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Abstract
There are numerous industrial settings in which a decision maker must decide whether to enter into long-term contracts
to guarantee price (and hence cash flow) stability or to participate in more volatile spot markets. In this paper, we
investigate a data-driven distributionally robust optimization (DRO) approach aimed at balancing this tradeoff. Unlike
traditional risk-neutral stochastic optimization models that assume the underlying probability distribution generating the
data is known, DRO models assume the distribution belongs to a family of possible distributions, thus providing a degree
of immunization against unseen and potential worst-case outcomes. We compare and contrast the performance of a risk-
neutral model, conditional value-at-risk formulation, and a Wasserstein distributionally robust model to demonstrate the
potential benefits of a DRO approach for an “elasticity-aware” price-taking decision maker.
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Introduction

In numerous energy markets, including electricity and
natural gas, energy providers/sellers face the dilemma of de-
ciding how to allocate their supply across various markets
and over time. Throughout this paper, for convenience, we
will use the motivating example of a generation company
(Genco) who sells electricity. There are typically at least two
major types of markets where Gencos can sell electricity: the
spot market and the forward market for longer-term bilateral
contracts market (Kirschen and Strbac, 2018). Here, the spot
market refers to a public financial market where electricity
is traded on a daily, hourly, or subhourly basis. Gencos de-
liver electricity immediately and buyers pay for it “on the
spot.” Such markets can be highly volatile as supply and
demand variability can cause the market-clearing price to
fluctuate dramatically over time. In contrast, forward mar-
kets allow for buyers and sellers to enter longer-term bilat-
eral contracts to reduce price variability over a time span of
interest. Among other benefits, forward markets allow mar-
ket participants to hedge against uncertainty by offering price
predictability, which in turn allows the Genco to better plan
its cash flows and potentially secure more favorable financ-
ing from lenders. A power purchase agreement (PPA) is one
such example of a bilateral contract where a Genco enters
a long-term agreement to provide (a typically fixed amount
of) energy at a fixed price over many time periods, e.g., one

year. This paper investigates the problem of deciding how to
allocate supply within these two types of markets.

Electricity applications investigating long-term vs. spot
tradeoffs

Given the importance of balancing risk exposure and ex-
pected profits in the power sector, many researchers have
studied how power producers should simultaneously opti-
mize contractual involvement, spot allocation, and genera-
tion planning. Within the electricity sector, this joint prob-
lem is often referred to as “power portfolio optimization” and
“integrated risk management” (Lorca and Prina, 2014). Al-
though there are a host of contracts available, in this work we
focus exclusively on fixed-price forward contracts; we do not
consider other options and derivatives. A forward contract is
an agreement to buy or sell a fixed amount of electricity at a
given price over a fixed time horizon.
The importance of forward contracts within the electricity in-
dustry has been known for decades (Kaye et al., 1990). We
therefore attempt here to highlight key papers that have em-
ployed a rigorous approach to address power portfolio op-
timization under uncertainty. Early papers employed more
traditional risk-neutral stochastic programming techniques
as a means to transcend a deterministic Markowitz mean-
variance mindset (Kwon et al., 2006; Sen et al., 2006). Risk-
averse models soon followed to manage downside exposure.
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Noteworthy papers that employ the conditional value-at-risk
(CVAR) metric include Conejo et al. (2008), Street et al.
(2009), Pineda and Conejo (2012), Yau et al. (2011), Lorca
and Prina (2014). For example, Street et al. (2009) investi-
gate bidding strategies for risk-averse Gencos in a long-term
forward contract auction. Fanzeres et al. (2014) examine
contracting strategies for renewable generators using an in-
teresting hybrid stochastic/robust optimization approach.
Our investigation most closely aligns with the study con-
ducted by Lorca and Prina (2014), who pose a risk-averse
stochastic linear program for a “medium-term” planning
horizon. The qualifier “medium-term” is used to distinguish
the problem from short-term scheduling problems over min-
utes, hours, or days, and from long-term applications that
may involve capital-intensive generation investment deci-
sions. We also consider a medium-term planning horizon of
one year.

Why pursue distributionally robust optimization?

Over the past decade, distributionally robust optimization
(DRO) has emerged as a powerful tool within the opera-
tions research and statistical learning communities, while
also garnering attention within the process systems engineer-
ing community (see, e.g., Gao et al. (2019); Liu and Yuan
(2021); Shang and You (2018)). Rahimian and Mehrotra
(2019) survey fundamental DRO concepts and applications,
in addition to relating it with robust optimization, risk aver-
sion, chance-constrained optimization, and function regular-
ization. Loosely speaking, DRO is well-suited to address
data-driven optimization problems as it puts faith in the em-
pirical data, but not too much.
Esfahani and Kuhn (2018) motivate DRO quite nicely. A
traditional stochastic program attempts to solve the problem
minx∈X EP[h(x,ξ)], where the loss function h : Rn×Rm de-
pends on both the decision vector x ∈ Rn and the random
vector ξ ∈Rm governed by the distribution P. Unfortunately,
as many practitioners have discovered, the true distribution
P is rarely known precisely and must be inferred from data,
physics, expert knowledge, and more. Optimizing a tradi-
tional stochastic program can then lead to solutions that are
“overfitted to the data.” Second, computing the expectation
in a stochastic program for a fixed decision x can be compu-
tationally challenging in its own right as it may involve the
evaluation of a multivariate integral.
To combat these challenges, DRO attempts to hedge the ex-
pected loss against a family P of distributions that include the
true data-generating mechanism with high confidence (Chen
and Paschalidis, 2018). Mathematically, DRO minimizes the
expected loss over the worst-case distribution Q∈ P by solv-
ing

min
x∈X

sup
Q∈P

EQ[h(x,ξ)]. (1)

The family P is also known as an ambiguity set and min-
imizing the inner “sup” expectation is sometimes termed
an ambiguity-averse (as opposed to “risk-averse”) problem,
which is why DRO is also known as ambiguous stochastic
optimization (Rahimian and Mehrotra, 2019). DRO “bridges

the gap between data and decision-making – statistics and
optimization frameworks – to protect the decision-maker
from the ambiguity in the underlying probability distribu-
tion” (Rahimian and Mehrotra, 2019).
Existing DRO approaches can be divided into two broad
classes – moment-based and statistical distance-based – ac-
cording to the way in which the ambiguity set P is con-
structed. Moment-based ambiguity sets postulate that the
empirical data must belong to a distribution that satisfies cer-
tain moment (e.g., mean and variance) constraints (Delage
and Ye, 2010). While such approaches often give rise to
tractable formulations, they sometimes produce overly con-
servative solutions (Wang et al., 2016) and may not enjoy
favorable asymptotic consistency or finite sample guarantees
(Hanasusanto and Kuhn, 2018). On the other hand, statis-
tical distance-based ambiguity sets require distributions that
are stastically “close” to the empirical distribution. Popu-
lar choices of distance metrics include Kullback-Leibler di-
vergence, φ-divergence, the Prokhorov metric, total varia-
tion, and more (Rahimian and Mehrotra, 2019). Due to sev-
eral shortcomings in the aforementioned metrics (Gao and
Kleywegt, 2016), the Wasserstein distance metric has gar-
nered considerable attention in the past decade, within both
the machine learning and optimization communities. It pos-
sesses favorable statistical guarantees, while also leading
to tractable optimization formulations (Gao and Kleywegt,
2016; Esfahani and Kuhn, 2018; Rahimian and Mehrotra,
2019). It is for these reasons that we pursue the Wasserstein
metric in this study.

Contributions

The contributions of this paper are:

1. In contrast to the prevailing simplistic price-taker mod-
els commonly found in the literature, we consider an
“elasticity-aware” decision-maker. Consequently, the
supplier can estimate the price elasticity due to her
own supply to each spot market and behaves accord-
ingly so as not to oversaturate a particular market and
ultimately overly depress prices.

2. We present a data-driven DRO approach exploiting
Wasserstein ambiguity sets and contrast it against a
standard conditional value-at-risk approach. As data-
driven techniques that bridge data science, machine
learning, and optimization hold significant promise,
we believe that this investigation is valuable for the
process systems engineering community.

3. We provide numerical evidence that our risk-averse
models are tractable for an interesting application in
the real-time PJM electricity market. We also explore
the tradeoff between supply allocation to long-term
contracts vs. the spot market as a function of the deci-
sion maker’s risk aversion.

Problem Statement
Suppose that a key decision maker’s objective is to max-

imize profit by selling a commodity (e.g., electricity) in a set



M of market locations over a fixed planning horizon. Within
each market location m ∈M , she has two options available:
(1) enter into long-term fixed-price forward bilateral con-
tracts with customers to ensure price predictability, or (2) sell
to one or more spot markets at a potentially volatile market-
clearing price. More formally, she must choose a long-term
contract amount xmin

mc ∈ R+ (a non-negative scalar) for each
market location m ∈M and each long-term contract c ∈ Cm,
which holds for the entire planning horizon (e.g., one month).
The contracted amount xmin

mc determines the minimum and
maximum amount of a particular product/commodity that
must be sold at a fixed price to the associated contract holder
in each time period (e.g., hour) t ∈ T . Specifically, she can
sell up to xmin

mc +X+
mc to long-term contracts where X+

mc ∈R+.
Any remaining production in that time period can be sold to
one or more spot markets. Let Wmct be the long-term price
(sometimes called a “wholesale” price) associated with con-
tract c ∈ Cm in market m in time period t ∈ T . Oftentimes,
the long-term contract price is not a function of time and
can therefore be written simply as Wmc, but we will keep the
subscript t for the more general setting in which the price is
known to vary with time.

Meanwhile, we assume that spot market prices in each
market location m are unknown when deciding long-term
contract amounts xmin

mc . In a data-driven setting, we assume
that we have access to a finite set S of scenarios, e.g., a set
of historical spot price time series. Associated with each
scenario s ∈ S is a probability πs ∈ (0,1] and spot price
curve for every market m and time period t ∈ T . Natu-
rally, ∑s∈S πs = 1. Unlike the majority of price-taker mod-
els in the literature, we assume that the decision maker is an
“elasticity-aware” price taking supplier, i.e., the supplier can
estimate the price elasticity due to her own supply to each
spot market m. We do not assume price setter behavior, how-
ever, in which suppliers could exert market power and could
therefore act as Nash-Cournot players. In our first simplified
setting, we assume that there is no cross-market price elas-
ticity in which case all markets are independent. That is, the
stochastic spot price in market location m1 is independent of
the price (and quantity sold) in market location m2 for all
m1 6= m2 ∈M . This simplification allows us to represent the
spot market price in each location via a descending “stair-
case” structure defined by a set Km of steps. The height of
step k in time period t in scenario s is denoted by Pmkts and
satisfies Pm1ts > Pm2ts > · · ·> PmKts (with K = |Km|), and has
width Y Spot

mkts > 0. This spot price structure implies that at most
Y Spot

m1ts units can be sold to spot at price Pm1ts before the price
decreases to Pm2ts and so forth. We then describe an exten-
sion to handle “separable” cross-market price elasticity.

We assume that the decision maker also has production
and transportation costs to consider. Analogous to the afore-
mentioned demand curves, we assume a standard supply
curve represented by an increasing “staircase” structure. That
is, the supplier can produce up to UProd

i units at a production
cost of CProd

i for each supply step i ∈ I . Let Lt and Ut be
the known minimum and maximum production limits in time
period t. Let CTrans

m denote the per-unit transportation cost to
market location m. Our basic model implicitly assumes that

all supply is co-located, e.g., at a centralized location; this
assumption could easily be relaxed.

As for the decision variables, let xTerm
mcts and ∑k∈Km ySpot

mkts
denote the amount of production to allocate to long-term con-
tract c∈Cm and to the spot market in location m, respectively,
in time period t in scenario s. As stated above, xmin

mc denotes
the long-term contract volume allocation to market-contract
pair (m,c). Finally, uProd

its and uTrans
mts denote the production

amount at supply step i ∈ I and the amount transported to
market m in time period t in scenario s.

Risk-neutral stochastic programming formulation

Assuming no cross-market price elasticity, a potential
scenario-based risk-neutral stochastic mixed-integer linear
program (MILP) has the following form:

max
xmin,

u,x,y,z

∑
s∈S

πszs (= Expected Profit) (2a)

s.t. zs = ∑
t∈T

[
∑

m∈M
∑

c∈Cm

WmctxTerm
mcts + ∑

k∈Km

Pmktsy
Spot
mkts

−∑
i∈I

CProd
i uProd

its − ∑
m∈M

CTrans
m uTrans

mts

]
∀s ∈ S (2b)

xmin
mc ≤ xTerm

mcts ≤ xmin
mc +X+

mc ∀m,c ∈ Cm, t,s (2c)

∑
i∈I

uProd
its = ∑

m∈M
∑

c∈Cm

xTerm
mcts + ∑

k∈Km

ySpot
mkts ∀t ∈ T ,s

(2d)

∑
i∈I

uProd
its = ∑

m∈M
uTrans

mts ∀t ∈ T ,s ∈ S (2e)

Lt ≤∑
i∈I

uProd
its ≤Ut ∀t ∈ T ,s ∈ S (2f)

(u,xmin,xTerm,ySpot,z) ∈ X (2g)

uProd
its ∈ [0,UProd

i ] ∀i ∈ I , t ∈ T ,s ∈ S (2h)

xmin
mc ∈ [0,Xmax

mc ] ∀m ∈M ,c ∈ Cm (2i)

xTerm
mcts ∈ [0,Xmax

mc ] ∀m ∈M ,c ∈ Cm, t ∈ T ,s (2j)

ySpot
mkts ∈ [0,Y Spot

mkts ] ∀m ∈M ,k ∈Km, t ∈ T ,s (2k)
zs ∈ R ∀s ∈ S (2l)

The objective function (2a) is the expected or “sample av-
erage” profit over a finite set of scenarios. The profit zs in
scenario s in equation (2b) includes two terms: the two posi-
tive terms account for revenues from the long-term and spot
markets, while the two negative terms denote the cost to pro-
duce and transport volumes to markets. As a reminder, the
only uncertain parameter is the spot price Pmkts, rendering
Formulation (2) a stochastic MILP with objective function
uncertainty only. Constraints (2c) ensure that the amount
of production allocated to long-term wholesale market con-
tracts (xTerm

mcts ) adheres to the terms of the contract. Supply-
demand balance constraints (2d) ensure that the total produc-
tion equals the total quantities supplied to the markets. Con-
straints (2e) ensure that total supply equals the total amount
transported to all market locations. Constraints (2f) govern
supply limits by ensuring that total production is within lower
and upper bounds. Side constraints (2g) capture potential



mixed-integer requirements through the set X . The remain-
ing constraints are variable bounds.
To handle “separable” cross-market price elasticities, i.e.,
the situation when the volume supplied to market m1 im-
pacts/depresses the price in market m2(6= m1) as well,
one could replace the term ∑k∈Km Pmktsy

Spot
mkts in (2b)

with a more complex multivariate “staircase” representa-
tion ∑k∈Km Pmktsy

Spot
mkts −∑m′ 6=m ∑k′∈Km′

δmm′k′tsy
Spot
m′k′ts. Here,

δmm′kts denotes the per-unit price reduction in market m due
to volumes sold in market m′. More sophisticated piecewise
linear representations could be used to capture and linearize
other nonlinear cross-market price relationships. For ease of
exposition and due to the additional complexities associated
with forecasting these nonlinear relationships, we will hence-
forth omit this interesting generalization.

Conditional value-at-risk formulation

Transitioning away from a purely risk-neutral mindset, a
risk-averse decision maker could consider a two-stage risk-
averse stochastic program that maximizes a convex combi-
nation of the expected profit and the expected “tail” profit or
conditional value-at-risk (CVAR) profit (Rockafellar, 2007).
Conditional value-at-risk has emerged as an extremely popu-
lar risk metric due to its coherency and tractability. As such,
it has been widely used in applications of optimization under
uncertainty.
To arrive at a risk-averse formulation, let λ ∈ [0,1] be a
user-defined parameter governing the weight given to the ex-
pected value. When λ = 1, the model reverts to the risk-
neutral formulation (2), while λ = 0 implies that the deci-
sion maker is only concerned with the expected “tail” profit.
Let α ∈ (0,1) denote the risk-aversion parameter (or the α-
quantile) in the CVAR calculation. In our maximization set-
ting, CVARα(X) denotes the expectation of a random vari-
able (profit) X in the conditional distribution of its α-lower
tail, e.g., the average of the lowest α = 10% profits. These
assumptions lead to the following risk-averse MILP formu-
lation:

max
xmin,vVaR,
`,u,x,y,z

λ ∑
s∈S

πszs +(1−λ)
[
vVaR− 1

1−α ∑
s∈S

πs`s

]
(3a)

s.t. `s ≥ vVaR− zs, `s ≥ 0 ∀s ∈ S (3b)

vVaR ∈ R (3c)
(2b)− (2l) (3d)

The additional decision variables zs and `s denote the profit
and the nonnegative tail loss in scenario s, while vVaR cap-
tures the value-at-risk at the α confidence level.

Distributionally robust model over a Wasserstein ball

Although Formulation (3) allows for some degree of risk-
aversion, it is not “ambiguity-averse.” That is, Formula-
tion (3) assumes that an empirical probability distribution is
known with certainty and then attempts to maximize the ex-
pected “tail” profit (and possibly other terms) with respect to
this known distribution. In contrast, a distributionally robust

model assumes that the distribution itself is unknown and be-
longs to a known family of distributions. After “centering”
the family around the empirical data, a DRO approach over
a Wasserstein ball maximizes the worst-case expected profit
over this chosen family.

To arrive at a tractable DRO formulation over a Wasser-
stein ball, we describe the price vector p as a linear func-
tion p = Qξ+q, where Q and q are a predefined matrix and
vector that map an underlying basis vector ξ of uncertain pa-
rameters to p. Furthermore, we must specify the Wasserstein
radius ε ∈ R+, which defines the permissible deviation from
the empirical data. Following (Xie, 2020, Prop. 2), one can
formulate a two-stage DRO model as follows:

max
xmin,

u,x,y,z

∑
s∈S

πszs− ε ∑
s∈S

πs||Q>ySpot
s ||p∗ (4a)

s.t. (2b)− (2l) (4b)

Analogous to the CVAR term (1−λ)
[
vVaR− 1

1−α
∑s∈S πs`s

]
in Formulation (3), the term ε∑s∈S πs||Q>ys||p∗ in (4a) acts
as a penalty on the spot allocation. The larger the ε radius,
the larger the penalty on downside volatility. Setting p = 1
or p = ∞, the dual norm p∗ = ∞ or 1, respectively, and can
therefore be represented using linear constraints.

Numerical Results

This section documents numerical results for a case study
in the PJM electricity market. For simplicity, we assume
a single market location |M | = 1, a planning horizon of
|T | = 365 days, and |S | = 100 scenarios are available. Fig-
ure 1 depicts a truncated histogram of historical real-time
hourly location marginal prices (LMPs) at PJM pricing node
48612 from 1 Jan 2021 through 1 May 2022 available at
http://dataminer2.pjm.com/feed/rt_hrl_lmps. The
histogram is truncated as prices spiked higher than $200 in
several hours. There is a single supply cost and no trans-
portation cost.

We assume that X+
mc = 0 for all c (recall |M | = 1), the

minimum and maximum supply satisfy Lt = Ut = 500 MW
for all t. For some perspective, the average capacity of a
natural gas-fired combined-cycle power block is roughly 500
MW. There are no mixed-integer constraints in X , i.e., all
of our instances are LPs. The long-term contract demand
curve has individual contracts up to 20 MW each, starting
at a price of 38 $/MWh, decreasing by 1 $/MW with each
subsequent contract, i.e., Wmc = 38− (c−1) and Xmax

mc = 20
MW for all c = 1, . . . ,20. The spot price elasticity curve has
steps of width 25 MW, while the spot price decreases by 0.2
$/MWh relative to the nominal parameter value in each step.
That is, Pkts = P1ts− (k−1)0.2 $/MWh and Y Spot

kts = 25 MW
for k = 1, . . . , |K| = 20. We set λ = 0.01, thus weighting
the CVAR component of the objective function much more
heavily than the expected profit.



Figure 1: Histogram of historical real-time hourly location
marginal prices (LMP) at PJM node 48612 from 1 Jan 2021
through 1 May 2022.

To compare the three formulations put forth in the previ-
ous section, we need to define several metrics:

• ζ(ySpot) = Expected risk-neutral profit given a spot al-
location decision ySpot

• χα(ySpot) = Expected α-tail profit (CVARα) given a
spot allocation decision ySpot and α ∈ (0,1)

• ζriskfree = Expected risk-free profit. Note that ζriskfree =
ζ(0) = χα(0) ∀α ∈ (0,1)

• ∆ζ(ySpot) = ζ(ySpot)−ζriskfree = Expected increase in
the risk-neutral profit relative to the risk-free profit
given a spot allocation decision ySpot

• ∆χα(ySpot) = |χα(ySpot)−ζriskfree|= Absolute value of
the expected decrease in the α-tail profit relative to the
risk-free profit given a spot allocation decision ySpot

• ∆ζ(ySpot)/∆χα(ySpot) = Change in expected profit per
change in risk (expected α-tail profit) as a function of
the spot allocation ySpot

With these definitions, we can analyze the risk-reward trade-
off associated with allocating more supply to the spot mar-
ket. Figure 2 depicts the “change in reward per change in
risk” metric ∆ζ(ySpot)/∆χα(ySpot) as a function of the spot
allocation. The risk term in the denominator is measured us-
ing both the CVARα=0.05 and CVARα=0.10 metrics, which
is also reflected in the legend labels. Intuitively, as one takes
on more risk, the profit per unit risk decreases. When virtu-
ally all supply is allocated to essentially risk-free long-term
contracts (see the left side of Figure 2), re-allocating a small
amount of supply to the spot market results in a small de-
crease in the CVAR and a large increase in expected profit.
More colloquially, a practitioner would say that taking on a
small amount of risk (measured in terms of CVAR) results
in a large expected reward. Note that the horizontal axis in
Figure 2 begins with a spot allocation of 20% because, at
a 0% spot allocation, the “change in reward per change in

risk” metric ∆ζ(ySpot)/∆χα(ySpot) is extremely large due to
a small denominator. As more supply is re-allocated to the
spot market, however, this profit-per-unit-risk metric tapers
off revealing that an additional unit of expected profit is only
available by taking on a larger amount of risk.

Figure 2: Profit vs risk tradeoff curves. ∆Profit and ∆Risk
are {the expected profit increase} and {the absolute value of
the CVARα decrease}, respectively, relative to the risk-free
allocation of committing all supply to long-term contracts.
The (α,ε) values shown next to a subset of points refer to the
CVARα confidence level and the Wasserstein radius ε that
induce the spot allocation on the horizontal axis. Two α val-
ues (0.05 and 0.10) are used in the ∆Risk calculation, while
α values from 0 to 1 are tested to generate the four curves.

The impact of including spot price elasticity is also il-
lustrated. As stated in the previous section, the presence of
spot price elasticity implies that, as the decision maker injects
more supply into the market, prices may decrease below their
nominal scenario value. This price (and hence profit) reduc-
tion relative to the “NoElasticity” curve is most noticeable on
the left of Figure 2. This behavior occurs because, when only
a small amount of supply is reserved for the spot market, it is
able to capitalize on “high price events,” which become less
profitable as additional supply depresses their prices. Conse-
quently, the numerator ∆Profit is lower relative to the “NoE-
lasticity” assumption and the “change in reward per change
in risk” metric decreases.

We now contrast the formulations. To this end, it is im-
portant to note that different values of the confidence value α

and Wasserstein radius ε induce different long-term vs. spot
market allocation decisions. These (α,ε) values are shown
above a select number of points in Figure 2. As shown by the
rightmost point in Figure 2, the risk-neutral formulation (2)
is equivalent to setting the confidence level α = 1 (recall that,
for a random variable X , CVAR1[X ] =E[X ] by definition) or
the Wasserstein radius ε = 0. Furthermore, in this example,
the risk-neutral approach allocates 96% of supply to the spot
market, but commits 4% of supply to long-term contracts.
The reason why 4% is retained is because the expected spot
price without elasticity is roughly 37.42 $/MWh, while the
first long-term contract is available for 38 $/MWh. In agree-



ment with intuition, as α decreases and ε increases (i.e., as we
move from right to left in Figure 2), risk aversion increases
and less supply is allocated to the volatile spot market in fa-
vor of greater price stability via long-term contracts.

Finally, a word on how to interpret the Wasserstein radius
ε is in order. While the interpretation of the confidence level
α is well understood as the lower α-tail expectation (when
maximizing) in the CVARα calculation (see, e.g., Rock-
afellar (2007)), the Wasserstein radius is perhaps less well
known. Ramdas et al. (2017) provide some intuition. For
a one-dimensional random variable, the ∞-Wasserstein dis-
tance, which is used in our example, between two bounded
probability distributions can be interpreted as the maximum
distance between the quantile functions of the two distribu-
tions. Thus, when ε = 1, one can interpret the DRO formula-
tion (4) as imposing a limit of ε= 1 on the maximum distance
between the quantile function of the empirical spot price dis-
tribution and that of the worst-case spot price distribution.

Conclusions and future research directions
In this work, we have attempted to make a case for ap-

plying DRO to the rather generic problem of balancing sup-
ply allocation to long-term contracts where price stability
reigns versus spot markets where volatility can lead to large
gains ... and losses. Focusing on a Genco’s medium-term
planning problem, we presented risk-neutral, risk-averse
(CVAR), and ambiguity-averse (DRO) formulations to ad-
dress it. These formulations also included price elasticity
components atypical in the majority of price-taker models.
We then demonstrated how a risk-averse and an ambiguity-
averse approach converge to the same decisions depending
on the parameter values chosen. As always, the final long-
term vs. spot market allocation decision depends on the
risk/ambiguity aversion of the decision maker.

As for future research directions, it would be interesting
to consider simultaneous uncertainty in the objective func-
tion and the constraints. Additionally, one could explore
price setter behavior or game-theoretic models in which sup-
pliers could exert market power and could therefore act as
Nash-Cournot players.
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