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Abstract Recent developments in data science and machine learning have inspired a new wave of research into data-driven
techniques for mathematical optimization. This paper first considers two essential conditions for integrating surrogates
into process optimization and discusses achieving those conditions. Next, we consider two perspectives for developing
process engineering surrogates: a surrogate-led and a mathematical programming-led approach. These data-driven sur-
rogate models must be integrated into a larger process optimization problem, so this paper next discusses the verification
problem, i.e., checking that the optimum of the surrogate corresponds to the optimum of the truth model. Finally, we
consider relevant software.
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Introduction
Both data-driven techniques and mathematical optimiza-

tion have been pillars of process systems engineering (PSE)
since its inception (Sargent, 1972; Pistikopoulos et al., 2021).
But recent developments in data science and machine learn-
ing have inspired a new wave of research into data-driven
techniques for mathematical optimization (Ning and You,
2019). This research belongs to larger efforts at the intersec-
tion of data science and PSE (Qin and Chiang, 2019; Shang
and You, 2019; Tsay and Baldea, 2019; Schweidtmann et al.,
2021; Thebelt et al., 2022).

Recent research integrating data-driven techniques into
mathematical optimization includes: derivative-free opti-
mization (Rios and Sahinidis, 2013), hybrid data-driven /
mechanistic modeling (Von Stosch et al., 2014; Boukou-
vala et al., 2016), using surrogate models in optimization
(Bhosekar and Ierapetritou, 2018; McBride and Sundmacher,
2019), and optimization under uncertainty using data-driven
techniques (Ning and You, 2019; Thebelt et al., 2022).

This paper first considers two essential conditions for in-
tegrating surrogates into process optimization and discusses
achieving those conditions. Next, we consider two perspec-
tives for developing process engineering surrogates:

• A surrogate-led perspective first selects an appropriate
surrogate, for instance a Gaussian process for its statis-
tical properties, and then develops effective optimiza-
tion formulations for that particular surrogate model.

• A mathematical programming-led perspective selects
a specific surrogate model based on its desired opti-
mization properties, e.g. linearity.

The surrogate-led approach selects a particular data-driven

surrogate model and then develops an optimization formu-
lation for that surrogate model. The second, mathematical
programming-led, perspective is important for PSE domains
where the optimization problems being solved are so difficult
that a surrogate model must conform to specific properties.

These data-driven surrogate models must be integrated
into a larger process optimization problem, so this paper next
discusses the verification problem, i.e., checking that the op-
timum of the surrogate corresponds to the optimum of the
truth model. Finally, we consider relevant software.

Surrogates for process optimization

We mention two essential conditions for process opti-
mization surrogates:

Condition 1. Surrogate model accuracy can be enforced by
constraining them to desired space so that they do not extrap-
olate with large errors.

Condition 2. Overfitting data-driven models must be avoided
for surrogate models embedded into optimization problems.

These conditions are tied to the stability of optimal so-
lutions, which are partially characterized by Lipschitz con-
tinuity (LipC) for input/output relations and data uncertain-
ties. Moreover, the LipC property depends strongly on surro-
gate model parameters with bounded confidence regions that
result from data uncertainties. Otherwise, the optimum de-
termined from a surrogate model is unlikely to be robust to
changes in the problem data or input conditions.

Levels of Surrogacy

Truth models for plant system-wide equations can be
classified at the physical property, unit and system or plant
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levels, through the following form:

y = g(xsys,xun,xpp,usys)

0 = fsys(xsys,xun,xpp,usys, pun)

0 = fun(xsys,xun,xpp, pun)

0 = fpp(xpp,xun)

(1)

where y and u are system outputs and input vectors, xl are
state variables at level l. At the plant level, the abstraction is
the most generalized and seeks to substitute the entire system
of Equations (1) with a single surrogate model,

y = gsurr(usys) = g(xsys,usys)+ εy,

0 = fsys(xsys,usys),

where εy is the approximation error vector of the surrogate
model. This approach avoids calculating mass or energy bal-
ances and attempts to determine a simulation topology solely
based upon the simulation input variables usys. Such models
have the following advantages: First, plant surrogate mod-
els may have few input variables (degrees of freedom) for
the entire plant and they may lead to high fidelity interpola-
tive plant models. Moreover, they are solvable with simpler
derivative-free optimization solvers. On the other hand, ex-
trapolating these surrogates will likely violate conservation
laws and other first principle relations. Moreover, these sur-
rogates are not reusable for related cases, as they need to be
reconstructed for every specific plant case.

Instead, surrogate models at the unit level can be linked
to form a plant model. At the unit level, these represent an
intermediate level of surrogacy that satisfy the overall mass
and energy balances of the plant, although these surrogate
models are not designed to account for conservation or other
first principle laws within the unit. The underlying system of
Equations (1) is reduced to the form:

y = g(xsys,xun,usys)

0 = fsys(xsys,xun,usys, pun)

0 = fsurr,un(xsys,xun, pun) = fun(xsys,xun, pun)+ εun

(2)

where εun is the approximation error vector of the surrogate
model. Such models have the following features. Unit-level
surrogate models with few input variables (degrees of free-
dom) based on the unit structure, and they can lead to high
fidelity interpolative unit models. Moreover, conservation
laws hold at plant level and these surrogates are reusable for
new plant-level cases. But extrapolating the surrogate model
may violate first principle relations and conservation laws in
the unit, and surrogate extrapolation errors may lead to con-
vergence failures at the plant level. Also, plant-wide opti-
mization solution of embedded unit surrogates requires mid-
scale optimization solvers, which are more computationally
expensive.

Finally, surrogate models describing first-principles rela-
tions within common process units, e.g., flash calculations
and physical properties, represent the lowest level of abstrac-
tion, leaving the rest of the unit- and plant-level model equa-

tions in place. Equation (1) becomes:

y = g(xsys,xun,xpp,usys)

0 = fsys(xsys,xun,xpp,usys, pun)

0 = fun(xsys,xun,xpp, pun)

0 = fsurr,td(xpp,xun) = fpp(xpp,xun)+ εpp

(3)

where εpp is the approximation error for the surrogate model.
These rigorous first-principle or “physics-based” models are
now integrated within the unit models and the rest of the
process is then modeled with rigorous unit- and plant-level
equations. These equations, along with the physics-based
surrogates, form an equation-oriented model, which must be
solved with a large-scale optimization solver. Such mod-
els have the following features. These surrogate models
with few input variables (degrees of freedom) for subunit
models and can lead to high fidelity interpolative subunit
models. Moreover, conservation laws hold at unit and plant
level and these surrogates are reusable for new plant-level
and unit-level cases. On the other hand, the optimization
problem based on Equation (3) must be solved with large-
scale optimization solvers, in order to evaluate plant-level
and unit-level cases efficiently. Moreover, surrogate model
extrapolation errors can lead to convergence failures at both
unit and plant levels. Ma et al. (2022) and Goldstein et al.
(2022) explore the performance of surrogates at these differ-
ent modeling levels.

Optimization models of data-driven surrogates Regres-
sion based on polynomials: Developing polynomial regres-
sion models is common and has been extensively reviewed
(Bhosekar and Ierapetritou, 2018). Some newer ideas in
the process systems engineering literature adaptively select
which polynomial regressors to use, e.g., ALAMO (Wil-
son and Sahinidis, 2017), and build a polynomial surrogate
explicitly for global optimization, e.g., ARGONAUT (Bouk-
ouvala and Floudas, 2017).

Neural networks: With machine learning, data-driven
models are traditionally based on (deep) neural nets are usu-
ally trained using variants of stochastic gradient descent al-
gorithm (SGD), such as adaptive moment estimation (Adam)
have been very successful in practice but do not have favor-
able convergence properties (e.g., global, superlinear) that
are standard for modern nonlinear optimization algorithms.
Since they are very successful in fitting DNNs (training), it
is an open question whether how these DNNs and SGD algo-
rithms compete with modern, large-scale optimization strate-
gies for process engineering models.

This disconnect between existing theoretical analyses
of gradient-based algorithms and the practice of training
deep neural networks (DNN) has recently been explored by
Zhang et al. (2022). Here it is shown that neural network
weights, with either differentiable (e.g., sigmoidal) or non-
differentiable (ReLU) activation functions, often do not con-
verge to stationary points of the loss function, even though
stable convergence to minimum loss, approaching zero, is
observed. This stabilization on training loss can be explained



through a convergence proof on the DNN weight distribu-
tions.

These caveats lead us to take a mathematical program-
ming view of the optimization models applying to several
types of data-driven surrogates. Some of the earliest for-
mulations for optimizing over neural networks are big-M
mixed-integer programming formulations relevant to ReLU
activation functions (Lomuscio and Maganti, 2017; Fischetti
and Jo, 2018). Grimstad and Andersson (2019) considered
tightening big-M parameters for optimization over NN with
ReLU activation functions. Alternative mixed-integer for-
mulations for ReLU activation functions include adding cuts
representing the convex hull of a single neural network node
(Anderson et al., 2020) or a partition-based formulation that
includes a subset of the convex hull constraints (Tsay et al.,
2021).

Other mathematical programming formulations for
ReLU activation functions include a semidefinite relaxation
(Raghunathan et al., 2018) and a quadratic relaxation derived
through applying the S-Lemma (Fazlyab et al., 2019). For
ReLU activation functions of the form (r = max(0,x)), Yang
et al. (2021) considered three formulations:

1. embedded, e.g., r = a/(1+ e−ax) ≈ max(0,x), which
needs smoothing for a nonlinear optimization solver,

2. binary variables to handle the max functions within a
mixed-integer linear strategy,

3. complementarity formulations with r = x+ y, 0 ≥ y ⊥
x + y ≥ 0 using basic (not relaxed) complementarity
formulations within a nonlinear optimization problem.

Yang et al. (2021) also consider convex hull constraints used
to prevent extrapolation of neural networks. In addition,
Ma, Sahinidis and coworkers Ma et al. (2022) consider data-
driven approaches to minimize energy cost of extractive dis-
tillation with truth models from an Aspen simulator. First,
they apply surrogate-based optimization using ALAMO’s
generalized linear models, and then also consider neural net-
work models with the ReLU activation function. Second, the
use DFO to optimize problems directly using simulation re-
sults. In a detailed comparison, they observed that ALAMO
performs well for less complex systems, while the ReLU net-
work performs better for complex ones. On the other hand,
the most effective performance was obtained with DFO using
smooth penalty functions.

Other types of neural network activation functions have
also been considered, including binarized NN (Khalil et al.,
2018) and a reduced space formulation for nonlinear smooth
activation functions (Schweidtmann and Mitsos, 2019). But
there is lots more to do in this research area, for instance
transforming nonsmooth ReLU activation functions using
smoothed mathematical optimization problems with comple-
mentarity constraints.
Regression trees: Mixed-integer programming formulations
of gradient-boosted regression trees are from Mišić (2020)
and Mistry et al. (2021). These formulations are available,
for example, in the black-box optimizer ENTMOOT (Thebelt
et al., 2021, 2022) and the formulation tool OMLT (Ceccon

et al., 2022).
Gaussian processes: Optimization over Gaussian processes
can be managed in many different ways. First, Gaussian
processes are a natural fit for robust optimization strategies
(Bertsimas et al., 2010a,b; Bogunovic et al., 2018; Wiebe
and Misener, 2021; Wiebe et al., 2022). Of course, there
are infinite possible functions in a Gaussian process, so (de-
pending on the application) we can either optimize over the
mean while integrating some notion of uncertainty or use
pathwise-conditioning to sample from the Gaussian process
posterior (Wilson et al., 2020). Schweidtmann et al. (2021)
have also developed a reduced space formulation for global
optimization.

Selecting a data-driven surrogate based on its optimiza-
tion properties

The preceeding discussion develops optimization models
for data-driven surrogates. But sometimes we wish to fo-
cus first on the needs of an application and then chose a cor-
responding surrogate. Early, foundational work initializing
this line of inquiry explored how individual surrogates may
fit into larger decision-making problems (Palmer and Re-
alff, 2002; Caballero and Grossmann, 2008; Henao and Mar-
avelias, 2011). Some of the other ideas in this area include:
developing a decision tree with desired properties (Bertsi-
mas and Dunn, 2017), selecting ReLU neural networks to
expand the applicability of multi-parametric programming
(Katz et al., 2020), and Developing a neural network with
desired properties (Tsay, 2021).

There has been significant work solving optimization
problems based on hybrid data-driven / mechanistic mod-
els and the consequences of these algorithms for surrogate
models (Eason and Biegler, 2016; Bajaj et al., 2018; Eason
and Biegler, 2018; Kim and Boukouvala, 2020). The next
subsections further develop these ideas. For optimization, all
models are imperfect, but some are useful. As a result, surro-
gate models ranging from first principles to shortcut models
to data-driven models are widely applied in the context of
optimization studies.

Strategies for surrogate-based optimization

Derivative-free optimization methods are generally for-
mulated for unconstrained optimization problems, i.e.,
minx∈Rn f (x). These methods are either stochastic or deter-
ministic in nature. The former methods are based on oppor-
tunistic sampling and selection algorithms, which converge
asymptotically, but offer no guarantees for a finite number
of samples. On the other hand, deterministive methods are
based on generalized pattern searches, which adapt them-
selves to the response surface, and often provide guaran-
tees to convergence of local optimality of surrogate model.
These include the DFO and NOMAD.DIRECT solvers de-
scribed in Conn et al. (2009). In addition, surrogate mod-
els with optimally chosen basis functions are created by the
ALAMO solver, which applies an MIP formulation, linear
least squares and modified AIC criteria.



For the development of constrained optimization for-
mulations with data-driven models, optimization strategies
can be applied with embedded surrogate models, which
substitute for high-fidelity (or ”truth”) models are widely
performed in process engineering. There, the high-fidelity
model is replaced over the entire optimization space with
a surrogate model such as polynomial, DNN and Kriging
model(Bhosekar and Ierapetritou, 2018). While this ap-
proach no longer requires additional evaluation of the high-
fidelity model once the surrogate model is established, it is
likely that the optimization will lead to extrapolation of the
surrogate model. And these extrapolation errors for the sur-
rogate can lead to convergences failures, or termination at
a point that is not the optimum of the high-fidelity model.
Consequently, it is challenging to maintain the accuracy of
the surrogate model over the entire optimization space.

Conditions where the optimum of the surrogate model
corresponds to the optimum of the truth model.

For global optimization there are a number of DFO meth-
ods with convergence guarantees “in the limit” (see Huyer
and Neumeier (2008)). However, unlike conventional meth-
ods based on spatial branch and bound search, they do not
provide lower bounds and certificates for global solutions.

On the other hand, for local optimization, this challenge
can be addressed through locally approximated surrogate
models that are updated with recourse to the truth model, as
part of the optimization strategy. Starting from unconstrained
approaches by Fahl and Sachs (2003) and Conn et al. (2009),
Eason and Biegler (2016, 2018) developed the trust region
filter (TRF) method for constrained optimization that sam-
ples from ”truth models” which have smooth input-output
properties. The TRF method iteratively solves sub-problems
with local surrogate models under trust region constraints
along with stabilizing filter methods. Applied to any sur-
rogate model with smooth input-output properties, this ap-
proach guarantees convergence to the target problem with
truth models and requires few function evaluation of these
box models. In addition, if the derivatives of these high-
fidelity model are available, then simpler surrogate models
can be used along with first order corrections (FOC). FOC
approaches have been to surrogate large models that are ex-
pensive in computation such as aerodynamics and pressure
swing optimization (Alexandrov et al. (1998); Agarwal and
Biegler (2013)) with the derivative information of the origi-
nal high-fidelity model.

The trust region filter (TRF) method for surrogate-based
optimization ) has rigorous guarantees of convergence to
local optimality for the truth model. These are based on
DFO properties in Conn et al. (2009) and are independent
of the choice of the surrogate model. On the other hand,
performance of the TRF method depends on accuracy of the
surrogate model sampling of the truth model is required as
TRF proceeds. The TRF method been applied in a number
of surrogate-based optimization case studies, where direct
optimization of the truth models was prohibitive. These in-
clude periodic adsorption processes (Agarwal and Biegler,

2013)), air-fired and oxycombustion power plants (Dowling
et al., 2016), surrogate equations of state and MWD models
for polymerization (Eason et al., 2018; Kang et al., 2019),
hear exchanger networks with surrogated detailed exchanger
models (Kazi et al., 2020), real-time optimization of refiner-
ies (Chen et al., 2021) and optimization of benzene chlorina-
tion processes (Yoshio and Biegler, 2020). Future research
will deal with relaxing the TRF properties to include model
mismatch and noise from surrogate models, based on work
on ε-exact models by Biegler et al. (2014).

We close by mentioning some of the software in this area.
The tools ALAMO (Wilson and Sahinidis, 2017), ARG-
ONAUT (Boukouvala and Floudas, 2017), and ENTMOOT
(Thebelt et al., 2021, 2022) seek to optimize over a com-
bination of mechanistic, model-based equations and data-
driven surrogates. Codes like reluMIP (Lueg et al., 2021)
and OMLT (Ceccon et al., 2022) allow users to directly add
data-driven surrogates to Pyomo (Bynum et al., 2021).

Conclusions
This paper has offered brief glimpse into formulating data-
driven surrogates models as mathematical programming for-
mulations for process optimization. There is still much work
to be done in this area.
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