure 1 depicted a proposed research framework to 

develop the guaranteed autonomous control for SBR 

process based on MARL and XAI algorithms.  

 

Figure 1. Research framework for developing the 

guaranteed autonomous control of SBR process based 

on XAI-assisted MARL 

Sequencing batch reactor (SBR) modeling 

 A mathematical model for SBR system was developed 

to evaluate the autonomous control strategy. This SBR 

model modified the rules established in the COST 624 

benchmark to transform a continuous WWT process into a 

batch operation system with a buffer tank (Pons et al., 

(2004)). Activated sludge model No. 1 was adopted to 

model the general biological removal of wastewater 

pollutants in terms of bacteria (i.e., hetero- and autotrophic 

bacteria). The core mechanisms of the process kinetic rate 

and stoichiometric matrix related to the group behavior of 

the microbial population are represented in Figure 2.   

 

Figure 2. Operational phases and mechanism of 

activated sludge model No.1 (ASM1) in SBR system 

(modified from Henze et al.(2000)) 

The operation of SBR process consists of sequential 

phases as filling, reaction, settling, discharge, and idle. The 

mass balance of filling, non-filling, and discharge phases 

follows the equation (1) to (3).  

 

𝑄𝑖𝑛 + 𝑟(𝑍)𝑉 = 𝑄𝑜𝑢𝑡𝑍 +
𝑑(𝑉𝑍)

𝑑𝑡
                                         (1) 

𝑑(𝑍)

𝑑𝑡
= 0,  𝑑 𝑉 𝑑⁄ 𝑡 = −𝑄𝑜𝑢𝑡                                                   (2) 

𝐾𝐿𝑎 ⋅ 𝑉 ⋅ (𝑆𝑂
∗ − 𝑆𝑂) + 𝑟(𝑆𝑂)𝑉 =

𝑑(𝑉⋅𝑆𝑂)

𝑑𝑡
                          (3) 

 

where, Q is volume flowrate in SBR, V is volume, r is 

reaction processes, KLa is oxygen transportation coefficient, 

and Z is state variables. Eq.(4) indicate the mass balance of 

dissolved oxygen (DO) named as So in filling and non-

filling phases. 

By those equation, this SBR model can deal with the 

operation phases. The Table 1 indicated the assigned phases 

of the proposed SBR model with time length of total 

operation. It is assumed that complete mixing effect was 



  

 

considered in filling and reaction phases; and both phases 

are under aerobic and anaerobic conditions. 

Table 1. Information of operation phases in SBR 

length(%) Phase Feeding Aeration Mixing Discharge 

1 (4.2) Filling Yes No Yes No 

2 (8.3) Reaction No No Yes No 

3 (37.5) Reaction No Yes Yes No 

4 (31.2) Reaction No No Yes No 

5 (2.1) Reaction No Yes Yes No 

6 (8.3) Settling No No No No 

7 (2.1) Discharge No No No Yes 

8 (6.3) Idle No Yes No No 

 

Carbon and nitrogen are the two major characteristics 

of wastewater influent. Their variation in WWTP plant 

operations give rise to a critical impact on the removal 

performance of the WWTP system (Henze et al., 2000). The 

variability of carbon and nitrogen are usually measured as 

ammonia (NH4) and chemical oxygen demand (COD). 

Accordingly, the autonomous control of the MARL should 

suggest the optimized operation performance under various 

NH4 and COD circumstances. To consider the varying 

influent condition in developing MARL-based autonomous 

operation in SBR system, the influent data was generated 

by referring to the information of influent characteristics 

from South Korea (Heo et al., 2021). For realistic 

consideration on actual WWTP, the composition ratio of 

carbon and nitrogen in generated influent loads was 

changed within the 10% variations, considering diurnal 

patterns.  

Multi-agent reinforcement learning (MARL): G2ANET 

The MARL was adopted to develop the autonomous 

control of SBR process, while considering cost-effective 

and environment-friendly performance. For autonomous 

control, two RL agents were assigned to search for the 

optimal setpoints of DO concentration in the aerobic phase, 

and injection of external carbon (EC) dosage in the 

anaerobic phase. For this, A game abstraction method based 

on a two-stage attention network (G2ANet) algorithm was 

employed to simultaneously search for two operational 

setpoints: DO, and EC. Two operating variables were 

manipulated by the G2ANET and were determined to 

maintain the reliable performance of nitrification and 

denitrification processes. 

G2ANET is comprised of graph and attention 

mechanisms (Liu et al.(2020)). The graph structure 

represents the connectivity between nodes and edges as 

shown in Eq.(4). Each node mapped the state information 

of all agents; and then, it is contributed to each agent as 

represented in Eq.(5). Herein, the adjacency matrix 

represents the set of edges as shown in Eq.(6). This series 

of mechanism is encoded as hard and soft abstraction to 

express G2ANET policy. 

 

Figure 3. Interfaces between SBR environment and 

multi-agent from G2ANET algorithm for aeration and 

EC injection controllers 

𝑄𝑖(𝑂𝑖 , 𝑎𝑖) = 𝑓𝑖(𝑔𝑖(𝑂𝑖 , 𝑎𝑖), 𝑥𝑖)                                         (4) 

𝑥𝑖 = ∑ 𝑤𝑗𝑣𝑗𝑗≠𝑖                                                                  (5) 

𝑤𝑗 = 𝑊ℎ
𝑖,𝑗

𝑊𝑠
𝑖,𝑗

∝ exp (h(BiLSTM𝑗(𝑒𝑖, 𝑒𝑗))𝑒𝑗
𝑇𝑊𝑘

𝑇𝑊𝑞𝑒𝑖) (6) 

 

The attention mechanism is a core of G2ANETand it 

includes hard and soft attention. Hard attention is to set the 

connectivity between nodes, and soft attention is a 

mechanism to decide which information to propagate 

between nodes. For hard attention, encoded nodes 

summarized information from all nodes and propagated 

those features in the attention layer. After that, Gumbel-

softmax processed propagated information as 1 or 0. A 

treated values of 0 and 1 indicated the status of connectivity 

between nodes. Then, an adjacency matrix can be obtained 

which represented significant connectivity between nodes 

for the communication of agents.  

In soft attention mechanism, the informative features 

are decoded as query, key, and value from encoded nodes. 

For each encoded node, the scaled score is calculated by 

comparing to the query, while keys and values are collected. 

The scaled score indicated information to be propagated to 

the other nodes. By veiling the connectivity from hard 

attention, the node that will deliver informative features is 

feasible to be simplified for selective communication 

between agents.  

The cooperative agents of G2ANET should decide the 

controller setpoints to maximize the total rewards by 

interfacing with the SBR model by the Q function in Eq. (7). 

For this, the structure of G2ANET algorithm including state, 

observations, actions, and total reward functions was 

designed as table. 

 

𝑄𝑖
𝜋(𝑠, �⃑�) = 𝐸𝜋{∑ 𝛾𝑘𝑟𝑖

𝑡+𝑘|𝑠𝑡 = 𝑠, �⃑�𝑡 = �⃑�∞
𝑘=0 }                (7) 



  

 

 

Table 2. Structure of G2ANET for SBR control 

system 

Structures Descriptions 

Agent 1 

(Aeration controller) 

- Action: [-1, -0.5, 0, +0.5, and +1 m3/d] of Air 

flowrate 

- Observations: [𝑡, 𝑋𝐻, 𝑋𝐴 , 𝑆𝑂 , 𝑆𝑁𝑂, �̇�𝐻, �̇�𝐴, �̇�𝑂 , �̇�𝑁𝐻] 

Agent 2 

(EC injection controller) 

- Action: [change of -1, -0.5, 0, +0.5, +1 m3/d] 

for external carbon flow rates 

- Observations: [𝑡, 𝑋𝐻, 𝑋𝐴 , 𝑆𝑁𝐻, 𝑆𝑁𝑂, �̇�𝐻, �̇�𝐴, �̇�𝑂 , �̇�𝑁𝑂] 

State 
[𝑡, 𝑆𝑆 , 𝑆𝐼 , 𝑆𝑁𝐻, 𝑆𝑁𝑂, 𝑆𝑂 , 𝑋𝑆 , 𝑋𝐼 , 𝑋𝐻 , 𝑋𝐴 , ⋯, 

𝑋𝐻, 𝑋𝐴 , 𝑋𝑃 , 𝑋𝑁𝐷] 

Reward 𝑅𝑡 = 1 −
(𝐸𝑄𝐼2 + 𝑂𝐶𝐼2)

2
⁄  

Hyperparameters 

- Encoding: 5-32 (linear), 32-32 (GRU) 

- Hard attention: 64-32 (Bidirectional GRU 

(Bi-GRU)) 

- Soft attention: 32-32 (query, linear), 32-32 

(key, linear), 32-32 (value, linear) 

- Graph neural network (GNN): 64-5 (linear) 

- Central critic: 14-64-64-1 (linear) 

 

To achieve the sustainable operation of SBR through 

the MARL training, the total reward function was made up 

of effluent quality index (EQI) for environmental-friendly 

benefit and operational cost index (OCI) of the cost-

effective in Eqs. (8) and (9), respectively.  

 

𝐸𝑄𝐼 =
1

1000∙𝑡𝑜𝑏𝑠
∫ [𝛽𝑇𝑆𝑆𝑇𝑆𝑆𝑒(𝑡) + 𝛽𝐶𝑂𝐷𝐶𝑂𝐷𝑒(𝑡) +

𝑡𝑓

𝑡0

𝛽𝑁𝐾𝑗𝑆𝑁𝐾𝑗,𝑒(𝑡) + 𝛽𝑁𝑂𝑆𝑁𝑜,𝑒(𝑡) + 𝛽𝐵𝑂𝐷𝐵𝑂𝐷𝑒(𝑡)]             (8) 

 

𝑂𝐶𝐼 = 𝐴𝐸 + 𝑃𝐸 + 5 ∙ 𝑆𝑃 + 3 ∙ 𝐸𝐶 + 𝑀𝐸                      (9) 

                                         

where, AE is aeration energy (kWh/d), PE  is the pumping 

energy (kWh/d), SP is the sludge production for disposal 

(kg/d), EC is external carbon addition (kgCOD/d), ME is 

mixing energy (kWh/d), and   is the net heating energy 

needed to heat the anaerobic digester (kWh/d).  

Control performance guarantee using LRP  

Layer-wise Relevance Propagation (LRP) was utilized 

as an Explanation AI (XAI) method to assign importance 

scores (i.e., relevance) to the different input variables of an 

actor-critic network that represent the contribution of an 

input variable to the control policies of G2ANET agents. 

The importance score is backpropagated through actor-

critic networks and assigned to neurons in all layers. These 

importance scores indicate the weighted significance of 

neurons that more contributed to the feature propagation 

through the actor-critic network, hence it can formulate a 

relevance metric for the regularized criterion. Considering 

local propagation rules, the basic LRP rule is used to 

propagate relevance scores (Rk) at a layer k to neurons of the 

lower layer j by backward layer-by-layer as shown in Eq. 

(10) (Montavon et al. (2019)).   

 

𝑅𝑗
𝑙 = ∑

𝑧𝑗𝑘

∑ 𝑧𝑗𝑘𝑗
𝑅𝑘

𝑙+1
𝑘                                                          (10) 

 

 

Figure 4. XAI-assisted explanations on guaranteed 

control performance of G2ANET in SBR system using 

layer-wise relevance propagation (LRP) 

Results and discussion 

Development of G2ANET multi-agent for SBR system 

The multi-agents for the SBR control system were trained 

from the generated training dataset as shown in Fig. 5. The 

proposed SBR control system was fully trained after 3,000 

episodes. G2ANET agents learning progress is represented 

by total reward functions as depicted in Fig. 5(a). When the 

agent identifies the optimal control strategy, the reward 

increases. Moreover, the reward convergence indicates that 

the multi-agents of G2ANET model were optimized. For 

this case, the rewards converge to an approximate value of 

0.3 after 3,000 episodes. This means that the agent can find 

the optimal control method for effluent quality and energy 

consumption simultaneously. To optimize the neural 

network model, no regularization technique was used, but it 

showed acceptable performance because the augmented 

dataset acted in a regularization role to prevent the network 

to fall into overfitting issues.  

Fig. 5(b) to (d) shows the control performance of the agent 

through the episodes. In early episodes in Fig.5(b), the agent 

controlled the SBR system unsteadily based on a random 

selection of air flowrate and EC without any policy. 

Therefore, the agent was not able to learn from the causality 

between inverter frequency and the environment of the SBR 

system. Progressively, the RL agents learned how to select 

correct actions to control the environment.  

Following, at transition stage in episode 1,000 to 2,000 as 

shown in Fig. 5(c), the action profiles of multi-agents in 

each phases represented to be operated to minimize the Sno 

and Snh. The results showed that, by sustaining the air 

flowrate close to around 2 mg/L, the SBR control system 

could reduce energy consumptions while considering the 

carbon and nitrogen components such as SS, SNO, and Snh 

during reaction phases. However, the control performance 



  

 

does not satisfy the effluent quality criteria due to the 

increasing airflowrate in the last reaction phases by fully 

untrained agents.  

After 5,000 episode, the agent found the policy to properly 

control the SBR system as shown in Fig. 5(d). The SBR was 

autonomously controlled by multi-agents of G2ANET; 

those RL agents can control the EC and airflowrate to 

minimize the energy consumptions and satisfy the effluent 

quality simultaneously. Hence, it can be concluded that the 

trained AI-based SBR control system finds the optimal 

method to control airflowrate and EC from the complex 

characteristics of influent and sequencing batch processes 

under aerobic and anaerobic conditions. 

 

Figure 5. Training result of the G2ANET-based SBR 

control system for (a) average rewards per 10 episodes 

of the training result and control performances in (b) 1, 

(c) 785, and (d) 5,775 episodes 

Fig. 6 represented reward profile of G2ANET agents 

into t-SNE space. Fig. 6(a) indicated the original training 

procedure of RL agents for SBR control system, and Fig. 

6(b) to (e) represented training procedure in t-SNE space. 

Note that the t-SNE space indicated continuous variations 

while the G2ANET agents were trained. The first and 

second t-SNE variables was changed from lower to higher 

value, although the third t-SNE variable was fluctuated. 

This figure verified that the proposed G2ANAET-based 

SBR control system was trained by converging into higher 

rewards function; this conclusion is same as previous 

studies including Chen et al.(2021).  

 

Figure 6. Visualization of training progress of 

G2ANET-based SBR control system using t-SNE 

Autonomous control performances of G2ANET algorithm 

As representative, Figure 7 indicated the control 

performance of MARL in SBR system. Note that the 

MARL can reduce the aeration energy as 14.6 % comparing 

to the base case. In base case, the DO (SO) was increased to 

4mg/L without considering the influent characteristics and 

SBR operations. While consuming the aeration energy, the 

SBR usually maintain high DO level to minimize the 

pollutants in effluent including the ammonia; because high 

concentration of ammonia can result in eutrophication of 

water sphere.  On contrary, the proposed MARL-based SBR 

control system can reduce the aeration energy while 

considering the effluent criteria. The trained G2ANET 

agents operated the SBR as 0.5mg/L in the first reaction 

phase to minimize the aeration energy. Then, in sequential 

anoxic reaction phase the trained agent increased EC to treat 

the ammonia. To satisfy the effluent quality, the G2ANET 

increased the DO up to 2mg/L; the ammonia and total 

nitrogen (TN) can be lower than 4 and 20 mg/L, while the 

SNO was increased due to the last aeration in reaction phase.  

 
Figure 7. Control performance of G2ANET-based 

SBR control system with reward functions 

In respect to reward functions, the instant rewards 

considering EQI and OCI continuously increased in a cycle 

of SBR operation. It indicated that the G2ANET agents can 

operate the SBR considering the trade-off perspective of 

environmental and economic values, simultaneously. 

Furthermore, the G2ANET agents can find the optimal 

control policy from the influent characteristics and process 

information of SBR system without human intervention. 

Hence, the result verified that the G2ANET can be utilized 

to autonomously operate the SBR system.  



  

 

 

XAI-assisted control performance guarantee of MARL   

 Figure 8 represented the explanation for autonomous 

control of SBR system by G2ANET agents using LRP.  

Using the LRP the relevance and important features for 

MARL agents to find the autonomous control policy can be 

identified. Figure 8 indicated the relevant features from 

states and two observations for each agent. The propagation 

of state variables was separated by the operational phases; 

in aerobic phase, the concentrations of DO, heterotrophs, 

and autotrophs are more significantly propagated. Likewise, 

for observation of aeration controller agent, So was highly 

relevant features to determine the DO control setpoint by 

agent. Furthermore, the derivations of autotrophs and DO 

were contributed to find the DO control policy. For EC 

injection agent, the concentrations of 𝑋𝐻 , 𝑆𝑛ℎ , �̇�𝐻, and  �̇�𝑛𝑜 

are highly relevant to the control policy of EC injection. The 

objective of EC injection is to reduce the 𝑆𝑛ℎ through the 

𝑋𝐻, and then  𝑆𝑛ℎ is converted to 𝑆𝑛𝑜. Hence by considering 

those variables including the increment of 𝑆𝑛𝑜 by �̇�𝑛𝑜, the 

MARL agents decided the EC injection control policy. Thus, 

the proposed MARL control system can control the SBR 

autonomously without human intervention, based on the 

physical, chemical, and biological characteristics in SBR 

operation.   

 

Figure 8. LRP explanations of relevant features from 

state and observation variables for control polices of 

G2ANET agents 

Conclusion 

 We developed MARL-based autonomous control 

system for SBR using G2ANET algorithm. For this, we 

generated various dataset of influent characteristic to train 

the G2ANET; and the SBR was modeled based on the 

ASM1. G2ANET was compromised of two agents to 

control the aeration and EC injection. Furthermore, LRP 

which is one of the XAI methods was implemented to 

explain the control performance guarantee of proposed 

G2ANET algorithm. The result indicated that the G2ANET 

agents control the SBR to reduce the energy consumptions 

as 14.6% comparing to the base case, while maintaining 

effluent quality criteria. Furthermore, XAI explained that 

the improved control performance of G2ANET agents 

comes from the understanding of mechanism in SBR 

operation without human intervention. Hence the proposed 

G2ANET-based SBR control system can be implemented 

into real WWTP with guaranteed control performance to 

assist the practitioner.  
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