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Abstract
The performance of a variety of emerging “next-generation” biochemical systems rests on their potential to quickly and
accurately adapt to many different sources of uncertainties. Flexibility analysis represents a quantitative framework
for determining if a system can maintain safe and feasible operation despite the presence of these uncertainties. The
majority of work on flexibility analysis assume access to equation-oriented (white-box) models, which can be very
difficult to obtain in many practical applications, especially those involving complex multi-scale models defined in terms
of expensive computer simulations. In this paper, we propose a novel black-box flexibility analysis method that can
overcome this challenge by simultaneously accounting for uncertain and recourse variables. The proposed method relies
on a probabilistic surrogate to jointly model the effect of uncertain and recourse variables on a smooth approximation of
the constraint aggregation function (which represents the objective function of interest in flexibility analysis problems).
By utilizing confidence bounds predicted from the probabilistic surrogate, we can sequentially design our next sample
points in a way that tradeoffs between exploration and exploitation of the unknown system model in the overall search
space. Lastly, the advantages of the proposed method are demonstrated on two benchmark problems.
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Introduction

Many complex next-generation biochemical manufactur-
ing processes are inevitably subjected to uncertainties from a
variety of internal and external sources. Flexibility analysis
provides a quantitative framework for identifying if a pro-
cess design of interest is feasible over a range of uncertainty
values, while taking into account feedback from control in-
puts (or recourse variables) available in the system. Since
the notion of flexibility was introduced in the process sys-
tems engineering community in (Halemane and Grossmann,
1983), there have been a number of works on flexibility anal-
ysis over the past few decades including more efficient strate-
gies for solving flexibility analysis problems (Grossmann
and Floudas, 1987; Floudas et al., 2001) and extensions to
stochastic (Pistikopoulos and Mazzuchi, 1990; Straub and
Grossmann, 1990) and dynamic problems (Dimitriadis and
Pistikopoulos, 1995).

An important (often implicit) assumption in the vast ma-
jority of current flexibility analysis methods, however, is that
the structure of model is known and can be exploited by state-
of-the-art optimization methods. There are many important
engineering design problems in which this assumption is not
valid since the model is defined in terms of some expensive
computer simulation or experiment, whose structure is com-
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pletely unknown to the modeler. Such cases are often re-
ferred to as “simulation-based” or “black-box” models and
have been the focus of more recent flexibility analysis contri-
butions such as (Boukouvala and Ierapetritou, 2012; Baner-
jee et al., 2010; Wang and Ierapetritou, 2017; Zhao et al.,
2021). It is important to note that these works focus mostly
on a special case of the flexibility analysis problem in which
there are no recourse variables, which can be interpreted as a
“feasibility test.” This can yield a highly pessimistic view of
flexibility in many relevant engineering problems in which
there exists the ability to respond to external fluctuations.
Therefore, the key goal of this paper is to develop a fully
black-box flexibility analysis method that can simultaneously
account for uncertain parameters and control inputs. By con-
sidering these competing sources at the same time, however,
the flexibility problem becomes a tri-level “max-min-max”
problem that is significantly harder to solve. In addition to
being black-box in nature, we require a data-efficient algo-
rithm that does not require the system model to be queried a
large number of times. The rationale behind this restriction is
that many system models are expensive in the sense that they
take a long time and/or a lot of resources to be evaluated.

In this paper, we propose a novel black-box flexibility
analysis method that is able to adress the challenging tri-level
optimization structure without requiring a large number of
system model evaluations. The proposed method has three
main parts: (i) a smooth constraint aggregation approach is



used to reduce the flexibility problem to a two-level “max-
min” problem without introducing non-differentiable com-
ponents into the model; (ii) a probabilistic surrogate model
is built for the constraint aggregation function since its struc-
ture is unknown; and (iii) upper and lower confidence bounds
on the true (unknown) constraint aggregation function, con-
structed from the probabilistic surrogate model, are used to
sequentially select the next best uncertainty and control input
values to evaluate the system model. An important advan-
tage of the proposed approach is its ability to systematically
tradeoff between exploration (searching regions of the input
where the surrogate model is most uncertain) and exploita-
tion (searching near previous sampled input values where the
surrogate model is confident that good solutions exist). Al-
though the initial algorithm is specifically built to test for fea-
sibility, we also discuss how this approach can be straightfor-
wardly extended to determine a flexibility index for the sys-
tem of interest, which is a quantitative measure of flexibility.

The structure of this paper is as follows. Section 2 pro-
vides a description of the flexibility analysis problem of in-
terest. Section 3 describes our proposed data-efficient, black-
box flexibility analysis algorithm, while Section 4 describes
an extension of this algorithm to determine flexibility index
values. We showcase the results of our proposed method on
two illustrative example problems in Section 5 and conclude
the paper and discuss future work in Section 6.

Problem Statement

The flexibility test problem, originally presented in Hale-
mane and Grossmann (1983), can be formulated as follows

χ = max
θ∈Θ

min
z∈Z

max
j∈J

f j(θ,z), (1)

where θ ∈ Θ ⊂ Rd1 denotes the set of uncertain parameters
(e.g., rate constants, initial conditions), z ∈ Z ⊂ Rd2 denotes
the set of control variables that can be adjusted during opera-
tion (e.g., flows, utility loads), and { f j(θ,z)} j∈J denotes the
set of inequality constraints that must satisfy f j(θ,z)≤ 0 for
all j ∈ J for the system to achieve feasible operation. There-
fore, if the value χ ≤ 0, it means that feasible operation can
be attained over the full parameter range Θ (test is passed),
whereas, if χ > 0, feasible operation cannot be achieved for
at least part of the range of Θ (test is failed).

In the absence of control variables (d2 = 0), (1) reduces
to a standard feasibility problem; however, the presence of z
fundamentally changes its behavior. In addition to searching
over all possible uncertain parameters θ, we must also search
over all possible control inputs z that can compensate to the
specific realization of θ. Therefore, (1) is a “max-min-max”
optimization problem that can be thought of as a sequential
three-player game with θ representing the first player, z rep-
resenting the second player that can adapt to the decisions of
the first player, and the index j representing the third player
that can adapt to the decisions of the first and second players.

Previous methods developed for solving the flexibility
test problem assume the functional form of the inequalities
{ f j(θ,z)} j∈J are known. Typically, they are represented im-

plicitly by the following set of inequalities

h(x,θ,z) = 0, g(x,θ,z)≤ 0, (2)

where x denotes the internal state variables of the system
(e.g., temperatures, concentrations), h(x,θ,z) denotes a set of
equality constraints that uniquely define the state in terms of
the uncertainty and control inputs (e.g., material and energy
balances), and g(x,θ,z) denote the inequality constraints that
often depend on the state directly (e.g., physical constraints,
product specifications). Letting x(θ,z) denote the state vari-
able values that satisfy h(x,θ,z) = 0, we can recover the def-
inition of the inequality constraints in (1) as follows

g j(x(θ,z),θ,z) = f j(θ,z)≤ 0, ∀ j ∈ J . (3)

However, in many practical applications, it is difficult or im-
possible to obtain accurate equation-oriented models whose
structure can be exploited by the previously developed flex-
ibility test methods. For example, many engineering design
problems are defined in terms of complex (potentially inte-
grated, multi-scale) computer simulations such that the func-
tions { f j(θ,z)} j∈J are expensive “black-box” models.

In this paper, we are interested in developing a new strat-
egy for flexibility analysis that is generally applicable to
black-box models involving expensive-to-evaluate functions.
Instead of making structural assumptions about { f j} j∈J , we
consider the bandit feedback setting in which we can query
{ f j} j∈J at specific (θ,z) ∈ Θ×Z values in sequential fash-
ion. Since this querying process is assumed to be expensive,
we would like to design an algorithm that can solve (1) for χ

in as few iterations as possible. Our proposed solution is dis-
cussed in the next section, which involves a combination of
constraint aggregation (to simplify the innermost maximiza-
tion problem in (1)) and a robust surrogate-based optimiza-
tion method that explicitly accounts for model uncertainty.

Proposed Approach for Black-Box Flexibility Analysis

In this section, we first present the constraint aggregation
approach that is needed to reduce (1) to a two-level “max-
min” robust optimization problem. We then review Gaussian
process (GP) models that are used as the probabilistic surro-
gate for the unknown aggregated constraint function. Lastly,
we summarize an efficient robust black-box optimization al-
gorithm that uses GPs to accurately estimate the flexibility
test value χ in a limited number of iterations.

Smooth Constraint Aggregation using the KS Function

The innermost max j∈J operator in (1) introduces a non-
smooth element in the flexibility test optimization problem.
To avoid this complication, we replace max j∈J with a smooth
conservative approximation. In particular, we rely on the
Kreisselmeier–Steinhsauser (KS) function (Wrenn, 1989):

KS(θ,z;ρ) = M+
1
ρ

ln

[
∑
j∈J

exp(ρ( f j(θ,z)−M))

]
, (4)

where ρ > 0 represents the “aggregation” parameter whose
value determines the degree of conservatism of the approxi-
mation and M ≈max j∈J f j(θ,z) is a constant used to reduce



overflow/underflow errors in the exponential function. Us-
ing the established properties of the KS function in (Raspanti
et al., 2000), its value can be bounded above and below by
the max operator as follows

max
j∈J

f j(θ,z)≤ KS(θ,z;ρ)≤max
j∈J

f j(θ,z)+
ln |J |

ρ
. (5)

From this, we see KS(θ,z;ρ)≤ 0 underapproximates the fea-
sible region f (θ,z)≤ 0 and the KS function becomes equiv-
alent to max j∈J as ρ→ ∞. In theory, we could select ρ to
be large enough to yield nearly 0 error; however, this signif-
icantly increases the curvature of the function that can lead
to numerical difficulties. Therefore, ρ = 50 is a typical value
selected that leads to relatively small errors.

We can now replace the original flexibility test problem (1)
with the following approximation in terms of the KS function

χ̂ = max
θ∈Θ

min
z∈Z

KS(θ,z;ρ). (6)

Due to the properties in (5), we know χ≤ χ̂ such that we can
guarantee the flexibility test is passed whenever χ̂ ≤ 0. Al-
though we cannot definitively say the flexibility test is failed
when χ̂ > 0, values near 0 imply the system is at the bound-
ary of the required degree of flexibility, suggesting additional
investigation is warranted.

Gaussian Process Regression

Given that KS(x), where x = (θ,z) is the stacked vec-
tor of uncertainty and control input values and the parame-
ter ρ is dropped for simplicity, will be a smooth (differen-
tiable) function whenever the original constraint functions
are smooth, we can now leverage Gaussian process (GP) sur-
rogate models to approximate KS(x). GP models are are an
uncountable collection of random variables, any finite subset
of which has a joint Gaussian distribution. Given a GP prior
for KS(x) ∼ GP (µ(x),k(x,x′)), where µ(x) and k(x,x′) de-
note the prior mean and covariance functions, respectively,
the posterior distribution KS | Xt ,yt will remain a GP where
Xt = [x1, . . . ,xt ] is a set of t input values and yt = [y1, . . . ,yt ]
is a set of t output observations, i.e., yi = KS(xi). The pos-
terior predictive distribution at any predicted test point x re-
mains a Gaussian with the following mean and variance:

µt(x) = µ(x)+k⊤t (x)K
−1
t (yt −µ(x)), (7a)

σ
2
t (x) = k(x,x)−k⊤t (x)K

−1
t kt(x), (7b)

where kt(x) = [k(x1,x), . . .k(xt ,x)]⊤ contains the covariance
between the test input x and the observed data points Xt and
Kt is the covariance matrix between the observation input
data points with elements [Kt ]i j = k(xi,x j).

Note that the properties of the GP posterior (7) will be de-
termined by the chosen class of covariance functions. In most
situations, one selects the covariance function to be station-
ary from the Matern class (e.g., squared exponential func-
tion). In practice, the prior k will be defined in terms by
several hyperparameters that must be trained. We follow the
standard maximum likelihood estimation framework in this

work (see, e.g., (Rasmussen and Williams, 2006)). There-
fore, we can directly construct the GP posterior model for
KS(θ,z) as long as we can query samples of it from a poten-
tially expensive simulation or experiment.

Efficient Robust Black-Box Optimization Algorithm

We are interested in leveraging the (non-parametric) GP
model, described in the previous section, to construct an ef-
ficient black-box flexibility test algorithm. First, we need to
use the GP to define the following upper ut and lower confi-
dence bounds lt on the KS function:

ut(θ,z) = µt(θ,z)+κσt(θ,z), (8a)
lt(θ,z) = µt(θ,z)−κσt(θ,z), (8b)

where κ ≥ 0 is a so-called “exploration” parameter. The
value of κ is important because it controls the degree to
which the uncertainty in the prediction σt(θ,z) should off-
set the nominal prediction µt(θ,z). For a sufficiently large
κ value, we can ensure that the KS function must lie within
these bounds with high probability (Srinivas et al., 2009). As
commonly done in the literature, we select a value of κ = 2
throughout this work, though other values can be used.

We can straightforwardly construct ut and lt given past
data {θ1,z1,y1, . . . ,θt ,zt ,yt}. The key question is then: How
can we use these confidence bounds (8) to select the next best
location to sample (θt+1,zt+1)? To do this, we propose to
build upon a recent algorithm developed by our group (Paul-
son et al., 2021) that involves sequentially solving the fol-
lowing two optimization problems:

θt+1 = argmax
θ∈Θ

min
z∈Z

ut(θ,z), (9a)

zt+1 = argmin
z∈Z

lt(θt+1,z). (9b)

Once we have solved these problems, we evaluate the KS
function at the selected sample point to obtain new data to
add to our list, i.e., yt+1 = KS(θt+1,zt+1). We can use this
new data to update our GP model and the entire process can
be repeated until we exhaust our budget of maximum number
of function evaluations. It has been shown that this type of
alternating confidence bound approach will converge to the
true solution χ̂ under certain assumptions (Bogunovic et al.,
2018; Paulson et al., 2021). The first step (9a) attempts to
make “optimistic” selections for the uncertain parameters un-
der uncertainty (due to lack of knowledge of the exact struc-
ture of the KS function). The second step (9b), on the other
hand, makes “pessimistic” selections for the control inputs
under uncertainty. In the context of the flexibility test prob-
lem, this second step actually corresponds to overestimating
the potential for recourse, which is needed to ensure suffi-
cient exploration is achieved in the z ∈ Z space.

Assuming the proposed algorithm is run for a total of T
steps, we can use the final GP model to estimate χ̂:

χ̂≈max
θ∈Θ

min
z∈Z

µT (θ,z)+κrecσT (θ,z), (10)

where κrec is a constant that controls the conservatism of
the final approximation, with larger values producing more



conservative estimates. We fix κrec = κ = 2 for simplicity,
though we plan to study the impact of κrec in future work.

Extension to Flexibility Index Problems

Definition of Flexibility Index

The main drawback of the flexibility test (1) is that only
determines if a design can or cannot flexibly operate over
a specified parameter range Θ. The flexibility index F is a
quantity that provides a quantitative measure of the flexibility
that can be achieved in a given system. The flexibility index
is defined as follows

F = max
δ

δ subject to: χ(δ)≤ 0, δ≥ 0, (11)

where χ(δ) is a slightly modified version of the flexibility test

χ(δ) = max
θ∈Θ(δ)

min
z∈Z

max
j∈J

f j(θ,z), (12)

defined in terms of a variable parameter set Θ(δ) given by

Θ(δ) = {θ : θN−δ∆θ≤ θ≤ θN +δ∆θ}, (13)

for some nominal parameter value θN and expected devia-
tions ∆θ > 0. The geometric interpretation of Θ(F) is that it
is the largest box of uncertainty values that can be dealt with
by the system without leading to infeasible operation.

Combining Flexibility Test with Bisection Method

Since χ(δ) is a monotonically increasing function of δ,
we can equivalently search for F by finding χ(F) = 0 (as-
suming a feasible solution for the nominal parameter values
exists). This scalar root finding problem can be straightfor-
wardly tackled with bisection, which involves the following
steps given an interval [δL,δU ] that contains the root:

1. Calculate the midpoint δM = δL+δU
2 .

2. Solve the flexibility test problem at the midpoint χ(δM).

3. Examine the sign of χ(δM) to update bound:

(a) If χ(δM)≤ 0, then update lower bound δL← δM .

(b) If χ(δM)> 0, then update upper bound δU ← δM .

4. Stop if convergence is satisfactory (χ(δM) is small) and
return δL as the best feasible estimate for F .

Starting δL and δU values can be chosen by either intuition
or random sampling. Since the key step of this bisection
method is the evaluation of the flexibility test χ(δM), we can
directly use our proposed black-box algorithm in Section 3.
It is worth noting that we can easily reuse KS(θ,z) values
obtained at each step of the bisection method since each flex-
ibility test is defined in terms of a common set of functions.
For now, we assume that enough samples T are available at
each bisection iteration to ensure an accurate estimate of χ(δ)
can be obtained. Future work will investigate more system-
atic stopping criteria using a combination of the upper and
lower confidence bound functions.
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Figure 1: (Top) Contour plot for the KS function. The black
line representing a value of 0. (Bottom) The minimum KS
aggregated constraint violation value for every θ, which is
given by (15). Three different boxes are shown for three dif-
ferent δ values, with the value of θ that leads to the worst-case
violation shown with a star.

Case Studies

Illustrative Benchmark Problem

We consider the following system of the form (1):

f1(θ,z) =−2θ−15−0.5zcos(z)≤ 0, (14a)

f2(θ,z) =
θ2

3
+4θ−5− zcos(z)≤ 0, (14b)

f3(θ,z) =−
(θ−4)2

2
+10− zcos(z)≤ 0. (14c)

We assume a parameter set of the form (13) with θN =−2.5
and ∆θ = 3.75. The control input (recourse variable) is as-
sumed to satisfy the following bounds 5≤ z≤ 20. A contour
plot of the KS function (4) is shown in Figure 1 (top). We
see that the function is highly nonlinear but overall smooth.
Since z represents our recourse action, we also plot the low-
est possible constraint value for any θ ∈ Θ(δ) in Figure 1
(bottom). We define this function as φ(θ):

φ(θ) = min
z∈Z

KS(θ,z). (15)

The flexibility test is only passed if φ(θ)≤ 0,∀θ∈Θ(δ) such
that it is passed for δ = 1 but fails for δ = 3. We can easily
identify the δ for which φ(θ) = 0 from this plot as δ = F ≈
1.8, which corresponds to the flexibility index value.

This problem is straightforward if we exactly know the
functions in (14); however, we assume that we do not have



this information for the purposes of testing our proposed al-
gorithm. We only assume that we can query these functions
at specific (θ,z) values. For a fixed δ value, we run the black-
box flexibility test algorithm in Section 3 for a total of T = 50
iterations. To ensure that we are able to train the GP model
for the KS function initially, we draw 10 random samples
uniformly from the space Θ(δ)×Z and evaluate the KS func-
tion at these points for our starting dataset. The max-min op-
timization in (9a) is solved using the semi-infinite program-
ming method from (Mitsos, 2011), while (9b) is solved using
a standard multi-start heuristic.

Since the final estimated χ̂ value from (10) depends on
the random initial samples, we repeat the entire algorithm
10 times to get an estimate of the average χ̂ versus num-
ber of iterations (with corresponding confidence bounds es-
timated using the standard error formula). The results are
shown in Figure 2 for three different δ ∈ {1,3,1.8125} val-
ues for our proposed data-efficient search method. For com-
parison purposes, we also show the results when the samples
{θ1,z1 . . . ,θT ,zT} are selected randomly, while still using the
same final recommendation procedure (10). We see that our
algorithm reliably shows substantial improvements over ran-
dom search in all three cases, i.e., significantly faster con-
vergence to the true χ value with substantially less variance.
Since the flexibility test could be accurately solved in less
than 20 function evaluations for 3 very different δ values, the
overall cost of the flexibility index method (Section 4) would
also be substantially reduced compared to random search.

Bubble Column Fermentation Problem

To highlight potential value of our proposed method on
real-world problems, we also apply it to a simulation-based
bubble column reactor model developed in (Chen et al.,
2018). A simple illustration of the bioreactor system is
shown in Figure 3. We are interested in performing a flexibil-
ity test of the form (1) on this system, where the reactor tem-
perature θ ∈ [307.25,313.25] Kelvin represents a key source
of uncertainty and the gas velocity z ∈ [9.84,14.76] m/hr is
an adjustable control variable that can be used to compensate
for temperature fluctuations. There are three main constraints
that must be satisfied to ensure feasible operation:

f1(θ,z) = 14 g/L−CE(θ,z)≤ 0, (16a)
f2(θ,z) = TSS(θ,z)−830 hours≤ 0, (16b)
f3(θ,z) = 1.455 g Ethanol/g Acetate−SE/A ≤ 0, (16c)

where CE , TSS, and SE/A denote the steady-state ethanol con-
centration, time-to-steady-state, and steady-state selectivity
of ethanol to acetate, respectively. These quantities can be
computed directly by solving the complex simulation-based
model from (Chen et al., 2018) at any desired (θ,z) value.

It is important to note that we have no prior knowledge
about the structure of these functions and each simulation
is fairly expensive, which makes it a great candidate for
our proposed approach. We use the same settings as in the
illustrative example for the black-box flexibility test algo-
rithm in Section 3. We again evaluate performance by es-
timating the average χ̂ value over 10 randomly generated

5 10 15 20 25 30 35 40

Number of iterations, t

-16

-15

-14

-13

-12

-11

Proposed Method

Random

True 

(a) δ = 1

5 10 15 20 25 30 35 40

Number of iterations, t

15

20

25

30

35

40

Proposed Method

Random

True 

(b) δ = 3

5 10 15 20 25 30 35 40

Number of iterations, t

-14

-12

-10

-8

-6

-4

-2

0

Proposed Method

Random

True 

(c) δ = 1.8125

Figure 2: Predicted estimates of the worst-case aggregated
constraint satisfaction χ̂ using (10) for (a) δ = 1, (b) δ = 3,
and (c) δ = 1.8125. The proposed method is shown in blue,
a random search baseline is shown in orange, and the true χ

value is shown in red. The reported values show estimates of
the average χ̂ versus number of iterations with corresponding
confidence bounds shown with error bars.

sets of initial points. Since the true χ̂ is unknown in this
problem, we estimate it using a fine grid search. The re-



Figure 3: Schematic of the bubble column reactor system.
Reproduced from (Kudva et al., 2022).

sults are shown in Figure 4. Similarly to the previous exam-
ple, we see that our proposed method shows faster conver-
gence and less variability when compared to random search.
The average maximum possible improvement for both algo-
rithms is around 0.036 (i.e., difference between the true op-
timal point and the starting estimate). Thus, by iteration 50,
our method achieves 0.034 improvement, whereas random
search only achieves 0.014 improvement, implying a sub-
stantial 0.034

0.036 −
0.014
0.036 ≈ 55% performance increase by using a

confidence bound-based search approach to select the query
points. This reduction in the number of evaluations directly
leads to computational savings in this problem since many
fewer simulations would need to be run in practice to con-
struct an accurate estimate for the flexibility test.
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Figure 4: Predicted estimates of the worst-case aggregated
constraint satisfaction χ̂ using (10) for our proposed method
and random search.

Conclusions

This paper presents a novel algorithm for fully black-box
(derivative-free) flexibility analysis of expensive-to-evaluate
systems that can simultaneously capture the impact of un-
certainty and recourse variables. The algorithm consists of
three main concepts. First, we take advantage of a smooth

constraint aggregation function to reduce the flexibility prob-
lem from a tri-level to a bi-level optimization problem. Sec-
ond, we use the notion Gaussian process (GP) surrogate mod-
els to construct a probabilistic representation of the smooth
constraint aggregation function. Third, we take advantage of
the uncertainty quantification performed by the GP model to
construct upper and lower confidence bounds for the true (un-
known) constraint aggregation function, which can be used
to efficiently sample the uncertainty and recourse variable
space simultaneously. We further extend this method to the
so-called flexibility index problem using a simple bisection
procedure. Lastly, we demonstrate the advantages of our
proposed approach on two illustrative benchmark problems
and show that it is able to substantially outperform existing
alternatives. There are several interesting directions for fu-
ture work including more systematic convergence analysis,
the development of robust stopping criteria, and applications
to more challenging simulation models.
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