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Abstract
Machine learning (ML) has received an increased level of attention in modeling of nonlinear systems in recent years.
While supervised learning methods such as recurrent neural networks (RNNs) have demonstrated their capability in
fitting training data, a fundamental challenge that hinders the implementation of ML modeling to real-word chemical
processes is to characterize the generalization ability on previously unseen data. This article summarizes our recent work
that utilizes statistical learning theory to develop generalization error bounds for a variety of machine learning models
that are developed to model nonlinear processes and barrier functions, and discusses closed-loop stability properties in
the context of ML-based model predictive control (MPC).
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Introduction
Machine learning models are developed to find statistical pat-
terns in a training set that generalize to unseen data outside
the training set. While the training error of machine learn-
ing models can be made sufficiently small as demonstrated
in many computer science research work, the generalization
error that characterizes the model’s ability to adapt properly
to previously unseen data of the same distribution remains
a major challenge that should receive more attention. Sta-
tistical learning theory, a framework for machine learning
drawing from the fields of statistics and functional analy-
sis, provides an efficient tool to analyze the generalization
performance of ML models. A lot of research efforts have
been made in the computer science community to derive the-
oretical generalization error bounds for different ML mod-
els, such as feedforward neural networks (FNN) and recur-
rent neural networks (RNN) (Bartlett et al., 2017; Golowich
et al., 2018; Cao and Gu, 2019). However, as these works
primarily focused on classification problems using single-
output networks, how to adapt the results to ML modeling
of multi-input multi-output nonlinear processes in the con-
text of regression problems remains questionable.

In addition, machine learning models have been incor-

porated in the designs of model predictive control (MPC)
to provide state predictions in the real-time optimization of
control actions (Wu et al., 2019). Despite the success of ap-
plications of ML-based MPCs to many chemical processes,
theoretical study of closed-loop stability properties based on
the generalization ability of ML models is still in its in-
fancy. Based on the above, this work summarizes our re-
cent research on the generalization error of ML models and
closed-loop stability of ML-based MPC using statistical ma-
chine learning theory. A goal of this work is to highlight
the derivations of generalization error bounds for a variety
of neural networks that are commonly used to model nonlin-
ear dynamic systems, and provide probabilistic closed-loop
stability analysis for ML-based MPC. Additionally, we also
discuss the generalization ability of neural networks for the
barrier functions that are used to ensure process operational
safety in control of chemical processes.

Class of Nonlinear Process Systems
We consider a class of multi-input multi-output (MIMO)
nonlinear continuous-time systems represented by the fol-
lowing state-space form:

ẋ = F(x,u) := f (x)+g(x)u (1)
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where x = [x1, ...,xn]
T ∈ Rn is the state vector, y =

[y1, ...,yq]
T ∈ Rq is the output vector, and u = [u1, ...,um]

T ∈
Rm is the manipulated input vector. F(x,u) represents a non-
linear vector function of x and u which is assumed to be
sufficiently smooth. The constraints on control inputs are
given by u ∈U := {ui

min ≤ ui ≤ ui
max}. The functions f (·),

and g(·) are nonlinear vector and matrix functions of n× 1
and n ×m dimensions, respectively. We assume f (0) = 0
such that the origin is a steady-state of Eq. 1. A stabiliz-
ing feedback controller is assumed to exist for the nonlinear
system of Eq. 1 under which the origin is rendered exponen-
tially stable for the states in an open neighborhood around
the origin D. Based on the stabilizability assumption, we as-
sume there exists a Lyapunov function V (x) and a Lyapunov-
based controller u = Φ(x)∈U such that an estimate of initial
states D that satisfy ∂V

∂x F(x,u)< 0 can be characterized. The
closed-loop stability region for the nonlinear system of Eq. 1
is then determined as follows: Ωρ := {x ∈ D | V (x) ≤ ρ},
ρ > 0, which is a level set of V (x) within D. Throughout
this manuscript, we use |·| to denote the Euclidean norm of
a vector, and set subtraction is denoted by “\”, i.e., A\B :=
{x∈Rn | x∈A,x /∈B}. Additionally, there exist positive con-
stants MF , Lx, L′

x such that the following inequalities hold for
all x,x′ ∈ Ωρ and u ∈U :
|F(x,u)| ≤ MF , |F(x,u)−F(x′,u)| ≤ Lx|x− x′| (2a)∣∣∣∣∂V (x)

∂x
F(x,u)− ∂V (x′)

∂x
F(x′,u)

∣∣∣∣≤ L′
x|x− x′| (2b)

Generalization error of ML models
Generalization error measures the machine learning model’s
ability to adapt properly to new, previously unseen data,
which is drawn from the same distribution as the one used to
train the model. A theoretical analysis of generalization error
is of significant importance as it provides a fundamental un-
derstanding on how good the model performs on unseen data
that will be collected in real-world systems. In this section,
we will discuss the derivations of generalization errors using
statistical learning theory for several popular neural networks
that are often used to model the nonlinear dynamic system of
Eq. 1. Before we present the results on generalization error
bounds, we first introduce the definitions of generalization er-
ror as follows. Given a data distribution D, and a function h
that predicts y (output) based on x (input), the generalization
error is given by E[L(h(x),y)] =

∫
X×Y L(h(x),y)ρ(x,y)dxdy,

where ρ(x,y) denotes the joint probability distribution for x
and y, and Y and X represent the vector space for all possi-
ble outputs and inputs, respectively. L(·, ·) is the loss func-
tion, e.g., mean squared error (MSE) for regression prob-
lems. Since the distribution may be unknown, the following
empirical error is often used as an approximation measure for
the generalization error: ÊS[L(h(x),y)] = 1

m ∑
m
i=1 L(h(xi),yi),

where S = (s1, ...,sm), si = (xi,yi) includes m data samples
drawn from the data distribution D.

Recurrent nerual networks (RNNs)
As discussed in the introduction, RNN models are a power-
ful tool for modeling dynamic systems using time-series data.
To simplify the discussion, we consider a single-hidden-layer

RNN model with the following form to approximate the non-
linear dynamics of Eq. 1.

ht = σh(Uht−1 +Wxt), yt = σy(Qht) (3)

where the RNN input and output at the tth time step are de-
noted by xt ∈ Rrx and yt ∈ Rry , respectively. ht denotes the
hidden state, and W , U , and Q are the weight matrices con-
necting different layers. The (nonlinear) activation functions
are denoted by σh and σy. Specifically, σh is often chosen
to be a nonlinear activation function that may take differ-
ent forms (e.g, tanh or ReLU), while σy typically uses a
linear element-wise activation function for regression prob-
lems. Without loss of generality, we have the following as-
sumptions for the development of RNN models: 1) the RNN
inputs are bounded, i.e., |xi,t | ≤ BX , for all i = 1, ...,m and
t = 1, ...,T , 2) the Frobenius norms of the weight matrices are
bounded, i.e., ∥W∥F ≤ BW,F ,∥Q∥F ≤ BQ,F ,∥U∥F ≤ BU,F ,
3) all the datasets (i.e., training, validation, and testing) are
drawn from the same distribution, and 4) σh is a 1-Lipschitz
continuous activation function, and is positive-homogeneous
in the sense that σh(αz) = ασh(z) holds for all α ≥ 0 and
z ∈ R. Consider a hypothesis class H of RNN models h(·)
that map a dx-dimensional input x ∈ Rdx to a dy-dimensional
output y ∈ Rdy . The predicted output of the RNN model and
the loss function are denoted by yt = h(xt) and L(yt , ȳt), re-
spectively, where L(y, ȳ) calculates the squared difference
between the predicted output y and the true output ȳ. The
following lemma gives the generalization error bound for a
general class of machine learning models.
Lemma 1 (c.f. Theorem 3.3 in Mohri et al. (2018)). Let H
be the hypothesis class of ML models that map {x1, ...,xt} ∈
Rdx×t (i.e., the first t-time-step inputs) to yt ∈ Rdy (i.e., the
t-th output), and Gt be loss function set with H .

Gt = {gt : (x, ȳ)→ L(h(x), ȳ),h ∈ H } (4)

where ȳ and x are the true output vector and the input vector
of ML model, respectively. Then, given a dataset consisting
of m i.i.d. data samples, the inequality below holds in proba-
bility for all gt ∈ Gt over the data samples S = (xi,t ,yi,t)

T
t=1,

i = 1, ...,m:

E[gt(x,y)]≤
1
m

m

∑
i=1

gt(xi,yi)+2RS(Gt)+3

√
log( 2

δ
)

2m
(5)

Eq. 5 demonstrates that the upper bound for the general-
ization error depends on the training error (first term), the
Rademacher complexity of Gt (second term), and a function
of the samples size m and the confidence δ. Therefore, to de-
rive a generalization error bound for RNN models, an upper
bound for the Rademacher complexity of RNN hypotheses
needs to be developed. The following lemma was developed
in Wu et al. (2021) to show the generalization error bound for
RNN models.

Lemma 2 (c.f. Theorem 1 in Wu et al. (2021)). Given a
dataset S = (xi,t ,yi,t)

T
t=1 with i.i.d. data samples, i = 1, ...,m,

and the Lr-Lipschitz loss function class Gt associated with
the RNN function class Ht that predicts outputs at the t-th



time step, with probability at least 1−δ over S, the following
inequality holds for the RNN models:

E[gt(x,y)]≤
1
m

m

∑
i=1

gt(xi,yi)

+O

(
Lrdy

MBX (1+
√

2log(2)t)√
m

)
+3

√
log( 2

δ
)

2m

(6)

where M =
1−(BU,F )

t

1−BU,F
BW,F BQ,F , and BX is the upper bound

for RNN inputs. dy is the RNN output dimension.

With respect to the applicability of the generalization error
bound of Theorem 1, in Wu et al. (2021), we provided a de-
tailed computational study demonstrating the practicality and
usefulness of the error bounds in the context of a chemical
reactor example. Specifically, we successfully demonstrated
the impact of sample size for training, network configuration,
depth, training and tuning on the error bounds in both open-
loop and closed-loop scenarios under MPC.

Physics-informed RNNs
While standard RNNs do not consider any domain-specific
knowledge in model development and generally use fully-
connected layers to capture input-output relationship us-
ing the given training dataset, it has been demonstrated
in Wu et al. (2020) that a priori process structural knowl-
edge can be utilized to improve RNN performance by devel-
oping a partially-connected architecture. Fig. 1 shows the
difference between fully-connected and partially-connected
RNNs, from which it can be observed that the connection
between some neurons is removed in a partially-connected
structure to resemble the underlying input-output relation-
ship from a priori process structural knowledge. Partially-
connected RNNs can be used to model a multiple-unit pro-
cess in which upstream units affect downstream units but not
in the opposite direction. For example, consider the non-
linear system of Eq. 1 for which the input vector u1 affects
the state x1 only, and both u1 and u2 affect the state x2,
where x = [x1, x2] ∈ Rn and u = [u1 ∈ Rm1 , u2 ∈ Rm2 ] ∈ Rm,
m1 + m2 = m. Wu et al. (2020) demonstrates that by us-
ing partially-connected architecture, the number of weight
parameters can be significantly reduced to achieve a de-
sired model accuracy compared to a fully-connected RNN
model. Additionally, in Alhajeri et al. (2022), an Aspen
simulation study of two CSTRs in series was carried out to
demonstrate that the MPC using partially-connected RNN
models achieved better closed-loop performances with a re-
duced computation time. To better understand the benefits of
partially-connected RNNs in terms of higher modeling accu-
racy, a theoretical analysis of generalization error needs to be
developed.
In a partially-connected structure, the connections between
input and output should be carefully designed to be con-
sistent with the a priori process structural knowledge. In
particular, as shown in Fig. 1, u2 does not affect x1, and
therefore, the weights associated with the links between u2
and x1 (dashed lines in Fig. 1) are assigned to be zero (i.e.,
wi, j = q j,l = 0). Since the Frobenius norm of matrix A is

expressed as the square root of the matrix trace of AA(H),
where A(H) is the conjugate transpose, more zero entries in
the weight matrices will lead to lower bounds on their Frobe-
nius norms (i.e., smaller BW,F and BQ,F ). As a result, a lower
generalization error bound can be derived due to a smaller
M (M is the product of the RNN weight matrices bounds
in Eq. 6). By incorporating process structural knowledge
into the development of partially-connected RNN models,
the complexity of RNN hypothesis class is reduced compared
to fully-connected RNNs, which leads to a tighter bound on
the Rademacher complexity. Additionally, by revealing the
correct direction for RNNs to find the optimal weight param-
eters, the training error (the first term in Eq. 6) is more likely
to be minimized using the same hyperparameters (i.e., the
number of layers and neurons) and the same training set of m
i.i.d. data samples.
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Figure 1: Schematic of standard fully-connected and
physics-informed RNN structures.

Long short-term memory (LSTM)
LSTM networks are a variant of RNNs, and have been widely
used to make predictions based on time series data, since
they can address the vanishing gradient problem that is of-
ten encountered when training traditional RNNs. The LSTM
is composed of a cell, an input gate, an output gate, and a
forget gate, and is formulated by the following equations:
ft = σ(Wf xt +U f ht−1) (7a)
it = σ(Wixt +Urht−1) (7b)
ot = σ(Woxt +Uoht−1) (7c)
c̃t = tanh(Wcxt +Ucht−1) (7d)
ct = ft ⊙ ct−1 + it ⊙ c̃t (7e)
ht = ot ⊙ tanh(ct) (7f)

where Wf ,Wi,Wo,Wc ∈ Rdh×dx are the weights associated
with the inputs, and U f ,Ui,Uo,Uc ∈ Rdh×dh are the weights
associated with the hidden states. it , ft ,ot ∈ Rdh represent
the input, forget ,and output gates, respectively. ct ∈ Rdh

is the cell state, and c̃t is the cell integrated with the input
gate. σ is the nonlinear activation function sigmoid, and tanh
is the hyperbolic tangent function. The output at time t is
yt = σy(Qht). The following lemma derives the generaliza-
tion error for LSTM-RNNs:

Lemma 3. Let Gt be the family of loss functions associ-
ated with the hypothesis class Ht of vector-valued functions
that map the LSTM-RNN inputs to the LSTM-RNN output



at the tth time step. Given a set of m i.i.d. data samples
S = (xi,t ,yi,t)

T
t=1, i = 1, ...,m, with probability at least 1− δ

over S, the following inequality holds for LSTM-RNN:

E[gt(x,y)]≤
1
m

m

∑
i=1

gt(xi,yi)+O

Lrdy

(√
2+1

)
M

√
m


+3

√
log
( 2

δ

)
2m

(8)

where M = BQBWcBx
1−βt

1−β
, ∥Q∥1,∞ ≤ BQ, ∥Wc∥F ≤ BWc ,

∥xi,t∥2 ≤ Bx for all i = 1, ...,m, t = 1, ...,T , and β = 1+BUc

with ∥Uc∥F ≤ BUc .

Figure 2: Schematic of an LSTM-RNN structure.

ML-based MPC
In this section, the ML models are incorporated into a
Lyapunov-based model predictive controller (LMPC) to pre-
dict state evolution of the system of Eq. 1. Specifically, the
optimization problem of LMPC using RNN/LSTM models is
given as follows: (Wu et al. (2019))

J = min
u∈S(∆)

∫ tk+N

tk
(Lt(x̃(t),u))dt (9a)

s.t. ˙̃x(t) = Fnn(x̃(t),u(t)) (9b)
u(t) ∈U, ∀ t ∈ [tk, tk+N) (9c)
x̃(tk) = x(tk) (9d)
V̇ (x(tk),u)≤ V̇ (x(tk),Φnn(x(tk)),

if x(tk) ∈ Ωρ\Ωρnn (9e)
V (x̃(t))≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn (9f)

where S(∆) denotes a set of piecewise constant functions
with sampling period ∆, x̃ is the state trajectory predicted
by the RNN-LSTM model, and N is the number of sam-
pling periods in the prediction horizon. Lt(x̃(t),u) is the
objective function and is typically designed in a quadratic
form, e.g., Lt(x̃,u) = x̃T Qx̃+ uT Ru, such that the minimum
is achieved at the steady-state. The time-derivative of the
Lyapunov function V is denoted by V̇ (x,u) in Eq. 9e, i.e.,
V̇ (x,u) = ∂V (x)

∂x (Fnn(x,u)), where Fnn represents the RNN of
Eq. 3 or the LSTM model of Eq. 7. The MPC optimiza-
tion problem is to minimize the integral of Lt(x̃(t),u(t)) of
Eq. 9a, which represents the cost function over the predic-
tion horizon, while satisfying the constraints of Eqs. 9b–9f.
The LMPC computes the optimal input sequence u∗(t) and
delivers the first control signal u∗(tk) to the system to be im-
plemented for the following sampling period. At the next

sampling time, the LMPC receives new state measurement
and will be solved again.
The RNN/LSTM model is used to forecast the evolution of
the closed-loop state trajectory x̃(tk), and the initial condi-
tions are updated according to Eq. 9d, where x(tk) is the
current state measurement. The input constraints are given
in Eq. 9c, and they are imposed over the entire prediction
horizon. The constraints of Eqs. 9e-9f are designed to en-
sure the stability of the closed-loop system. Specifically,
when x(tk) ∈ Ωρ\Ωρnn , where Ωρnn is the target region and
Φnn(x) is a stabilizing controller that can render the origin of
the RNN/LSTM model exponentially stable, the constraint of
Eq. 9e is triggered to drive the state towards the origin; how-
ever, when the state x(tk) enters Ωρnn , the predicted closed-
loop state will be maintained within this region for the du-
ration of the prediction horizon. While the full proof of
closed-loop stability of the nonlinear system of Eq. 1 under
the LMPC of Eq. 9 can be found in Wu et al. (2021), we
present some key propositions below to help readers under-
stand the key steps. Specifically, we first assume there ex-
ists a stabilizing feedback controller u = Φnn(x) ∈U that can
render the origin of the RNN model of Eq. 3 or the LSTM
model of Eq. 7 exponentially stable in an open neighborhood
D̂ around the origin. The stabilizability assumption implies
the existence of a continuously differentiable control Lya-
punov function V (x) such that the following inequalities hold
for all x in D̂:

ĉ1|x|2 ≤V (x)≤ ĉ2|x|2, (10a)

∂V (x)
∂x

Fnn(x,Φnn(x))≤−ĉ3|x|2, (10b)∣∣∣∣∂V (x)
∂x

∣∣∣∣≤ ĉ4|x| (10c)

where ĉ1, ĉ2, ĉ3, ĉ4 are positive constants. Similarly to the
characterization of the closed-loop stability region for the
nonlinear system of Eq. 1, we can find a level set of Lya-
punov function embedded in D̂ as the closed-loop stability
region for the RNN model Fnn: Ωρ := {x ∈ D̂ | V (x) ≤ ρ},
where ρ > 0. Since there exists model-plant mismatch, the
following proposition is developed to demonstrate that the
feedback controller u = Φnn(x) ∈ U is able to stabilize the
nonlinear system of Eq. 1 with high probability provided that
the modeling error is sufficiently small. The proof can be
found in Wu et al. (2021) and is omitted here.

Proposition 1. Consider the RNN model trained using a set
of m i.i.d. data samples S = (xi,t ,yi,t)

T
t=1, i = 1, ...,m with the

feedback controller u = Φnn(x) ∈ U that satisfies Eq. 10. If
for all x ∈ Ωρ and u ∈ U, the modeling error can be con-
strained by |F(x,u)− Fnn(x,u)| = EM ≤ γ|x|, where γ is a
positive real number satisfying γ < ĉ3/ĉ4, then the controller
u = Φnn(x) ∈U also renders the origin of the nonlinear sys-
tem of Eq. 1 exponentially stable with probability at least
1−δ for all x ∈ Ωρ.

The following proposition characterizes the deviation be-
tween the predicted state and the actual state in a finite pe-
riod of time by accounting for the bounded modeling error
assumed in Proposition 1.



Proposition 2. Consider the nonlinear system ẋ = F(x,u) of
Eq. 1 and the RNN model ˙̂x = Fnn(x̂,u) with the same initial
condition x0 = x̂0 ∈Ωρ. There exists a class K function fw(·)
and a positive constant κ such that the following inequalities
hold ∀x, x̂ ∈ Ωρ:

|x(t)− x̂(t)| ≤ fw(t) :=
EM

Lx
(eLxt −1) (11a)

V (x)≤V (x̂)+
ĉ4
√

ρ√
ĉ1

|x− x̂|+κ|x− x̂|2 (11b)

Finally, the following proposition is developed to show prob-
abilistic closed-loop stability of the nonlinear system of Eq. 1
under sample-and-hold implementation of the controller u =
Φnn(x) ∈U .

Proposition 3. Consider the nonlinear system of Eq. 1 with
the controller u = Φnn(x̂) ∈ U that meets the conditions of
Eq. 10. Under the sample-and-hold implementation of con-
trol actions, i.e., u(t) = Φnn(x̂(tk)), ∀t ∈ [tk, tk+1), where
tk+1 := tk + ∆. there exist εw > 0, ∆ > 0 and ρ > ρmin >
ρnn > ρs that satisfy

− c̃3

ĉ2
ρs +L

′
xMF ∆ ≤−εw (12)

and ρnn := max{V (x̂(t + ∆)) | x̂(t) ∈ Ωρs ,u ∈ U}, ρmin ≥
ρnn +

ĉ4
√

ρ√
ĉ1

fw(∆)+κ( fw(∆))
2, c̃3 =−ĉ3 + ĉ4γ > 0, such that

for any x(tk) ∈ Ωρ\Ωρs , with probability at least 1− δ, the
following inequality holds:

V (x(t))≤V (x(tk)), ∀t ∈ [tk, tk+1) (13)

and the state x(t) of the nonlinear system of Eq. 1 is bounded
in Ωρ for all times and ultimately bounded in Ωρmin .

Therefore, based on the above propositions, we can prove
recursive feasibility and closed-loop stability of the nonlin-
ear system of Eq. 1 by showing that 1) the stabilizing con-
troller u = Φnn is a feasible solution to the MPC of Eq. 9
for all times, 2) the closed-loop state can be driven towards
the origin, and ultimately bounded in the terminal set un-
der u = Φnn, and 3) due to the two Lyapunov-based con-
straints of Eqs. 9e-9f, the optimal solution solved by MPC
will achieve an equally good closed-loop performance, if no
better, than the stabilizing controller. Interested readers may
refer to Wu et al. (2021) for the detailed proof of closed-
loop stability for the nominal system of Eq. 1, and Wu et al.
(2022) for the discussion of closed-loop stability for uncer-
tain nonlinear systems with stochastic disturbances. Finally,
it is important to point out that nonlinear model-based pre-
dictive control algorithms may lead to nonconvex optimiza-
tion problems (whether ML models or first-principles mod-
els are used) which may be efficiently solved to local opti-
mality with standard nonlinear optimization tools. There is
no need to solve to global optimality as there is no time to
accomplish this task in real-time for any practical applica-
tion. This is how nonlinear MPC is implemented in practice
with great success, and the computation of locally optimal
solutions does not diminish at all the importance of devel-
oping further and implementing in practice nonlinear MPC
with ML models.

Generalization error bound for barrier-function MPC
Barrier functions have been used to characterize the safety
of dynamical systems by certifying whether a control law
achieves forward invariance of a safe set. Some recent work
have integrated control barrier functions (CBF) with Lya-
punov functions to create a new function termed control Lya-
punov barrier function (CLBF) and incorporate it in the de-
sign of MPCs to ensure process operational safety and stabil-
ity simultaneously for safety-critical systems in chemical in-
dustry (Romdlony and Jayawardhana, 2016; Wu et al., 2019).
Since machine learning tools such as feedforward neural net-
works (FNNs) can also be used to construct CBFs (Chen
et al., 2022a), a generalization error bound on the result-
ing FNN-CBF is necessary for the derivation of probabilistic
safety and stability guarantees for the control law designed
using a CLBF. We first present the properties of a CBF in the
following definition: (Wieland and Allgöwer (2007))

Definition 1. Consider D which is a set of unsafe state
values in state space, a continuously differentiable function
B(x) : Rn → R is a CBF if the following conditions are met:

B(x)> 0, ∀ x ∈ D (14a)
L f B(x)≤ 0, ∀ x ∈ {z ∈ Rn\D | LgB(z) = 0} (14b)
XB := {x ∈ Rn | B(x)≤ 0} ̸= /0 (14c)

For any initial state x(t0) = x0 ∈ X0, we say the system is safe
in the sense that the closed-loop state stays within the safe re-
gion X0 for all times, where X0 := {x ∈ Rn\D}, {0} ∈ X0
and X0 ∩ D = /0, if there exists a constrained control law
u = Φ(x) ∈U that renders the origin of the closed-loop sys-
tem of Eq. 1 asymptotically stable, and the closed-loop state
trajectories do not enter the unsafe set D at all times, i.e.,
x(t) ∈ X0, x(t) /∈ D , ∀ t ≥ 0.
In Chen et al. (2022b), the CBF is developed from operating
data in the state space that are labelled based on their safety
status. This barrier function will then be synthesized using a
feed-forward neural network, which typically consists of an
input layer, some hidden layers, and an output layer. Specifi-
cally, the inputs to the FNN are the state vector x ∈ Rn of the
nonlinear system of Eq. 1, and the output of the FNN predicts
the barrier function value B̂(x) ∈ Rn. Training data points
are collected from both the unsafe and the safe operating re-
gions, where the target output values of B(x) will satisfy the
CBF conditions of Eq. 14a and Eq. 14c for the unsafe and
the safe regions, respectively. More specifically, safe data
points are labeled with a target output value of B(x) = −1,
and unsafe data points are labeled with a target output value
of B(x) = +1.
A general FNN model is considered, where m number of data
samples are used to develop this model. The data samples
are generated independently as per the data distribution over
X ×Y ∈ Rdx ×Rdy , where dx and dy denote the dimension
of the FNN input and output vectors respectively. The gen-
eral structure of FNN model with inputs denoted as x ∈ Rdx

and predicted output denoted as ŷ ∈ Rdy in terms of scalar or
vector-valued functions and weight matrices for d total num-
ber of layers can be formulated as follows:

ŷ = σd(Wdσd−1(Wd−1σd−2(...σ1(W1x)))) (15)



where each Wl for l = 1, ...,d layers represents the weight
parameter matrix, and each σl represents the activation func-
tion in each layer. The number of layers d represents the
depth of the network, and the width of the network hmax
can be defined as the maximum number of neurons in a hid-
den layer (maximal column or row dimension of Wl), i.e.,
hmax = maxl=1,...,d{hl}, where hl denotes the number of neu-
rons in the l-th layer. Due to the unique dichotomous na-
ture of B(x), we choose a hyperbolic tangent sigmoid func-
tion σ(z) = tanh(z) = 2

1+e−2z −1 as the activation function to
polarize the output of the network and in turn, improve the
prediction accuracy. This is because of the property of the
tanh(z) function approaching +1 as z approaches +∞, and
−1 as z approaches −∞, thus polarizing the outputs of each
layer and enforces the output of the FNN to approximate con-
stant positive values (+1 for safe points), or constant negative
values (-1 for unsafe points). The input and output of the
FNN model are denoted by the bold face x ∈ Rdx and y ∈ Rdy

respectively. For this particular application, x is the state
vector of Eq. 1 (x ∈ Rn), and y is the barrier function value
(B(x)∈R1). Similar to the assumptions for training the RNN
model of Eq. 3, we assume: 1) the FNN inputs are bounded,
i.e., |xi| ≤ BX , for all i = 1, ...,m samples, 2) the maximal 1-
norm (l1/l∞) of the rows of weight matrices in the output and
in the hidden layers are bounded by ∥W∥1,∞ ≤ BW , 3) all the
datasets (i.e., training and testing) are drawn from the same
underlying distribution, and 4) σl (where l denotes any hid-
den layers) is a 1-Lipschitz continuous activation function,
and satisfies σl(0) = 0.
The following proposition was developed in Chen et al.
(2022b) to derive the generalization error bound for the FNN
model following the results for the RNN model of Eq. 3.

Proposition 4. Consider the dataset Ss consisting of m
i.i.d. data samples and the class of loss functions G =
{gL : (x,y)→ L(h(x),y),h ∈ Hh} associated with the vector-
valued FNN hypothesis class Hh. With probability of at least
1−δ, we have the following inequality:

E[gL(x,y)]≤O

(
Lrdy

BX (BW )d
√

d +1+ log(dx)√
m

)

+3

√
log( 2

δ
)

2m
+

1
m

m

∑
i=1

gL(xi,yi)

(16)

where BX is the upper bound on FNN inputs, BW is the up-
per bound on FNN weight matrices, Lr is the local Lipschitz
constant for the loss function L(·), dx is the FNN input di-
mension, and dy is the FNN output dimension.

Conclusions
This work presents an overview of recent research results
on statistical machine learning modeling of nonlinear pro-
cesses and closed-loop stability under machine-learning-
based model predictive control. The theoretical results of
the generalization error bounds for standard RNNs, physics-
informed RNNs, and LSTMs were first discussed. Then, the
machine learning models were incorporated into the design
of MPCs that ensure closed-loop stability in probability. Fi-
nally, the recent work on statistical ML in barrier-function

MPC was discussed, in which a generalization error bound
was derived for the FNN-based barrier functions.
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