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Abstract
In recent years, the integration of renewable energy resources has significantly increased the variability of power genera-
tion rates in the power grid. As a result, balancing power supply and demand has become more challenging. Price-based
demand response programs partially address this problem in the sense that they incentivize (large) users to reduce their
consumption during peak demand periods. However, the resulting load changes remain relatively unpredictable to the
grid operator. Demand bidding has the potential to improve the predictability as large electricity consumers submit elec-
tricity load bids to the grid and adjust consumption during critical time intervals. In this work, we propose a demand
bidding model for industrial plants and validate it using a prototype system comprising the IEEE 24 Bus reliability test
case and chlor-alkali plant as the load entity.
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1 Introduction

In recent years, the increased contribution of variable renew-
able energy resources (such as wind or solar photovoltaics) to
the generation portfolio has significantly increased the vari-
ability of power generation in the power grid. Considering
the inherent variability of demand, balancing power gener-
ation and demand has become more challenging. To some
extent, energy storage can address this problem (Huggins,
Huggins), but installing grid-level storage capacity remains
costly. To mitigate this pressure, programs like price-based
demand response (DR) (Vahid-Ghavidel et al., 2020) can en-
gage the end-users, especially large consumers like industrial
plants, to lower their electricity demand during peak hours
(when electricity price is high). However, the users are not
obligated to reduce demand even if prices are high, and the
response of loads to price changes remains uncertain from
the grid operator’s perspective.

From the point of view of the grid operator, there is sig-

nificant value in making load changes more predictable; in-
tuitively, one way to do so is to establish the framework for
large loads to behave similar to generators. Demand bidding
programs are a means to this end (Li and Hong, 2016), and
represent an option for (large-scale) users, such as industrial
plants, that have the ability to vary their electricity usage, i.e.,
have flexible production schedule or operating modes. In this
context, the industrial plants submit bids for electricity use
at different time intervals. This is similar to the dispatch of
power generators, with the notable difference that it involves
dispatch of loads rather than of generation.

Demand bidding allows consumers to actively participate
in the market and potentially set the market price. The strat-
egy enables two-sided participation (both supply and con-
sumption) in the electricity markets, which involves bet-
ter communication and information exchange between both
sides and the market operators. Compared to DR programs
(which result in unpredictable load changes), demand bid-
ding allows the grid operator to schedule flexible loads.
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Specifically, it enables access to the real demand curve,
which adds more flexibility for finding an efficient market
equilibrium. With demand bidding, users can reschedule, in-
crease, or reduce their loads according to the bidding results
at the grid level, which can help balance the demand and sup-
ply, maintain and improve the quality of supply, and improve
the system reliability and resilience. Demand bidding not
only allows the consumers to take control of their own elec-
tricity costs (Li and Hong, 2016; Mohsenian-Rad, 2014), but
also makes the market more efficient and reliable (Iria et al.,
2018).

Motivated by the above, in this work, we propose an in-
cipient demand bidding model for chemical plants in day-
ahead (DA) or real-time (RT) electricity market. Specifically,
we discuss a linear demand bidding model considering an
electricity-intensive plant with single product and constant
product demand rate.

The manuscript is organized as follows: the general
ideas of demand bidding models using simple one-period
and multi-period scenarios are described. A case study is
presented, consisting of a chlor-alkali plant load operating
within a grid structure based on a modified IEEE 24-bus re-
liability test system (RTS) (Soroudi, 2017). The linear de-
mand bidding model is integrated into the optimal power flow
(OPF) formulation. Simulation results are discussed, and
contrasted with those obtained using a previously-introduced
linear cooperative DR scheduling model (Otashu et al.,
2021). Directions for future work are also presented.

2 Demand Bidding Model: Frame-
work and Formulation

Principles and Assumptions
As is the case in demand response programs, it is assumed

that a user willing to engage in demand bidding will consume
more electricity if the cost of consumption decreases. Users
are expected to follow dispatch signals from the grid opera-
tor, but are not forced to. However, it is expected that con-
sumption significantly outside of the dispatch signals may
have much higher price. In fact, high deviation penalties
are likely a key reason for the low participation rate for de-
mand bidding – grid operators may even ban users failing
to follow dispatch signals repeatedly participating in the RT
market. Each user is assumed to have identified an elec-
tricity price threshold beyond which no consumption is the
best option economically. Electricity price bids are expected
to clear within a certain price range, but occasionally clear
above an extreme upper limit, below the lower limit or may
be negative. Extremely high clearing prices could occur dur-
ing severe situations that cause major disruptions to genera-
tion/transmission/distribution capacity (e.g., the 2021 Texas
winter storm ((EMP), 2021)), while extremely low clearing
prices may occur due to renewable curtailment. It is also as-
sumed that a participating user can modulate its consumption
over a useful interval of time (i.e., “not too long”) and oper-
ates continuously (i.e., without needing to shut-down com-
pletely and restart) within some production rate/ power de-

mand bounds that are known.

Demand Bidding Concept
We illustrate our ideas with a simple one period case, a

single load and a single generator. A bid is assumed to be the
value of energy consumption cost for the user and the only
avoidable cost. The goal is to maximize the market surplus
B1P1 −C2P2 (i.e., revenue - cost) and the decision variable is
the electricity consumption/generation P1 = P2. The price of
selling products made with one unit of electricity consump-
tion is B1, the cost of generating one unit unit of electric-
ity is C2. Since the market model below is convex, the dual
variable of the power balance equation (1b), λ, gives the lo-
cational marginal price (LMP). Upper and lower bounds are
set on P1, reflecting the range of operating capacity for the
user, and an upper bound is set on P2 reflecting the fact that
generation capacity is limited.

max
P1

B1P1 −C2P2 (1a)

P1 −P2 = 0 (1b)

Pmin
1 ≤ P1 ≤ Pmax

1 (1c)
0 ≤ P2 ≤ Pmax

2 (1d)
(1)

Depending on the relationship between the values of pa-
rameters B1 and C2, as well as the values of the consumption
and generation bounds, the solution of problem (1a) broadly
follows three cases as shown in Table 1. In the first case,
the locational marginal price is the sale price of the prod-
uct, the consumer breaks even, and the generator registers
a surplus of (λ−C2)P2. In the second case the locational
marginal price is the generation cost of the generator, the
generator breaks even, and the consumer registers a surplus
of (B1 −λ)P1. In the third case, the value derived from sell-
ing the product is lower than the cost of electricity needed to
make it; production is set to zero and there is no profit for
either party.

Table 1: Different outcomes of the one-period demand bidding
model

B1, C2 P bounds P λ

B1 ≥ C2 Pmax
1 > Pmax

2 P1 = P2 = Pmax
2 λ = B1

Pmax
2 > Pmin

1
B1 ≥ C2 Pmax

1 < Pmax
2 P1 = P2 = Pmax

1 λ =C2
Pmax

2 > Pmin
1

B1 ≤ C2 P1 = P2 = 0

This model serves to explain the bidding behavior of
a participant, but its practical implementation becomes
meaningful only when recognizing that total electricity
use/generation cannot typically be set to zero (i.e., there will
be a demand for product that must be satisfied, thereby re-
quiring some electricity consumption to occur) and that the
generation rates are set to meet the demand of a (large) set
of consumers. Additionally, the product generated using
electricity P1 can be stored, and electricity consumption at
a given time can exceed (or, indeed, drop below) the level
of consumption required to meet instantaneous demand. We



resolve these points by integrating these concepts within a
multi-period optimal power flow problem below.

3 Case Study: Demand Bidding for
Chlor-Alkali Production

Process Description

The core of the chlor-alkali production process is the
electrolysis of brine (sodium chloride solution) to chlorine
and sodium hydroxide, which accounts for roughly 50% of
the total electricity consumption of the process. Other im-
portant production units are shown in Figure 1. The process
model is based on the work of Otashu and Baldea (2019).
The plant is designed to meet a daily demand of 55 tons of
chlorine, although the maximum daily production capacity is
slightly higher.

Figure 1: Process flow diagram of chlor-alkali production.

Optimal Power Flow Problem

In power systems, a typical short-term operation mod-
eling problem is the optimal power flow problem (OPF)
(Bakirtzis and Biskas, 2003; Zimmerman et al., 2010). The
goal of OPF is to minimize the operating costs of the sys-
tem by varying generation rates of generators while main-
taining an active power balance and satisfying transmission
constraints (Soroudi, 2017).

In this case study, a modified IEEE 24-bus Reliability
test system (RTS) structure (Figure 2) that includes renew-
able power generation and battery energy storage is used as
the support for setting up a DC-OPF (which has the bene-
fit of resulting in a linear optimization problem). Each bus
(i) has an associated power demand (Pdi), and load shed-
ding (LSi) with the unit value of load loss being (VOLL). For
wind power generation (Pw), wind curtailment (Pwc) is con-
sidered, with a unit value loss of wind curtailment (VWC).
For battery operation, we consider the power for charging
(Pc), power discharged (Pd), as well as state of charge (SOC).
The problem involves several operating constraints including
transmission line capacity, generator ramp rates, SOC lim-
its, etc. The reader is referred to the original publication by
Soroudi Soroudi (2017) for further details.

Figure 2: The IEEE 24-bus RTS with wind turbines and battery en-
ergy storage.

For the purpose of this case study, we focus on the active
power balance and the objective function (OF), as formulated
in Equations 2. Balancing active power requires the total pro-
duction to equal total served demand at all times (discrete
time interval t). The active power flow Pi j on line i j is cal-
culated from voltage angles (θ) and the circuit susceptance
(S) connecting bus i to j. In the linear case, the locational
marginal price LMP (λ) will be obtained as the shadow price
of the active power balance. The goal is to minimize the oper-
ating cost (OF) including the cost of power generation from
generators ( with unit generation cost of C2g for generator
g), transmission, and value loss of loads or renewables (wind
curtailment in this case). OF can be expressed as a linear
combination of the relevant variables as shown in Equation
2b.

min
P

OF(P2g,t ,LSi,t ,Pwc
i,t ) (2a)

OF = ∑
g,t

C2gP2g,t +∑
i,t

VOLL×LSi,t +∑
i,t

VWC×Pwc
i,t (2b)

∑
g

P2g,t +LSi,t +Pw
i,t −Pdi,t −Pc

i,t +Pd
i,t = ∑

j
Pi j,t : λi,t (2c)

Pi j,t = Si j(θi,t −θ j,t) (2d)
(2)

Embedding Demand Bidding in OPF
Several modifications are needed to integrate demand

bidding in the OPF problem. In the active power balance con-
straint, the power consumption of the bidding entity should
be included as shown in Equation 3c. Then, according to
the formulation of the demand bidding model, the objective
function is updated to maximize the market surplus, i.e., min-
imize the total cost considering the profit derived from sell-
ing the product made by the bidding load (Equation 3b). Re-
flecting on the observation made earlier regarding the need
to meet product demand, an integral constraint (3d), is intro-
duced to ensure that the total production (Pt1i over the time
considered is equal to the product demand (Di). This con-
straint is usually not considered in an OPF problem, and is to
be expected to complicate the solution given its integral na-



ture (i.e., the fact that it involves variables that span all time
intervals).

There are two important bid-in parameters: B1, the unit
profit per unit electricity consumed by the plant which de-
pends on the market prices of the products and reactants;H1,
unit production per unit electricity used, which is a function
function of the plant efficiency.

min
P

OF(P2g,t ,LSi,t ,Pwc
i,t ,P1i,t) (3a)

OF = ∑
g,t

C2gP2g,t +∑
i,t

VOLL×LSi,t +∑
i,t

VWC×Pwc
i,t

−B1 ×∑
i,t

P1i,t
(3b)

∑
g

P2g,t +LSi,t +Pw
i,t −Pdi,t −Pc

i,t +Pd
i,t −P1i,t

= ∑
j

Pi j,t : λi,t
(3c)

Pt1i = ∑
t

H1 ×P1i,t = Di (3d)

(3)

For this case study, we assume that the chlor-alkali plant
is connected to bus 7. The power demand of the plant is
variable since the production rate can be varied by adjust-
ing the current density in the electrolyzer cells. The plant
power demand can vary between 3.7 and 9 MW, which are
the lower and upper bounds defined in the bidding model.
The value of parameter B1 was determined to be 330 $/MWh
(Dwilkins, 2020) and H1 was determined as 0.455 tons
Cl2/MWh (O’Brien et al., 2005). In principle, both vary with
the operating conditions, but for this case study we assumed
them to be fixed and we computed their values from plant
performance and economic information that is publicly avail-
able.

Baseline Model: Cooperative DR scheduling with OPF

For comparison, a cooperative DR scheduling model
from previous work Otashu et al. (2021) is considered. The
cooperative model relies on solving the OPF problem by
minimizing the overall cost of power generation, while at the
same time accounting for the integral production constraint
(4d). A linear state space model of the process dynamics
is used to represent the relationship between production rate
and power consumption. As in the case of the demand bid-
ding model, the active power balance constraint includes the
plant power consumption for the relevant node(s). However,
here the grid operator is fully aware of the process dynamics
and has full control over the process operation.

min
P

OF(P2g,t ,LSi,t ,Pwc
i,t ) (4a)

OF = ∑
g,t

C2gP2g,t +∑
i,t

VOLL×LSi,t +∑
i,t

VWC×Pwc
i,t (4b)

∑
g

P2g,t +LSi,t +Pw
i,t −Pdi,t −Pc

i,t +Pd
i,t −P1i,t

= ∑
j

Pi j,t : λi,t
(4c)

Pt1i = ∑
t

H1 ×P1i,t = Di (4d)

(4)

4 Results and Discussion
The OPF problem modified using the two approaches (de-
mand bidding and cooperative DR scheduling), was imple-
mented in GAMS (Distribution 35.1.0) and solved using the
CPLEX LP solver (version 20.1). Based on the results,
we discuss the power consumption/production schedule of
the plant, locational marginal prices (LMPs), as well as en-
ergy usage and cost (calculated from power consumption and
LMP) below.
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Figure 3: Plant power consumption and LMP for bus 7 for
both demand bidding and cooperative DR scheduling (“cooperative
scheduling”) cases.

Figure 3 shows the chlor-alkali plant power consumption
and the LMPs over the 24-hour time horizon for both de-
mand bidding and cooperative DR scheduling cases. The
evolution of plant power demand and LMP in demand bid-
ding case is close to the corresponding values in the coop-
erative case. Because the bidding model is linear, the rapid
changes in the decision variable – the power consumption of
the plant – are akin to “bang bang” control, leading to abrupt
transients. Note that this is not the case in the cooperative
scheduling case, where the scheduling calculation includes a
representation of the process dynamics. We thus expect that
imposing realistic ramp rate constraints on production would
mitigate the abrupt transients in the demand bidding case.

Table 2 shows the energy generation/consumption and as-
sociated costs. The total energy generated/consumed in the
power system is 198,977 MWh in the cooperative schedul-
ing model, which is quite close to the value predicted in the
demand bidding case. Note that the objective function value
in the cooperative scheduling case is the total operating cost,
whereas in the demand bidding case the objective function



involves market surplus and thus also considers the profit of
the plant. If only the generation and loss costs are taken into
consideration, the values of the objective function for both
cases are similar. The total energy use and associated cost
to the plant are similar as well. This indicates that demand
bidding model is promising, resulting in solutions that are
comparable to the baseline model using full plant dynam-
ics, although far less plant information is used in the demand
bidding model, and all the information except for the daily
production demand, can be derived from public sources.

Table 2: Energy utilization and associated costs for the grid and
plant

Cooperative Demand
scheduling bidding

Total energy 198,977 198,131
generation (MWh)

OF ($) 1,804,718 1,764,403
Generation and 1,804,718 1,807,400
loss costs ($)

Energy utilization 127 130
by plant (MWh)
Energy cost to 1,189 1,157
the plant ($)

Finally, it is worth pointing out that this is not a fully
equitable comparison, since in practice the electricity con-
sumed per unit production changes as the operating condi-
tions change, which is reflected in the dynamic model used
in the baseline case; on the other hand, the demand bidding
model assumes that this value is constant.

5 Conclusions
An increased contribution of renewable energy to the power
generation portfolio requires that grid operators manage
power generation and consumption more efficiently and flex-
ibly. Large loads, such as flexible electricity-intensive indus-
trial plants, are good candidates for demand-side manage-
ment programs including price-based DR and demand bid-
ding. In this work, we proposed a demand bidding model
where industrial plants submit bids for electricity use to the
grid, effectively acting as “virtual generators.” An initial
validation of the bidding model was accomplished through
a comparison with a previous cooperative demand response
approach, applied to a standard grid test case incorporat-
ing a chlor-alkali plant. The case study results suggest that
demand bidding models have the potential to promote ac-
tive participation of industrial plants as ”virtual generators”
without exposing extensive sensitive information regarding
the plant dynamics, or ceding the control of plant opera-
tions to the grid. Further investigation of the demand bid-
ding model should consider including necessary process con-
straints (such as ramp rates), testing in more complex scenar-
ios (like a transmission congestion case or an industrial plant
with a co-generation power plant), extending the approach
to the case of multiple products, and developing distributed
optimization algorithms that allow for protecting all relevant
information of participating industrial entities.
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