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Abstract 

Increased globalization, deregulation of energy markets, and environmental constraints, together with 

associated uncertainty, have created a highly dynamic and uncertain process manufacturing environment. 

Responding effectively to this increased variation and uncertainty is critical for a company to remain 

competitive. In this paper, we consider the plant infrastructure in relation to the energy and global market 

infrastructures. We describe changes to the plant infrastructure system in order to function more 

effectively in the current manufacturing environment, as well as key research advances that are aligned to 

addressing challenges faced by present day plant operation.  
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Introduction

Chemical and manufacturing industries continuously 

face multiple challenges: changes in overall economic 

environment, uncertainty in market drivers, rising energy 

costs, supply chain constraints, globalization, inflation, and 

hyper-competition, among others. The prevalent scenario is 

the survival of the fittest. All these challenges usually result 

in lower company profitability and lower return on 

investments if no corrective actions are taken.  

One of the ways to not only mitigate the impact of these 

challenges, but to maintain a competitive edge is the 

adoption of new work processes, methods, initiatives, and 

technologies aimed to improve plant operational efficiency, 

agility, and reliability (e.g., reduction in energy 

consumption and higher plant up-time). To achieve this in a 

consistent way, industries need to strategize their 

operations, and take actions across multiple areas of the 

organization. For such a strategy to be effective, companies 

need to look both inwards and outwards. Enterprises are 
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highly complex integrated entities, not only within a 

company (inwards), but also with suppliers, customers, 

competitors, government, etc. (outwards).      

Successful attainment of these objectives requires 

appropriate infrastructure, organizational paradigms, and 

methodologies within process manufacturing enterprises, as 

well as an appropriate set of technology tools that can be 

deployed within this framework. In this paper, we discuss 

recent advances both within industry and the process 

systems engineering (PSE) research community, that are 

aligned with addressing the above-described challenges. 

Business Needs as Drivers for Operations Structure and 

Infrastructure Organization 

Plant operations processes, organizations and 

infrastructure are, themselves, highly integrated complex 
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Figure 1.  Island Operations and Infrastructure Mode 

 

 

 

Figure 2. Integrated and Remote Plant Operations and Infrastructure 

entities, that need to evolve to remain competitive 

accordingly to industry specific business models.     

For example, in the industrial gas segment the 

following requirements have driven the smart 

manufacturing evolution (Flores-Cerrillo et al.,  2020):  

•  Supply Reliability – Industrial gas customers require very 

high supply reliability. In many situations, high product 

availability is a contractual obligation. As a result, high 

equipment reliability and plant availability are key 

principles of the industrial gas business. Smart 

manufacturing initiatives consisting of the development of 

new IoT solutions that combine low-cost sensing with 

machine learning methods can provide new insights into 

machinery performance and avoid failures. 

•  Energy Efficiency - Industrial gas processes are not only 

highly energy intensive, but also highly integrated 

processes and systems that depend on energy suppliers and 

varying customer demand. The industrial gas business 

consumes about 2% of the US manufacturing industries 

overall energy consumption, so a 1% improvement in 

energy efficiency has large business and sustainability 

implications. Smart Manufacturing can leverage advanced 

plant automation to maximize overall process efficiency.  

• Remote Accessibility - Given the utility nature of the 

business, industrial gas plants are typically located adjacent 

to other chemical customer facilities. As a result, the fleet 

base is highly distributed. Because of this, global remote 

access and robust digital tools are widely leveraged so that 

the appropriate experts can easily monitor and control plant 

performance remotely. 



  

 

Industrial Strategy  

Smart Manufacturing & Digitalization 

Forward looking chemical and manufacturing 

industries have made considerable effort and progress in 

adopting and implementing Smart Manufacturing and 

Digital transformational initiatives. This has facilitated 

manufacturers to transform from being only product 

providers to be end-to-end solution partners through the 

integration of manufacturing and business solutions. 

Machine learning and artificial intelligence have broadened 

the overall functioning of the manufacturing industry.  

Smart Manufacturing is a set of technologies and 

processes that maximizes data and connectedness to 

optimize highly integrated plant operations, including 

safety, reliability, and efficiency. However, to be successful 

in the Digitalization/Smart Manufacturing journey, 

companies need to have the right organizational structures, 

resources, and a strong foundation of global platforms.  

Operations Structure and Infrastructure /Platforms 

Evolution 

To be successful, an industry/company not only needs 

new smart manufacturing/digital technologies like the ones 

mentioned above, but also, it needs to set the right 

organizational structures and foundational platforms.  

We have seen that in different industry sectors, plant 

operations organizations and associated infrastructure have 

evolved as illustrated in Figures 1 & 2. 

Figure 1 illustrates the Island plant operations and 

infrastructure mode, in which each plant is responsible for 

their plant operations, performance and reliability. Plant 

infrastructure is tailored to each plant facility.  

Figure 2 illustrates a modern integrated and remote 

plant operations architecture with global systems 

infrastructure and platforms. The advantages of an 

integrated operations organization are multiple: high 

demand experts can be leveraged among multiple facilities, 

learnings from one facility can be leveraged to other ones, 

optimal resource utilization (a single resource can monitor 

and remote-control multiple facilities). Advantages of 

global infrastructures and platforms are also great 

differentiators: same or few technology stack options across 

the enterprise, small team of global experts to maintain, 

optimize and improve platforms, data availability to 

everyone, fast deployment of advanced machine learning 

solutions and IoT systems, among many others.  

Sustaining these systems becomes a key enabler for 

some of the innovations described in the next sections. 

PSE Tools and Paradigms 

In this section, we briefly review some key advances in 

PSE research that either seek to directly address the 

challenges of the modern-day process plant operating 

environment as described above, or can be harnessed to this 

end as enabling technologies. The discussion of research 

advances will be mostly in relation to the hierarchical 

decision-making paradigm that is prevalent in large 

chemical and petrochemical plants, and illustrated in Figure 

3.  We note that not all of the layers are necessarily present 

in every application, and that communication between the 

layers is generally not as seamless as may be inferred from 

the idealized diagram. While the hierarchical decision-

making paradigm represents, for the most part, the status 

quo, it does exhibit challenges such as inconsistency of 

modeling or process representation at the different levels, 

and lack of coordination between them. Spatial and 

temporal integration across various functions and decision-

making levels have been identified as key challenges in 

enterprise-wide optimization (Grossmann, 2005). 

 

 

Figure 3. Decision-making hierarchy in 

process manufacturing operation 

In the description that follows, we highlight some key 

advances in the technologies associated with the individual 

decision-making levels, then briefly describe advances in 

integration between the levels of the hierarchy. This is 

followed by a brief discussion of research developments in 

the areas of data analytics, AI and machine learning.  

Advances at decision-making levels 

Model predictive control (MPC) is a model-based 

control algorithm in which a future input trajectory is 

calculated such that a performance criterion, based on the 

inputs and predicted plant response, is optimized. The 

inputs corresponding to the current time interval are applied 

to the plant, and the calculation process repeated, taking 

plant feedback into account. Advances to MPC have 

continued since its initial development about four decades 

ago, including extension to nonlinear models, stability 

analysis, incorporation of uncertainty, multiparametric 

formulations, economic MPC formulations, and inclusion 

of discrete decisions (Qin and Badgwell, 2003; Rawlings et 

al., 2022; Bemporad et al., 2002; Amrit et al., 2013; 

Bemporad and Morari, 1999). Concurrent with these 

extensions have been advances in computational and 



  

 

 

implementation strategies to enable applications involving 

large-scale, nonlinear models (Biegler, 2018; Zavala and 

Biegler, 2009). 

While the entire plant decision-making hierarchy can, 

in principle, be replaced by a single MPC system, this is 

clearly impractical due to the times scale differences, high 

dimension, and problem complexity, in addition to 

considerations of reliability. An open question is how much 

of the decision-making should be delegated to the MPC 

system. 

Real-time optimization (RTO) involves the adjustment 

of plant operating conditions to ideally coincide with the 

plant economic optimum (Marlin and Hrymak, 1997; Darby 

et al., 2011). The traditional approach utilizes a first-

principles steady-state model, and follows a sequence of 

data reconciliation, model updating, and optimization at 

each RTO execution. The reliance on a steady-state model, 

however, limits the RTO execution frequency, resulting in 

suboptimal performance for plants with slow dynamics and 

or frequent transitions. This has led to the utilization of 

dynamic models at the RTO level (Kadam et al., 2002; 

Tosukhowong et al, 2004). A DRTO formulation in which 

the predicted response of the plant includes the action of the 

plant’s MPC system was proposed by Jamaludin and Swartz 

(2017), and extended in Li and Swartz (2019) to the 

dynamic economic coordination of distributed MPC 

systems.  

Production scheduling is largely concerned with 

determining the quantities of products to be manufactured, 

when to produce them, and in what sequence. It is 

applicable to both batch and continuous processes, the 

former typically also requiring determination of equipment 

and resource usage and the timing thereof. Comprehensive 

reviews of scheduling optimization formulations may be 

found in Floudas and Lin (2005) and Mendez et al. (2006).  

Key advances have been made in recent years in 

formulation paradigms to improve computational 

efficiency, and in online scheduling. The latter includes 

event triggered reactive scheduling (Kopanos et al., 2008; 

Li and Ierapetritou, 2008; Kopanos and Pistikopoulos, 

2014; Henning, 2017), and periodic online scheduling 

(Gupta and Maravelias, 2016, 2017; Mathur at al., 2020).  

Mathur et al. (2021) propose a robust online scheduling 

scheme that mitigates uncertainty through both two-stage 

stochastic programming and feedback.   

Integration between decision-making levels 

While replacing the entire hierarchy depicted in Fig. 3 

by a single-layer formulation may be impractical, 

integration between subsets of the layers has been, and 

continues to be, studied. Economic MPC, in which the 

traditional MPC set-point tracking and move suppression 

objective is replaced by an economic objective, or 

combination of an economic and performance objective 

(Amrit at al., 2011; Amrit at al., 2013), can be considered 

as an integration of the RTO and MPC layers. The DRTO 

formulation of Jamaludin and Swartz (2017), on the other 

hand, retains the two-level DRTO-MPC structure, but 

utilizes within the DRTO layer, the prediction of the closed-

loop response of the plant under the action of constrained 

MPC. 

A second area of integration that has grown 

considerably in recent years is integrated scheduling and 

control (ISC). This has been motivated largely by the 

dynamic environment in which process manufacturing 

plants operate, where process dynamics have an 

increasingly significant impact on the scheduling decisions 

(Baldea et al., 2015). ISC, broadly speaking, considers plant 

dynamics in scheduling decisions, and includes several 

different formulation and implementation paradigms. This 

includes calculation of control inputs along with scheduling 

decisions that are applied directly to the plant (Prata et al., 

2008), calculation of reference state values in the ISC 

formulation that are tracked by a plant MPC (Zhuge and 

Ierapetritou, 2014), and calculation of scheduling decisions 

that account for the closed-loop plant response under 

constrained MPC, with the optimal operation 

communicated to the plant through MPC set-point 

trajectories (Remigio and Swartz, 2020).   

Advances in Data Analytics, AI and Modeling 

The confluence of advances in computer hardware, 

cloud storage capabilities, wireless communication 

technologies, and numerical computation have created 

fertile ground for the paradigms of Smart Manufacturing 

(Davis et al., 2012) and Industry 4.0 (Zheng et al., 2021), 

where there has been a surge in industrial uptake. There has 

been parallel growth in related research areas of data 

analytics, surrogate modeling, artificial intelligence, and 

machine learning. The highly multidisciplinary nature of 

these areas provides a vast terrain of approaches to draw 

upon, but also comes with the caveat that methods and 

applications in a particular domain may not directly 

translate to applications in process manufacturing. 

However, potential opportunities and PSE-relevant 

applications are steadily being explored. 

Perspectives on machine learning for process data 

analytics are given in Qin and Chiang (2019).  Surrogate 

modeling (Bhosekar and Ierapetritou, 2018; Wilson and 

Sahinidis, 2017) have significant potential for expanding 

the domain of model-based decision making through 

reduced computation times. The application of 

reinforcement learning to control is discussed in Spielberg 

et al. (2019) and Sin et al. (2019), while Hubbs et al. (2020) 

present a deep reinforcement learning approach to chemical 

production scheduling.  An overview of machine learning, 

with implications for the PSE field, is given in Lee at al. 

(2018).    



  

 

Conclusion 

The process manufacturing landscape has shifted 

significantly in recent years to an environment of increased 

global competition, energy price fluctuations, high degrees 

of variability, and increased uncertainty. In this paper, we 

have the outlined shifts in the process manufacturing 

infrastructure in response to these changes, as well as 

developments in process systems engineering research that 

are aligned to addressing these challenges. The tumultuous 

manufacturing environment shows no signs of abating, 

calling for continued research and industry-university 

partnerships to respond to this new normal. 
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