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Abstract
Quantum computing (QC) promises a transformational leap in computing speed that may allow solving large-
scale complex optimization problems that were previously unattainable. While QC efficiently solves quadratic
unconstrained binary optimization (QUBO) problems, solving problems with continuous variables is still challenging.
To tackle this, we have devised a framework to solve mixed-integer quadratically constrained quadratic programming
(MIQCQP) optimization problems involving both integer and continuous decision variables. In our framework, we
denote the continuous and integer variables via unary and binary encodings and use them to transform a MIQCQP into
QUBO. In doing so, we eliminate the need for any hybrid classical-quantum scheme that requires solving subproblems
using classical computing. We then solve the QUBO using quantum annealing technique. We demonstrate the utility of
our framework by solving a few test problems.
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Introduction

Process optimization deals with obtaining good or opti-
mal solutions to optimization problems whose mathematical
models may constitute highly nonlinear and nonconvex terms
or involve thousands of variables and constraints (Monjur
et al. (2022); Iftakher et al. (2022)) . In spite of the remark-
able development in the field of global optimization, large-
scale discrete-continuous problems may still require hours
or days to obtain a feasible solution with an acceptable op-
timality gap (Ajagekar et al. (2020)). Many design prob-
lems in chemical process systems are mixed-integer quadrat-
ically constrained quadratic programs (MIQCQP) with both
continuous and integer decision variables, which are diffi-
cult optimization problems to solve (Demirel et al. (2017);
Tian et al. (2018)). Many process intensification problems
of real importance are also formulated as MIQCQP. In such
formulations, multi-scale decisions are integrated into a sin-
gle optimization model that introduces convergence issues
and increased modeling complexity which makes it diffi-
cult to solve using state-of-the-art deterministic optimiza-
tion solvers (e.g., BARON (Sahinidis (1996)), ANTIGONE
(Misener and Floudas (2014))). Also, the solution of such
mixed-integer programs may not be guaranteed within poly-
nomial time due to them being NP-hard in nature (Zhao et al.
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(2022)). Heuristic or stochastic approaches (e.g., simulated
annealing, tabu search, ant colony optimization, etc.) aim to
provide a good solution within a reasonable time. However,
the solution quality and convergence are not always guaran-
teed.

To that end, quantum computing (QC) shows promise to
revolutionize the way we perform computing in science, en-
gineering, biology, finance, and many other domains. Specif-
ically, QC shows great promise to solve many combinatori-
ally complex optimization problems that appear in process
systems engineering (PSE) applications towards sustainable,
energy-efficient, and cost-effective chemical processes (An-
dersson et al. (2022); Ajagekar and You (2019)). As of now,
a specific type of problem i.e., quadratic unconstrained bi-
nary optimization (QUBO) of the form minx∈{0,1}xT Qx can
be solved in quantum computers. A rich class of problems
has natural QUBO formulations and applications (Glover
et al. (2022)). For example, any integer linear program can
be converted to QUBO problems while constraints can be
reformulated to QUBO by introducing a quadratic penalty
to the objective function with a suitable penalty parame-
ter. In this way, many important problems have equivalent
QUBO formulations (Kochenberger et al. (2014); Anthony
et al. (2017)).

Once a QUBO is formed, it is mapped onto the physical
quantum device consisting of quantum bits (qubits). All the
binary variables are mapped onto the qubits as nodes in a
graph, while the coefficients of the linear and quadratic terms



represent the node weights and edge strengths between two
adjacent qubits, respectively. QUBO models are particularly
popular as these models can easily be translated to an Ising
Hamiltonian which can be minimized using quantum anneal-
ers (Glover et al. (2022)). Essentially, this results in the re-
casting of the QUBO model as an energy minimization prob-
lem. At the end of the annealing process, the ground state of
the Hamiltonian is represented as a binary string which cor-
responds to the solution of the original optimization problem
(Grant and Humble (2020)).

Quantum architecture is yet to be robust enough to reliably
solve large-scale discrete-continuous optimization problems.
This has prompted researchers to employ hybrid classical-
quantum optimization techniques for solving Mixed-Integer
problems. In this approach, the original model is decom-
posed into subproblems where the master problem involves
only the integer decisions. The solution to the master prob-
lem is returned to the subproblem which is solved in the con-
tinuous domain. In this way, both the classical and quan-
tum computers communicate and the solutions iteratively im-
prove. Recent applications of such hybrid techniques in-
clude solving large-scale production scheduling problems
(Ajagekar et al. (2022)), and theoretical advances such as hy-
brid quantum benders’ decomposition technique (Zhao et al.
(2022)).

While there exist hybrid approaches to solve mixed-integer
problems that require both classical computing and QC, cur-
rently no tractable method exists to solve MIQCQP using QC
alone. This is problematic because hybrid approaches (e.g.,
Zhao et al. (2022); Chang et al. (2020)) often fail to harness
the true potential of QC in significantly reducing the com-
putation required to solve these problems. To that, we pro-
pose a new approach to transform MIQCQP into QUBO and
then solve QUBO using QC platforms alone. The transfor-
mation relies upon unary and binary encoding of the contin-
uous variables to binary variables. We test the framework
by solving a few relevant problems using D-Wave’s quan-
tum annealing simulator and compare the results against de-
terministic solvers. The results demonstrate the validity of
our framework in solving discrete-continuous MIQCQP us-
ing QC alone. We hope that as the quantum hardware and
the number of qubits scale up and algorithmic advances are
made in quantum computing, the proposed method will prove
to be an effective strategy for solving many process synthesis
problems using QC alone, thereby evading classical compu-
tational and algorithmic resource constraints.

Problem definition

We consider solving Mixed-integer Quadratically Con-
strained Quadratic Program (MIQCQP) using quantum com-
puters. The MIQCQP has the following form:

min
x

xTHx+ cTx

s.t. xTCkx+aT
k x≤ bk k = 1, ..,u

x ∈ Rn ×Zp,
(1)

where x is an n+ p dimensional vector of decision variables
whose first n elements are continuous variables, and the re-
maining p elements are integer variables, H ∈Q(n+p)×(n+p)

and is symmetric, c ∈ Q(n+p), Ck ∈ Q(n+p)×(n+p), ak ∈
Q(n+p), and bk ∈ R.

If p = 0, then the MIQCQP turns into a Quadratic Pro-
gram (QP). On the other hand, if H = [0](n+p)×(n+p) and
Ck = [0](n+p)×(n+p), then Equation (1) turns into a Linear
Program (LP). If there exists only equalities, then Equa-
tion (1) becomes equality constrained MIQP. Another special
case is the Integer Quadratic Program (IBP), by setting n= 0.

QUBO set up

The decision variables of the MIQCQP concern both the
continuous and integer variables. The central idea is to rep-
resent all the variables in terms of binary variables via unary
and binary encoding.

Encoding

Let xm ∈ R , with xL
m ≤ xm ≤ xU

m which can be scaled to
x̃m ∈ R such that 0 ≤ x̃m ≤ 1. Then, using unary encoding,
the scaled continuous variable x̃m can be represented by the
binary variables as follows:

x̃m =
∞

∑
j=1

I=9

∑
i=1

10− jzi jm +10−Jzm, (2)

where zi jm ∈ {0,1}. The precision for x̃m can be approxi-
mated upto J decimal places as follows:

x̃m ≈
J

∑
j=1

I=9

∑
i=1

10− jzi jm +10−Jzm. (3)

To illustrate let x̃m = 0.342, and set J = 3, then
x̃m = 10−1(z11m + ... + z91m) + 10−2(z12m + ... + z92m) +
10−3(z13m+ ...+z93m), where any 3, 4, and 2 binary variables
of the {zi1m}9

i=1, {zi2m}9
i=1, {zi3m}9

i=1 sequences, respectively
are 1 and the remaining binary variables are 0.

One can reduce the number of binary variables by observ-
ing that the value of x̃m at the jth decimal place (x̃ j

m) can not
exceed 9. Hence, one can also employ a specific binary en-
coding (SBE) and reduce the number of binary variables by
5 · J as follows:

x̃m ≈
J

∑
j=1

10− j (z1 jm +2z2 jm +3z3 jm +3z4 jm)+10−Jzm, (4)

On the other hand, if xm ∈ Z, then let I be the least posi-
tive integer such that 2I ≥ |xm|. Then using binary encoding,
|xm|= ∑

I
i=1 2izim, where zim ∈ {0,1}.

MIQP to QUBO

To illustrate the transformation into a QUBO, let us first
consider an MIQP by setting Ck = [0](n+p)×(n+p). Then



Equation (1) can be written as:

min
x

xTHx+ cTx

s.t. Ax ≤ b

x ∈ Rn ×Zp,
(5)

where A ∈ Qu×(n+p) and b ∈ Ru. To achieve QUBO, we
first make the MIQP (Equation (5)) unconstrained. To do
so, we first convert all inequality constraints into equalities
by adding slack variables to each constraint (s), and then we
add a quadratic penalty for each constraint by introducing
Lagrange multipliers (λ). This can be shown in a vector no-
tation as follows:

min xTHx+ cT x+λT (Ax−b+s)T (Ax−b+s)
(6)

where λ ∈ Qu×u, and s ∈ Qu×u. We scale the continuous
variables {xm}n

m=1 and {sv}u
v=1 to {x̃m}n

m=1 and {s̃v}u
v=1, re-

spectively with 0 ≤ x̃m, s̃v ≤ 1 as follows:

xm = xL
m +(xU

m − xL
m)x̃m

sv = sL
v +(sU

v − sL
v )s̃v,

(7)

where sL
v = 0,∀v ∈ u, and sU

v can be calculated as follows:

sU
v =

{
ev − xL

mAvm, i f Avm ≥ 0
ev − xU

mAvm, otherwise

}
(8)

After scaling, Equation (6) can be expressed in terms of
scaled variables as follows:

min x̃TH̃x̃+ c̃T x̃,
(9)

where H̃ ∈ Q(n+p+u)×(n+p+u), c̃ ∈ Q(n+p+u), and

x̃ =

[[
x̃1 .. x̃n

]︸ ︷︷ ︸
continuous

[
x̃n+1 .. x̃n+p

]︸ ︷︷ ︸
integer

[
s̃1 .. s̃u

]︸ ︷︷ ︸
slack

]
,

with x̃ ∈Q(n+p+u).
After that, all the scaled variables are represented as bi-

nary variables via unary encoding or SBE. In this process,
the continuous and integer variables in the standard MIQP
formulation (Equation (5)), upon scaling and representation
by the binary variables, can be recast as a QUBO problem as
follows:

min
z

zTQz

s.t. z = {0,1}β, (10)

where Q ∈ Qβ×β and β = (n + u)(9J + 1) + p and (n +
u)(4J + 1) + p for unary encoding and SBE, respectively.
Thus the original n+ p dimensional MIQP (see Equation 5)
is transformed into a β dimensional QUBO.

MIQCQP to QUBO

Similar to the procedure for MIQP to QUBO transforma-
tion, we first make Equation (1) unconstrained as follows:

min xTHx+ cTx+∑
k

λk
(
xTCkx+aT

k x−bk + sk
)2

= xTHx+ cTx+∑
k

λk
(
aT

k x−bk + sk
)2 −2xTCkxbk︸ ︷︷ ︸

MIQP

+∑
k

λk
(
xTCkx

)2

︸ ︷︷ ︸
quadrilinear

+2∑
k

λk
(
xTCkx

)(
aT

k x+ sk
)

︸ ︷︷ ︸
trilinear

(11)

Note that the terms that form MIQP in Equation (11) can
be transformed into QUBO using the technique discussed in
the previous section. Below we show the transformation for
the quadrilinear and the trilinear terms.

Quadrilinear term:

∑
k

λk
(
xTCkx

)2
= wTC̃w, (12)

where C̃ ∈Qζ×ζ with ζ= n2 ·I2 ·J2 ·(n+ p), and w∈{0,1}ζ.
w is a vector of binary variables, whose elements are defined
as: wi, j,i′, j′,m,m′ = zi, j,m · zi′, j′,m′ .

Trilinear term:

2∑
k

λk
(
xTCkx

)(
aT

k x
)
+2∑

k
λk

(
xTCkx

)
sk

= wTQ̂1ẑ+wTQ̂2z̃,
(13)

where ẑ ∈ {0,1}I·J·n+n+p, Q̂1 ∈ Qζ×(I·J·n+n+p), z̃ ∈
{0,1}I·J·u+u, and Q̂2 ∈ Qζ×(I·J·u+u). We relate w with z us-
ing McCormick relaxation as follows:

wi, j,i′, j′,m,m′ ≤ zi, j,m

wi, j,i′, j′,m,m′ ≤ zi′, j′,m′

wi, j,i′, j′,m,m′ ≥ zi, j,m + zi′, j′,m′ −1
wi, j,i′, j′,m,m′ ≥ 0

(14)

Since both w and z are binary variables, the relaxation is
exact. Therefore, Equation (11) upon transformation can be
expressed as follows:

min zTQz+wTC̃w+wTQ̂1ẑ+wTQ̂2z̃

s.t. Ãw+ B̃z ≤ b̂
(15)

Finally, we notice that Equation (15) is a binary quadratic
program, and can be transformed to QUBO following a sim-
ilar approach as the MIQP to QUBO transformation as dis-
cussed in the previous section.



Figure 1: Relationship between the number of variables and
time required to build QUBO and solve it via simulated an-
nealing.

Computational results

The overall solution time to a MIQP or MIQCQP problem
is the summation of the time taken to build the QUBO model,
and the time taken to solve the problem. At first, we analyze
the solution time by varying the number of variables (hence,
varying the QUBO model size). We then demonstrate two
case studies that involve both the integer and continuous de-
cision variables. All the quantum computation is performed
on D-Wave’s quantum annealing simulator, and the results
are compared to that of a deterministic solver (BARON) run
on a Dell Windows system with Intel(R) Core(TM) i7-8750
2.20 GHz CPU and 8 GB of installed memory.

Solution time

To analyze the solution time, we consider solving the be-
low unconstrained problem:

min
x

xTH1x+ yTH2y+ xTH3y

s.t. x ∈ Rn,y ∈ {0,1}p, (16)

where the diagonal elements of H1,H2, and H3 are 1 and
the non-diagonal elements are −1. We gradually increase
the size of n and p, build the QUBO using SBE and solve it
in D-Wave’s quantum annealing simulator by setting the fol-
lowing parameters: chain strength = 1000, number of reads
= 10000. For all cases, Lagrange multiplier, λ is chosen to be
100, and the decimal place precision, J is fixed to 3. Table 1
and Figure 1 illustrate the time taken to form the QUBO ma-
trix, as well as the time taken to solve it in D-Wave’s quantum
annealing simulator. As can be seen from these results, the
time required to build QUBO is insignificant compared to the
solution time.

Case study 1

We solve a non-convex MIQP with linear inequality con-
straints. The problem description is given below:

Table 1: Solution time using SBE

n p build QUBO (s) Sim anneal (s) Matrix dim
2 2 0.027 6.122 28 ×28
3 3 0.032 6.281 42 ×42
4 4 0.041 6.730 56 ×56
5 5 0.046 12.944 70 ×70
6 6 0.086 17.229 84 ×84

min
x1,x2,y1,y2

−2x2
1 +10x1x2 − x2

2 + y2
1 −2y1y2 + x1y1

−2x1y2 −2x2y1 − x2y2 +2.4x1 −1.2x2

+3y1 +4y2

s.t. x1 +2x2 −2y1 + y2 ≤−1
3x1 +4x2 + y1 − y2 ≤−2

x ∈ R2,−2 ≤ x1,x2 ≤ 3,y = {0,1}2

(17)

This can be written in a vector form as follows:

min
x,y

xT
[
−2 5
5 −1

]
x+yT

[
1 −1
−1 0

]
y

+xT
[

1 −2
−2 −1

]
y+

[
2.4
−1.2

]T

x+

[
3
4

]T

y

s.t.
[

1 2
3 4

]
x+

[
−2 1
1 −1

]
y ≤

[
−1
−2

]
x ∈ R2,−2 ≤ x1,x2 ≤ 3,y = {0,1}2

(18)

We solve the unconstrained form of this test problem by
choosing λ = 10. The optimal solution for the choice of
λ = 10 is obtained from deterministic solver (BARON) as
follows:

x∗1 = 2.44693878,x∗2 =−2,y∗1 = 0,y∗2 = 1, f ∗ =−52.375918

We then transform this test problem to QUBO. For the
consistent comparison, we set the same value for λ. Addi-
tionally, for the simulated annealing in D-Wave’s quantum
annealing simulator, we set the following parameter values:
chain strength = 1000, number of reads = 10000. The quan-
tum annealing simulator results for both the unary encoding
and SBE are shown in Tables 2 and 3, respectively. Note
that for unary encoding, when J = 4 the dimension of Q ma-
trix is 150×150, while for J = 6, it is 222×222. For SBE,
the matrix dimension reduces significantly, i.e., when J = 4,
the dimension of the Q matrix is 70× 70, and for J = 6, it
is 102× 102, It is evident from both of these tables that the
proposed QUBO formulation and the corresponding quan-
tum annealing simulation leads to a correct solution.

We also show the probability distribution of the quantum
annealing simulator results for SBE for both J = 4 (see Fig-
ure 2) and J = 6 (see Figure 3). Note that in both of these
figures, the Ising Hamiltonian is minimized 10000 times, and
each bar in the plot corresponds to a solution to the energy
minimization problem. We pick the minimized Ising Hamil-
tonian that occurs the maximum time. In other words, we



Figure 2: D-Wave’s quantum annealing simulator solution
for SBE, J = 4.

chose the value of the energy minimization problem that has
the maximum frequency. The ground quantum state of this
particular Ising Hamiltonian is measured and the correspond-
ing solution is obtained as a binary string.

Table 2: Solution from D-Wave’s quantum annealing simu-
lation using unary encoding

J x1 x2 y1 y2 f
gap (%)

| f ∗− f
f ∗ |×100

4 2.4470 -2 0 1 -52.3759 0
6 2.446950 -2 0 1 -52.3759 0

Table 3: Solution from D-Wave’s quantum annealing simu-
lation using SBE

J x1 x2 y1 y2 f
gap (%)

| f ∗− f
f ∗ |×100

4 2.4470 -2 0 1 -52.3759 0
6 2.446940 -2 0 1 -52.3759 0

Case study 2

In this case study, we solve a simple reaction selection
problem whose schematic is shown in Figure 4. Here we
have two stoichiometric reactors. The goal is to minimize
the overall cost of the process. A generic model can be for-
mulated as follows:

min c1x2
1 + c2x2

2︸ ︷︷ ︸
operating cost

+c3y1 + c4y2︸ ︷︷ ︸
fix cost

s.t. xL
1y1 ≤ x1 ≤ xU

1 y1

xL
2y2 ≤ x2 ≤ xU

2 y2

p1 + p2 ≥ d

p1 = α1x1

p2 = α2x2

x1,x2 ∈ R;y1,y2 ∈ {0,1},

(19)

Figure 3: D-Wave’s quantum annealing simulator solution
for SBE, J = 6.

Figure 4: Reactor selection superstructure.

where x1 and x2 are continuous decision variables de-
noting the feed flowrate of reactor 1 and 2, respectively,
y1 and y2 deals with the selection of the reactors. We set
c1 = 1.5,c2 = 1,c3 = 6.1,c4 = 5.9. We also set the bounds:
xL

1 = xL
2 = 0,xU

1 = xU
2 = 5. Finally we set α1 = 0.75 and

α2 = 0.8. Using these parameters, we first solve the con-
strained problem in GAMS using BARON solver. The opti-
mal solution is as follows:

x1 = 0,x2 = 3.75,y1 = 0,y2 = 1, f ∗ = 19.9625
After that, we solve the unconstrained form of the same

problem by adding quadratic penalty to the objective func-
tion and varying the Lagrange Multiplier, λ. The obtained
solution is as follows:

λ = 100,x1 = 0.0338,x2 = 3.66109,y1 = 0,y2 = 1, f =
19.629
λ = 10000,x1 = 0.000035142,x2 = 3.74908,y1 = 0,y2 =
1, f = 19.963

We notice that as we increase λ, the constraint violation
is decreased as the solution approaches the true optimal so-
lution (the solution of the constrained problem). Finally, we
generate the QUBO matrix, and obtain the following solution
from D-Wave’s quantum annealing simulator:

λ= 100,x1 = 0.033820,x2 = 3.661085,y1 = 0,y2 = 1, f =
19.629
λ = 10000,x1 = 0,x2 = 4.9995,y1 = 0,y2 = 1, f = 30.895

For each of the simulations, we set the number of deci-
mal places, J = 6; chain strength = 1000; and the number of
samples = 10000. We notice that for λ = 100, the solution
from D-Wave’s simulated annealing matches with the solu-
tion from the deterministic solver. However, for very large
λ = 10000, the simulated annealing results are not able to lo-
cate the optimal solution. Possible reasons could be: i) since



all the problem information of the constrained problem are
embedded onto a single matrix in the QUBO formulation, a
large choice of the λ parameter increases the condition num-
ber of the Q matrix which may require more sampling to
attain the desired solution. ii) The parameters of the simu-
lated annealing were not optimized, which could impact the
solution quality.

Conclusions

We provide a framework for solving Mixed-integer
quadratic programs using QC. Our framework transforms
both the continuous and integer decision variables to binary
variables via unary encoding and SBE which allows us to
construct an equivalent QUBO formulation of a given con-
strained problem. We then use the framework and solve
two test problems. The results demonstrate the validity of
the QUBO formulation strategy. The time required to build
the QUBO is insignificant compared to the solution time.
Also, the solution quality is comparable to that of determin-
istic solvers. QUBO models being very general, allow em-
bedding onto the quantum hardware, thereby providing an
opportunity to harness the true potential of QC. However,
the matrix dimension of the QUBO model is required to be
tractable. Also, it is not possible to differentiate between hard
and soft constraints in the QUBO formulation. As we have
observed, the solutions from both the deterministic and the
quantum annealing simulator exhibit constraint violation for
the sub-optimal choice of Lagrange multipliers. The effect
of the penalty parameter on the solution quality is, there-
fore, an interesting area for further investigation. In spite
of the near-term quantum hardware limitations, we antici-
pate that as the number of qubits scales up, and algorithmic
advances are made in minimizing intrinsic control error, our
proposed strategy will provide a foundation for solving com-
plex mixed-integer quadratic problems using QC alone.
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