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Abstract

Given the challenge posed by climate change, there is increasing interest in operating “net-zero” energy
buildings in which any energy consumed is balanced by corresponding renewable energy generation on
site. Though there has been significant work on designing buildings to achieve this goal, less attention
has been paid to the operational side to ensure that net-zero status is met and maintained. Therefore, we
propose in this paper a modeling and closed-loop planning strategy to guide the operation of net-zero
buildings. Planning is performed by iteratively solving an optimization problem to determine curtailment
actions needed to achieve net-zero status by the end of the year. This optimization makes use of forecasted
energy consumption and renewable energy generation, which can be provided by lightweight stochastic
models fit to historical data. We illustrate the effectiveness of the proposed strategy through simulations,
showing that closed-loop planning is an important feature to reliably meet net zero energy use.
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Introduction

In the United States, energy use in commercial and resi-
dential buildings accounts for 18% and 21% respectively of
total energy consumption (Dunn, 2022). This energy is cur-
rently provided primarily by fossil fuels, and thus addressing
climate change will require both reducing overall consump-
tion and replacing it with renewable sources (Sartori et al.,
2012). A primary goal is to achieve “net-zero” energy con-
sumption so that the building is no longer a burden on overall
global climate. Achieving this goal will require significant
changes to both the design and operation of buildings (Lu
et al., 2015).

Various definitions of “net-zero energy” exist (Sartori
et al., 2012), differing in what quantities are balanced (e.g.,
energy import/export or load/generation) and over what time
period the balance is calculated (typically a year, but monthly
formulations are also possible). Additional weighting factors
could be applied so that the balance is effectively on energy
cost or carbon emissions (Torcellini and Crawley, 2006). In
any case, achieving net-zero status generally requires careful
planning and operation, which can be guided by mathemati-
cal modeling and optimization strategies.

Background and Scope

The topic of net-zero energy buildings has received much
attention in the literature, for both the residential and com-
mercial sectors. In residential buildings, the most efficient
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design depends on the available utilities, including the elec-
tricity grid and district heating or cooling (Wu and Skye,
2021). In commercial buildings, retrofit is likely required
to reduce energy consumption to levels that could be met by
renewable generation (Aksamija, 2016). To guide these de-
sign decisions, various optimization formulations have been
developed (Longo et al., 2019), which can be further aug-
mented with simulation tools (Attia et al., 2012). Design
problems may require trading off multiple objectives, such
as total cost and occupant comfort (Harkouss et al., 2018),
which requires the use of multiobjective optimization to iden-
tify efficient solutions.

Once the required design elements have been put in place,
it is necessary to operate buildings with high efficiency. Op-
timal efficiency often requires energy storage, which can be
operated using model predictive control (MPC) or other ad-
vanced control strategies (Lu et al., 2015). These techniques
can help reduce overall energy consumption without compro-
mising service by temporally decoupling on-site utility pro-
duction (e.g., chilled or hot water) from its actual consump-
tion (Rawlings et al., 2018). Assuming proper system design,
net-zero operation should be possible in theory. However,
due to the inherent uncertainty in long-term energy produc-
tion and generation, it is far from guaranteed that nominal
operation will ultimately achieve the goal.

For our part, we are interested in generating target trajec-
tories for energy consumption and renewable energy gen-
eration that can be used to guide operation. This process
achieves much less attention in the literature, but it is nev-
ertheless a critical component in practical net-zero buildings.
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Figure 1: Example daily energy generation, consumption,
and cumulative net for a net-zero building. Lines show me-
dians while shaded regions show one standard deviation. See
the examples section for details about the model.

An important complication is that energy consumption and
generation are generally not completely in-phase. Therefore,
over the course of a year, net energy may become very posi-
tive or very negative before ultimately reaching zero at the
end of the year. To illustrate, Figure 1 shows annual en-
ergy models based on data from a building in San Diego,
CA (Silwal et al., 2021), adjusted so that mean values give
net-zero annual operation. Despite the relatively constant
weather conditions throughout the year, the building never-
theless goes through periods of slightly positive and signif-
icantly negative net energy. If this particular building hap-
pened to be at zero net energy in the middle of the year,
then it is quite unlikely that net-zero status will be maintained
through the end of the year. Thus, building operators are in
need of continuous guidance to check whether they are on
track for net-zero consumption and possibly take deliberate
curtailment actions should energy consumption out-pace en-
ergy generation.

Paper Overview

Our goal in this paper is to present a modeling and closed-
loop planning strategy to achieve net-zero energy use in
buildings. We are primarily interested in commercial build-
ings, which are likely to have sufficient metering and higher
operational flexibility, but in principle, the same techniques
could be applied to residential buildings. We start by pre-
senting an optimization problem that can be used to generate
daily or weekly energy curtailment targets that are likely to
deliver net-zero consumption by the end of the year. This
optimization requires forecasts of baseline energy consump-
tion and generation, and the objective is to minimize re-
quired curtailment from baseline consumption. Through reg-
ular re-optimization, these targets can be continually updated
throughout the year as actual consumption and generation is
realized. We next discuss the modeling needed to generate
the forecasts used in the optimization problem. The proposed
strategy is data-driven and is intended to be suitable in cases
where only a modest amount of historical data is available.
After presenting the overall framework, we illustrate its ap-
plication using an open-source dataset. Finally, we conclude
with a summary and future outlook.

Planning Optimization

A major component of our proposed strategy is the con-
sumption planning optimization problem. The goal of
this problem is to optimize energy targets to achieve net-
zero status by minimizing required curtailment from base-
line consumption levels. For our purposes, we adopt the
load/generation definition of net-zero energy, as it is gener-
ally easier to measure and verify than alternatives such as
import/export (Sartori et al., 2012). For brevity, we use the
term “net-zero,” but note that we are focused on net-zero en-
ergy. In addition, we use “generation” to refer specifically
to renewable generation, which can include solar, wind, and
geothermal sources. Note also that we refer to the system of
interest as a “building,” but this entity could also represent a
campus or portfolio of multiple buildings that can operate in
coordination (Peterson et al., 2015). We start with the for-
mulation and later discuss how the optimization is applied in
closed loop.

Problem Formulation

To model the problem, we define the ordered set of time
periods t ∈ T := {0,1, . . . ,T −1} for total horizon T . In gen-
eral, we expect these time periods to be either days or weeks
and the total horizon to span one calendar year, but of course
other arrangements are possible. With this set, we define the
following decision variables:

• Xt : cumulative net energy consumption at the beginning
of time period t ∈ T∪{T}.

• Ct : fractional curtailment for consumption during pe-
riod t ∈ T.

The extra final variable XT thus gives the cumulative net en-
ergy consumption at the end of the horizon, and the goal is to
keep this value less than or equal to zero. Along with these
variables, we define the following parameters:

• βt : forecasted baseline energy consumption during time
period t ∈ T.

• γt : forecasted energy generation (or equivalent offsets)
during time period t ∈ T.

• φt( ·): cost function for curtailment during time t ∈ T.
• C̄t : upper bound on curtailment for time t ∈ T.

From these definitions, we arrive at our planning optimiza-
tion problem:

min
Xt ,Ct

∑
t∈T

φt(Ct) (1a)

s.t. Xt+1 = Xt +βt(1−Ct)− γt t ∈ T (1b)
0≤Ct ≤ C̄t t ∈ T (1c)
XT ≤ 0 (1d)
X0 given (1e)

The overall goal is to minimize the total cost of curtailment
actions such that the building achieves net-zero status (or bet-
ter) at the end of the horizon. The resulting net-energy se-
quence Xt can serve as a target for the building to meet, while
the optimized curtailment actions Ct indicate when and by
how much energy consumption should be reduced.



We note that the intermediate variables Xt and the “dynam-
ics” (1b) are included to illustrate the state-space structure of
the system (with Xt serving as the states and Ct as the ma-
nipulated inputs). However, these variables and constraints
could easily be pre-solved away, leaving just the bounds on
Ct and a single constraint.

Cost Function and Solution Methods

The cost function (1a) consists of stage costs for taking
curtailment actions for time period. Ideally, the functions
φt( ·) would represent some actual tangible cost incurred by
the building or its occupants for taking the corresponding
curtailment action. For energy consumption associated with
lighting or space heating/cooling, various visual and thermal
comfort metrics exist that could be the basis of curtailment
costs (Longo et al., 2019). However, these functions often
require additional parameter tuning and can be challenging
to balance. Thus, it is not likely that tangible cost functions
will be available for most applications, and instead we opt
for an empirical approach.

The overall design goal for the cost function is to appropri-
ately balance required curtailment actions throughout time.
One possibility is that curtailment actions should be spread
evenly throughout each day. For this purpose, quadratic cost
functions could be used, for example

φt(C) := ωtC2 (2)

with the ωt weights prioritizing particular time periods for
curtailment (with a higher ωt indicating that curtailment is
less desirable for time t). This choice also reflects the fact
that curtailment becomes increasingly difficult. For example,
it may be easy to reduce a small fraction of HVAC energy use
by delaying system startup in the morning when the building
is sparsely occupied, but any additional reduction will begin
to compromise occupant comfort and thus be undesirable.

An alternative possibility is that it is desired to make cur-
tailment actions sparse, i.e., with Ct = 0 for most values of
t. This situation would reflect the fact that building managers
may prefer to operate normally on most days and then take
intense curtailment actions on a small number of days. We
note that this structure is similar to some grid-level demand-
response programs in which only the most energy-intense pe-
riods are identified as “extreme days” in which consumers are
specifically incentivized to reduce consumption (Albadi and
El-Saadany, 2008). For these situations, a nonconvex or even
discontinuous cost function could be adopted, e.g.,

φt(C) := ωt1>0(C) (3)
≈ ωt(1− exp(−αC)) (4)

with 1>0( ·) denoting the indicator function for the positive
numbers. Of course, the discontinuity makes the optimiza-
tion problem significantly more challenging, but it is likely
to still be tractable for typical problem sizes.

To solve the optimization problem (1), we note that if
the curtailment cost functions φt( ·) are convex, then the
overall problem is convex. In the specific case of (convex)
quadratic costs like (2), dedicated quadratic-programming
solvers could be used, while for general nonlinear functions,
a nonlinear-programming solver like IPOPT (Wächter and

Biegler, 2006), can be applied. However, in cases where
φt( ·) is nonconvex, some additional care is needed. If
the function is at least smooth as in (4), then nonlinear-
programming solvers could still be used, although it is possi-
ble that the solver converges to a locally optimal but globally
suboptimal solution. For a discontinuous cost function like
(3), the problem could be re-formulated using binary vari-
ables and solved via mixed-integer linear programming tech-
niques. Alternatively, an effective strategy could be to dis-
cretize the problem (for appropriately chosen grid sizes on
Xt and Ct ) and apply dynamic programming. Such an ap-
proach would guarantee global optimality (up to discretiza-
tion error). We note that because the problem (1) does not
need to be solved very frequently (e.g., perhaps once per day
or week), computational efficiency is not a major concern, as
long as the problem does not become completely intractable.

Closed-Loop Implementation

The overall purpose served by the planning problem (1)
is to provide guidance to building managers in how to oper-
ate their buildings so as to achieve net-zero energy consump-
tion by the end of the year. A key requirement is that this
guidance is updated regularly based on actual performance
so far and likely consumption/generation in the future. Thus,
we propose to solve the planning problem repeatedly in se-
quence with a shrinking horizon similar to batch MPC. At
the beginning of each time period, mean forecasts (condi-
tioned on values observed so far) for βt and γt to the end of
the year are generated from the stochastic models, and the
planning optimization (1) is solved using those values. The
optimized value of curtailment C∗t at the current time t is then
implemented. In a real building, implementing the suggested
curtailment is a nontrivial process, and would likely be per-
formed by adjusting setpoints or schedules for the HVAC sys-
tem, lighting, etc. After operating with these actions, actual
values of the curtailed consumption (1−Ct)βt and genera-
tion γt are realized. The hypothetical baseline consumption
βt and current net energy Xt can then be calculated, after
which the process is repeated at the next time period, with
the horizon now shrinking by one period.

Extensions

Before moving on, we briefly discuss some possible exten-
sions to the planning problem (1). As formulated, we assume
that energy generation is given as a parameter and that the
only actions to reduce net energy consumption are to curtail
consumption. However, these assumptions may not hold in
more general settings. One possibility is that the use of gen-
eration equipment is discretionary. For example, wind tur-
bines could be shut down when not needed to reduce equip-
ment wear. In such cases, additional decision variables could
be added to choose how much generation capacity to employ.
Of course, an appropriate cost term would need to be added
to the objective function, which may be hard to tune against
the existing curtailment cost, but in principle, it would be
possible. Alternatively, it may be possible to purchase en-
ergy offsets that get credited as reduced energy consumption.
Thus, decision variables to purchase offsets could be added



to the formulation, either constrained to a maximum budget
or added as a separate term in the cost function. This exten-
sion becomes particularly interesting in the stochastic case
where prices of offsets may fluctuate throughout the year,
and thus it is beneficial to make purchases when prices are
relatively low but only if it will eventually become necessary
to achieve net-zero status. In either case, the primary change
to the formulation is that the net-energy calculation in (1b) is
augmented with the additional terms necessary to model the
particular effect.

In some buildings, energy consumption may be measur-
able across separate categories (e.g., HVAC, lighting, or plug
loads) that could be curtailed separately. In addition, the
system of interest could a campus or portfolio of multiple
buildings with independent consumption measurements and
curtailment. To model such situations, extra indices k ∈ K
could be added, with the curtailment actions extended to Ckt
to consider per-category and/or per-building curtailment. Of
course, extension to categorial forecasts βkt and cost func-
tions φkt( ·) would also be required, which could potentially
complicate tuning and modeling. However, the additional
specificity in curtailment recommendations would likely be
valuable to building managers. Finally, it may be desirable
to achieve net-zero status over multiple overlapping windows
(e.g., over an annual period at the beginning of each month).
For this situation, new indices w ∈W could be added, giving
a separate state Xtw for each window with the same dynamics
as in (1b) and a window-dependent ending time Tw for the
net-zero constraint (1d). With this modification, the horizon
of each open-loop problem would extend to cover the end
of all windows containing the current day, and would thus
remain roughly the same length in contrast to the shrinking
horizon for the single-window case.

Stochastic Modeling

A key requirement of the planning problem discussed in
the previous section is the (forecasted) baseline energy con-
sumption βkt and energy generation γt . To solve the deter-
ministic problem, we require mean values of these parame-
ters for each time point remaining in the horizon, while in
the stochastic formulation, we require multiple possible re-
alizations. Although there are many sophisticated machine-
learning models that could be built for this purpose, we note
that many buildings are unlikely to have significant amounts
of historical data. Thus, the approach we describe in this sec-
tion reflects a balance between meeting model requirements
while being amenable to small and possibly dirty training
datasets.

Model Training

To fit our requirements, we fit each model in two sepa-
rate pieces: (1) a deterministic but possibly nonlinear model
for the time-varying mean; and (2) a stochastic linear autore-
gressive (AR) model for deviation from the mean. Mathe-
matically, we use xt to denote our quantity of interest, µt to
denote the value of the mean model, and et to denote the de-
viation from the mean. As before, t ∈ T is the time index,
which is discrete and finite. In the interest of brevity, we will

model each unique quantity separately so that xt is a scalar.
However, because the different variables are likely to be cor-
related (e.g., higher energy generation from solar panels is
likely to be correlated with higher energy consumption for
space cooling), it may be useful to model them together. The
approach proposed here does generalize to the vector case,
although additional training data may be required to avoid
overfitting to spurious correlations.

For the mean model, we can use any appropriate function
of time. A relatively simple approach is to use a finite basis
of spline functions that covers the time horizon. Letting ψit
give the value of the ith basis function for time t, we can fit
the model via linear least squares as

minαi ∑ t |xt −µt |2 s.t. µt = ∑ i αiψit

in which the xt are known values from the training data set,
and the αi are optimized model coefficients. By using spline
functions, we ensure that the mean model is smoothly vary-
ing (as expected for the quantities being modeled), and we
can still fit parameters in cases where isolated xt samples are
corrupted or missing, simply by removing those terms from
the objective function. If other independent variables are
known (e.g., the building occupancy schedule) or can be rea-
sonably forecasted (e.g., the weather), then can be included
as additional model inputs with associated trainable parame-
ters.

Once the mean model µt is fit, we can move on to the devi-
ation model for et := xt−µt . As mentioned above, we assume
a linear autoregressive model such that

et =
N−1

∑
n=0

anet−n + εt , εt ∼N (0,σ2) (5)

for a suitably chosen model order N. The coefficients an in
the AR model (5) are fit via constrained least-squares regres-
sion, i.e.,

min
an

T−1

∑
t=N

(
et −

N−1

∑
n=0

anet−n

)2

s.t.
N−1

∑
n=0
|an| ≤ 1−δ (6)

in which the values of et are computed from xt and µt . The
constraint is added to ensure that the resulting AR model is
stable with tolerance δ ∈ [0,1), which ensures that resulting
samples will remain bounded. The noise variance σ2 is then
taken as the optimal value of the objective function in (6),
which corresponds to the variance in the model fit. Note
that the appropriate model order can be chosen from stan-
dard methods, e.g., by examining the autocorrelation plot for
et .

Model Sampling

In order to iterate the model (5), we need to know val-
ues of the previous error terms e0 := (e−N , . . . ,e−1). When
starting at least N steps into the horizon, these values can be
calculated from the actual realizations of xt and mean model
µt . However, when starting from the beginning, one should
start from the stationary distribution e0 ∼ N (0,Σ0). Once
the e0 is known, the full sequence e := (e0, . . . ,eT−1) can be
obtained by iterating (5), randomly sampling εt each step or
keeping εt ≡ 0 to obtain the mean value. Alternatively, we



note that the full sequence is jointly normal e ∼ N (0,Σ),
which can be useful for calculating quantiles or confidence
intervals for the resulting trajectories. In both cases, the
covariance Σ0 or Σ can be obtained by applying the Yule-
Walker equations to the AR coefficients an and noise vari-
ance σ2.

We note that the linear definition of the noise et = xt −µt
means that the realized values of xt could take on any real
value. Thus, quantities like energy consumption that must
be nonnegative could take on invalid values. In practice, this
is not a significant concern if the µt are sufficiently far from
zero relative to the random noise, and individual invalid sam-
ples could be clipped. However, for sign-restricted quantities
with structural zeros (e.g., space heating loads, which are
typically zero during summer months), it may be useful to
use a multiplicative definition of noise et = log(xt/µt). Some
special handling is needed when xt or µt are zero, but overall,
this approach will likely give more realistic samples.

Illustrative Examples

To illustrate the proposed framework, we make use of an
open-source dataset for the Trade Street building on the UC-
San Diego campus (Silwal et al., 2021). The data file pro-
vides daily total energy consumption and on-site generation
from photovoltaic (PV) panels, spanning roughly four years
of operation but with some missing points. We will start by
building stochastic models for generation and consumption,
and then use those models for net-zero planning.

Stochastic Modeling

For the building of interest, we require an annual model for
daily energy generation and consumption. We start by fitting
mean models for these values via linear regression against a
basis of cubic splines (13 knots with a periodicity constraint)
covering the year. Figure 2 shows these mean models and the
underlying datasets. From these results, we see that although
the daily data is very noisy, the proposed models capture the
overall behavior. We note that for planning purposes, the cu-
mulative values are the most important, and fortunately the
cumulative models are even more accurate due to noise can-
celation from day to day. We see also that the uncertainty
region (to be discussed later) captures the spread of the data,
except perhaps for extreme samples in the generation data
(likely due to extremely cloudy days that prevent PV gener-
ation). Thus, these models are suitable for the proposed use
case.

Before moving on to the noise models, we note that there
is a strong 7-day periodic component in the consumption
data due to the weekly occupancy cycle of the building. Of
course, the simple mean model shown before does not cap-
ture that behavior. Thus, to improve model predictions, we
fit an alternative consumption model (denoted “Consump-
tion*”) by adding seven binary features for the day of the
week with corresponding regression coefficients. In the in-
terest of brevity, we do not show this model in Figure 2, but
we will use that model in the following discussion.

With the mean models in hand, we can now fit autore-
gressive noise models for each. A key decision in this pro-

cess is what model order to use. To help make this deter-
mination, Figure 3 plots the autocorrelation function of the
mean-model deviations in the dataset. The most striking fea-
ture in this plot is the periodic behavior for the “Consump-
tion” model, which derives from the occupancy pattern as
just discussed. Fortunately, when adding the extra day-of-
week features to the “Consumption*” model, this behavior
goes away. Although there is not clear cutoff in autocorrela-
tion, we choose 7 days as the order for each AR model and
fit coefficients via linear regression. The resulting CVRMSE
of the models is 14.9% for Generation, 18.9% for Consump-
tion, and 13.0% for Generation*. Thus, we see that the in-
clusion of the extra features in the “Consumption*” model
does lead to significant reduction in error. Though predic-
tions could likely be made more accurate by applying more
advanced modeling strategies, the models obtained here are
sufficiently accurate for our purposes.

Closed-Loop Planning

With the stochastic models fit in the previous section, we
can apply the proposed planning framework. Unfortunately,
the baseline model fits indicate that the building annually
consumes 13% more energy than it generates. Thus achiev-
ing net-zero status via curtailment would likely cause too
large of a disruption to building occupants. To make the
simulation more realistic, we assume that additional PV gen-
eration capacity is added so that mean total consumption is
only 5% above generation. (We accomplish this by simply
rescaling the predictions of the generation model.) This gap
is narrow enough that it could be closed through operation
but still wide enough to illustrate the planning problem.

To simulate performance of the closed-loop planning pro-
cedure, we draw random samples from each model and use
those values as the actual consumption and (baseline) genera-
tion that gets revealed over the course of the simulation. For
simplicity, we assume that the suggested curtailment frac-
tion Ct can be implemented exactly, and thus the resulting
curtailed consumption is set equal to the (random) realized
baseline consumption value reduced by the optimized curtail-
ment. We refer to the resulting system trajectory as “Closed-
Loop”. For comparison, we compute a “Perfect” solution,
obtained by solving (1) using the actual realized values for
βt and γt (i.e., assuming we have access to a perfect fore-
cast). In addition, we simulate a “Naive” solution that opti-
mizes (1) once using mean values of parameters and uses the
resulting curtailments Ct regardless of the actual parameter
realizations.

We begin by illustrating a closed-loop planning trajectory.
Figure 4 shows open-loop trajectories for curtailment and net
energy for a single simulation. Note that “Open-Loop” indi-
cates the planned trajectories from the open-loop optimiza-
tion problems, while “Mean” shows the planned net-energy
trajectory for the “Naive” solution. We see from this plot
that, although the open-loop plans are made using forecasted
values, the resulting closed-loop trajectory stays reasonably
close to the perfect solution. The only real defect is the higher
variance in curtailment at the end of the year, as aggressive
action is needed to make up for daily prediction error. Never-
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Figure 4: Example annual planning trajectories. Note that
only every 7th open-loop solution is plotted.

theless, the system ultimately does achieve net-zero status for
the year. By contrast, the Naive solution does not correctly
revise its plan and thus finishes the year with significant net-
positive energy consumption.

To assess overall performance, we repeat the previous sim-
ulations for 1,000 random samples from the generation and
consumption models. For each simulation, we compute the
total curtailment cost by summing φt(Ct) and check the final
net-energy value Xt . Ideally, the costs are low, and net-energy
is at or below zero. Figure 5 shows distributions of these val-
ues for the Perfect, Closed-Loop, and Naive solutions. From
these results, we see that the Closed-Loop solution is per-
forming reasonably close to the Perfect solution and signif-
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Figure 5: Performance results across 1,000 random simu-
lations. Ranges show min, median, and max values, while
shaded regions give a kernel density estimate for the distri-
bution.

icantly better than the Naive solution. We note that the me-
dian Closed-Loop curtailment cost is 33% higher than Per-
fect, which is reasonable considering that the cost function
is quadratic. (Note that the Naive cost is constant, as it uses
the same mean Ct sequence for all realizations.) In addition,
final net energy for Closed-Loop has significantly less vari-
ance compared to the Naive solution, indicating that it con-
sistently achieves the net-energy goal without unnecessary
curtailment. The overall conclusion is that the Closed-Loop
implementation is critical to achieving the net-zero goal and
thus fills an important need in the net-zero buildings space.

Conclusions

In this paper, we have presented a lightweight modeling
and closed-loop planning strategy to achieve net-zero energy
use in buildings. To forecast baseline energy consumption
and generation, stochastic models can be built by combining
a deterministic mean model with a linear AR noise model.
These forecasts can then be used to regularly solve a planning
optimization problem that suggests required curtailment ac-
tions in order to meed the net zero constraint by the end of the
year. We have illustrated through examples that the proposed
models give good accuracy while still capturing the inherent
randomness in the modeled quantities, and that the closed-
loop planning process is successful at guiding net-zero en-
ergy operation, with only slightly higher curtailment inten-
sity compared to a perfect solution. Future work will focus
on extending the planning problem to include additional de-
cision variables and integrating the curtailment recommen-
dations with building control systems to actually achieve the
desired energy consumption.
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