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Abstract 

Biomass conversion facilities are subject to many uncertainties, such as the feedstock supply, product 
demand, and chemical prices. The integrated biorefinery makes use of different technologies and 
feedstock types to improve both the profitability and flexibility of the process. The flexibility index has 
been developed as a means of quantifying the process's capacity to handle different sources of 
uncertainties. However, the evaluation of the flexibility index requires solving the bi-level optimization 
problem, which is difficult to be directly incorporated into the process design problem. In this work, a 
two-stage stochastic programming problem is built for the rational design of biorefinery that is 
environmentally friendly and economically viable. Different data-driven surrogate models are constructed 
for the biorefinery flexibility index. They are embedded in the integrated biorefinery design problem as 
the flexibility requirement constraints. The result shows that the rectified linear unit (ReLU) neural 
network model achieves better performance than the support vector regression (SVR) and Lasso 
regression due to the versatile fitting ability and the resulting MILP formulation. 
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Introduction

Utilizing biomass as the feedstock for chemical 
production has been established as an effective strategy to 
reduce greenhouse gas emissions. However, there are 
multiple levels of uncertainties associated with the biomass 
feedstock and its conversion technologies at the early stage 
of development. Ignoring these uncertainties may render the 
designs and operations sub-optimal or even infeasible 
(Bhosekar, et al., 2021). Hence, it is essential to consider 
uncertainties in biorefinery optimization to allow for 
additional flexibility (Sahinidis, 2004). Stochastic 
programming is a commonly used formulation to 
incorporate uncertainty information into optimization 
(Martín and Martínez, 2015). Probability distributions of 
uncertain parameters are first sampled into a set of 
scenarios. Then, the deterministic equivalent problem is 
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solved by optimizing the expected values of the objective 
functions (Bhosekar, et al., 2021). 

On the other hand, the flexibility index has been 
proposed to quantify the maximum parameter ranges that a 
process can tolerate for feasible operation. The classic 
definition of flexibility index is based on the maximum 
hyperrectangle inscribed in the feasible region. The vertex 
enumeration method has been applied to convex problems. 
However, this method becomes less effective in high-
dimensional and more general non-convex problems 
(Swaney and Grossmann, 1985). The active set method is 
developed to introduce the binary variable that indicates 
whether the constraints are active and solve the problem 
more efficiently (Grossmann and Floudas, 1987). The 
concept of flexibility index has been introduced in the 



  
 
process design problems, such as selecting the operating 
ranges (Ochoa, et al., 2021). The flexibility index of the 
supply chain has also been analyzed to demonstrate the 
trade-off between costs and flexibility (Wang, et al., 2016). 

Surrogate embedded optimization has been applied in 
many areas of process system engineering. Bhosekar and 
Ierapetritou (2020) utilized the support vector machine as 
the surrogate for feasibility constraints and adopted the 
vertex formulation to add flexibility index requirement of 
the processes Artificial neural network (ANN) surrogate 
model has also been embedded in the optimization for case 
studies in compressors, fermentation, and chemical process 
operations (Schweidtmann and Mitsos, 2019). Adaptive 
sampling strategy has been implemented using both ANN 
and Kriging surrogate models to optimize computationally 
expensive processes (Metta, et al., 2021, Rogers and 
Ierapetritou, 2015). Kim and Boukouvala (2020) extended 
Gaussian Process and ANN to mixed-integer surrogate 
models by using one-hot encoding for optimization.  

Rectified linear unit (ReLU) is one of the most widely 
used activation functions in the ANN models. This 
activation function has demonstrated the ability to capture 
the nonlinearity of the model while not adding too much 
model complexity (Katz, et al., 2020a). 

This work incorporates the requirement for process 
flexibility into the economical and sustainable process 
design. Three different data-driven surrogate models, 
namely support vector regression (SVR) with radial basis 
function (RBF) features, polynomial features, and feed-
forward neural network with ReLU activation function, are 
built for the flexibility index constraints of the biorefinery.  

Two-stage Stochastic Programming for Biorefinery 

The two-stage stochastic programming formulation 
with recourse actions is utilized for the biorefinery 
optimization problem. The first-stage design decisions, 
such as the technology choices and capacities, are made 
before uncertainty realization. Then, the actual feedstock 
supply, product demand, and prices are observed. The 
second-stage operational-level decisions include the actual 
production activity and stream flowrates, ensuring process 
feasibility and improve performance. 

 

Figure 1.   Biorefinery Superstructure 

The objective of the superstructure optimization 
problem is to maximize the expected profit and minimize 

the expected global warming potential (GWP) while having 
certain flexibility. The expected profit includes the revenue 
of selling products/byproducts minus both the first-stage 
capital investments and second-stage feedstock and 
operating costs. The annualized capital investment and 
fixed operating costs (such as administration and 
maintenance) demonstrate the famous "economy-of-scale" 
and follow the power-law relationship (Eq. (1) and Eq. (2)) 
(Tribe and Alpine, 1986). 
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where 𝐶C(𝑚) is the annualized capital cost basis at a plant 
scale of 𝑄C(𝑚), 𝑄(𝑚) is the actual designed capacity, and 
𝛼(𝑚) is the capital cost scaling exponent for technology 
𝑚 ∈ 𝑀 . 𝑂C(𝑚)  and 𝑅C(𝑚)  are the known fixed and 
variable operational costs, and 𝛽(𝑚) is the operating cost 
scaling exponent for technology 𝑚 ∈ 𝑀 . 𝑥(𝑚,𝜔)  is the 
actual production activity in the process unit 𝑚 in scenario 
𝜔 ∈ Ω. The total profit is calculated by Eq. (3): 

𝑷𝒓𝒐𝒇𝒊𝒕(𝝎) =+𝝁(𝒊,𝝎) ∙ 𝝆(𝒊,𝝎)
𝒊∈𝑰
− 𝑶𝑷𝑬𝑿(𝝎) − 𝑪𝑨𝑷𝑬𝑿𝒂𝒏𝒏𝒖𝒂𝒍 

(3) 

where 𝜇(𝑖, 𝜔) is the purchase or selling price, 𝜌(𝑖, 𝜔) is the 
flow rate of the feedstock, intermediate or product 𝑖 ∈ 𝐼 in 
scenario 𝜔 ∈ Ω . The profit objective is piece-wise 
linearized using the function interpolation by lookup of grid 
points (Misener and Floudas, 2010). 

The global warming potential (GWP) is chosen as the 
environmental impact of interest since it is the most popular 
environmental indicator (Luo and Ierapetritou, 2020). 
Equation (4) includes the emissions associated with 
production activity, upstream raw material, and utility 
extraction, avoided burden from selling byproducts, and 
plant construction. 

𝑮𝑾𝑷(𝝎) = + 𝝅𝒑(𝒎) ∙ 𝒙(𝒎,𝝎) +
𝒎∈𝑴

+𝝅𝒖(𝒊)
𝒊∈𝑰

∙ 𝝆(𝒊,𝝎) ++𝝅𝒆(𝒔) ∙ 𝜸(𝒔,𝝎)
𝒔∈𝑺

+ + 𝝅𝒄(𝒎) ∙ 𝑸(𝒎)
𝒎∈𝑴

 

(4) 

where 𝜋e(𝑚), 𝜋f(𝑖), 𝜋g(𝑠), and 𝜋i(𝑚) are the greenhouse 
emissions during the production stage, upstream raw 
material extraction, electricity generation from energy 
source 𝑠 ∈ 𝑆, and plant construction. Here,	𝛾(𝑠, 𝜔) is the 
electricity usage from energy source 𝑠 ∈ 𝑆 in scenario 𝜔. 



  

Aspen Plus process flowsheets are first developed for 
each technology by setting the experimental yields in the 
reactor units and designing appropriate separation units. 
The conversion coefficients of each process unit are 
extracted to capture the inlet and outlet flowrate for 
feedstocks, intermediates, and products 𝑖 ∈ 𝐼. Equation (5) 
is the mass balance for each process unit: 

𝝆(𝒊,𝝎) = ∑ 𝒗(𝒊,𝒎) ∙𝒎∈𝑴 𝒙(𝒎,𝝎)  (5) 

The parameter 𝒗(𝒊,𝒎)  is the conversion coefficient, 
representing the consumption or production of chemical 𝑖 ∈
𝐼  in process 𝑚 ∈ 𝑀 . A negative 𝜌(𝑖, 𝜔)  indicates 𝑖  is a 
feedstock or intermediate that has to be purchased from the 
suppliers, while a positive 𝜌(𝑖, 𝜔) means 𝑖  is sold to the 
market. Uncertainties in pretreatment and other process 
yields could also be captured in the conversion coefficients. 
This formulation is similar to the matrix-based LCA 
calculation, which can easily expand and include more 
processes and technologies as they become available or of 
interest. 

The binary variable, 𝒚(𝒎), is used to indicate whether 
technology 𝑚  is chosen or not. When this technology is 
chosen, its capacity is then limited by the possible minimum 
and maximum capacities, 𝑄p(𝑚) and	𝑄q(𝑚), as illustrated 
in Eq. (6). 

𝒚(𝒎) ∙ 𝑸p(𝒎) ≤ 𝑸(𝒎) ≤ 	𝒚(𝒎) ∙ 𝑸q(𝒎)  (6) 

Additionally, some feedstocks (and thus technologies) 
may share the same facility, which is captured by equating 
their capacities (Eq. (7)). 

𝑸(𝒎) = 𝑸(𝒎′)  ∀	𝒎,𝒎u that share the same facility (7) 

There are also bounds on the operational decisions, 
such as the flow rate of feedstocks could not exceed their 
maximum supply, and the maximum production should be 
less than the market demands in each case. Equation (8) 
imposes the lower and upper bounds ( 𝜌p(𝑖, 𝜔)  and 
𝜌q(𝑖, 𝜔)) on the material flowrates. 

𝝆p(𝒊,𝝎) ≤ 	𝝆(𝒊,𝝎) ≤ 	𝝆q(𝒊,𝝎) (8) 

Moreover, the actual production activity in each 
production unit should not exceed its designed capacity. 
Equation (9) thus connects the first- and second-stage 
decisions of stochastic programming. 

𝒙(𝒎,𝝎) ≤ 𝑸(𝒎) (9) 

The aforementioned two-stage stochastic programming 
model could readily consider other operational level 
constraints, such as the service level of the supply chain.  

Flexibility Evaluation for Integrated Biorefinery 

The biorefinery operational flexibility is quantified by 
the max-min-max flexibility index formulation (Eq. (10)) 
(Swaney and Grossmann, 1985). 

𝑭 = 𝐦𝐚𝐱𝜹 

𝒔. 𝒕. 𝐦𝐚𝐱
𝜽∈𝑻(𝜹)

𝝍(𝒅, 𝜽) ≤ 𝟎 

𝝍(𝒅, 𝜽) = 𝐦𝐢𝐧	
𝒛

𝐦𝐚𝐱
𝒋
𝒇𝒋(𝒅, 𝒛, 𝜽) 

𝑻(𝜹) 	= {𝜽:	𝜽𝑵 − 𝜹 ∙ ∆𝜽p ≤ 𝜽 ≤ 𝜽𝑵 + 𝜹 ∙ ∆𝜽q} 

(10) 

where 𝐹  is the flexibility index, 𝜓(𝑑, 𝜃) is the feasibility 
function that indicates the existence of constraint violations, 
and 𝑇(𝛿)  is the hyperrectangular that allows feasible 
uncertain parameters to vary without correlations. The 
interactions between different uncertain parameters could 
be captured by ellipsoidal or diamond shape uncertainty sets 
(Pulsipher and Zavala, 2018). 

Here, 𝑓�(𝑑, 𝑧, 𝜃)  is obtained by substituting equality 
constraints and eliminating state variables in inequality 
constraints. In this model, 𝑑  is the design variable (e.g., 
choice of technologies 𝑦(𝑚)	and capacities	𝑄(𝑚)),	𝜃 is the 
uncertain parameters that affect the process feasibility (e.g., 
supply or demands, 𝜌p(𝑖, 𝜔) or 𝜌q(𝑖, 𝜔), and conversion 
coefficients, 𝑣(𝑖,𝑚)), and 𝑧 is the recourse/control actions 
(e.g., production activity 𝑥(𝑚,𝜔) and flowrates 𝜌(𝑖, 𝜔)). 

The active-set formulation of the flexibility index is 
used to convert the problem into a single level MINLP (Eq. 
(11)) (Floudas and Grossmann, 1987). 

𝐅(𝐝) = 𝐦𝐢𝐧
𝜽,𝒛,𝜹,	𝒔𝒋,	𝝀𝒋,	𝒚𝒋

𝜹 

𝐬. 𝐭.			𝒔𝒋 +	𝒇𝒊(𝒅, 𝒛, 𝜽) = 𝟎	, ∀𝒋 ∈ 𝑱 

+	𝝀𝒋
𝒋∈𝑱

= 𝟏, 

+	𝝀𝒋
𝒋∈𝑱

∙
𝝏𝒇𝒊
𝝏𝒛 = 𝟎, 

	𝝀𝒋 − 	𝒚𝒋 ≤ 𝟎, 
	𝒔𝒋 − 𝑼(𝟏 − 	𝒚𝒋) ≤ 𝟎, 

+	𝒚𝒋
𝒋∈𝑱

≤ 	𝒏𝒛 + 𝟏, 

𝑻(𝜽) = {𝜽:	𝜽𝑵 − 𝜹 ∙ ∆𝜽p ≤ 𝜽 ≤ 𝜽𝑵 + 𝜹 ∙ ∆𝜽q} 
𝜹 ≥ 𝟎;		𝒚𝒋 = 𝟎, 𝟏;	 	𝒔𝒋, 	𝝀𝒋 ≥ 𝟎, , ∀𝒋 ∈ 𝑱 

(11) 

where	𝑠�  is the slack variable for each constraint 𝑓� , 	𝜆�  is 
the Lagrange multiplier, 	𝑦� is the binary variable as an 
indicator for whether the inequality constraint 𝑓� is active, 
and 𝑛¢ represents the number of control variables. 

Since the conversion coefficients are uncertain, the 
resulting active-set problem still contains bilinear terms in 
the KKT condition for the mass balance. Hence, the global 
MINLP solver BARON is used to solve the flexibility index 
problem when the process design is fixed.  

Surrogate Modeling of Process Flexibility 

A total of 1600 Latin hypercube sampling is performed 
in MATLAB on the capacity of each production unit. Then, 
the MATLAB-GAMS interface was used to solve each 



  
 
sampled case and records the flexibility index. The Scikit-
learn and TensorFlow machine learning packages in Python 
are used to build and assess different SVR, Lasso 
regression, and neural network data-driven surrogate 
models (Eq. (12)).  

𝑭£(𝒅) ≈ 𝐅(𝐝) = 𝐦𝐢𝐧
𝜽,𝒛,𝜹,	𝒔𝒋,	𝝀𝒋,	𝒚𝒋

𝜹 (12) 

The fitted model parameters are used in the GAMS 
optimization program to build the surrogate constraints for 
the flexibility index requirement. 

Support Vector Regression (SVR) with RBF Kernels 

The SVR model (Eq. (13)) is easy to train and flexible 
enough to introduce different types of nonlinear kernels 
(Nandi, et al., 2004).  

𝑭¥𝑹𝑩𝑭(𝒙) = ∑ 	𝒂𝒔𝒔∈𝑺𝑽 𝒆−𝜸∥𝒙−𝒗𝒔∥
𝟐
+ 𝒃  (13) 

where 𝑣«  is the sth support vector obtained from model 
training, ∥∙∥ represents the Euclidean distance, and 𝛾 is the 
hyperparameter associated with the length scale. 

However, using all features obtained in the sampled 
designs tends to overfit the data. Thus, feature selection is 
performed by sequentially removing features from the set 
of all the candidates. As the number of features reduces 
from 7 to 4, the fitting error of the training data does not 
increase significantly while the error in the testing set drops, 
meaning that the three features removed correspond to the 
processes less relevant to the process flexibility. Although 
the SVR with RBF kernels are able to approximate different 
types of functions very well, the highly nonlinear and non-
convex nature of this model becomes an obstacle in the 
design optimization problem. 

Lasso Regression with 3rd-order Polynomial Features 

Lasso regression is a popular regularization technique 
in model fitting to reduce the model complexity and help 
avoid overfitting. This method adds an L1-norm penalty 
term of model coefficients to the objective function (Terrell, 
2022). After cross-validation of the highest power of the 
model, the 3rd-order polynomial model has the best 
performance.  

However, a large number of non-convex terms are still 
introduced into the Lasso regression when using all 3rd-
order polynomial features (e.g., bilinear and trilinear terms). 
These non-convex terms are difficult to relax when treated 
as optimization constraints. To reduce the non-convexity of 
the surrogate model, trilinear terms (𝑥𝑖𝑥𝑗𝑥𝑘) are removed 
from the regression, and only the bilinear terms are retained 
in Eq. (14) to capture the interactions. 

𝑭¥𝟑𝒓𝒅(𝒙) =+	𝒂𝒊
𝒊

𝒙𝒊 ++	𝒃𝒊
𝒊

𝒙𝒊𝟐 +++	𝒄𝒊,𝒋
𝒋>𝒊𝒊

𝒙𝒊𝒙𝒋

++ 	𝒅𝒊
𝒊

𝒙𝒊𝟑 + 𝒉 
(14) 

Feed-forward Neural Network (FFNN) 

The artificial neural network model has been 
successfully implemented in many areas, including 
chemical process design and control (Katz, et al., 2020b). In 
this case study, the piece-wise linear activation function, 
ReLU, is used to capture the nonlinearity of the model. The 
first layer of the neural network, 𝑧(±) , contains the input 
vector. Then, the outputs of the kth layer ( 𝑘 ≥ 2 ) are 
calculated by Eq. (15): 

𝒛(𝒌) = 𝒉𝒌(𝑾(𝒌p𝟏)𝒛(𝒌p𝟏) + 𝒃(𝒌p𝟏)) (15) 

Here, the second layer of the ANN model is the hidden 
layer with the ReLU activation function (Eq.(16)).  

𝒉𝟐(𝒙) = 𝑹𝒆𝑳𝑼(𝒙) = 𝐦𝐚𝐱	(𝟎, 𝒙) (16) 

The last layer (third layer) just applies the linear 
combination of 𝑧(µ) to make the final prediction (Eq.(17)). 

𝒛(𝟑) = 𝑾(𝟐)𝒛(𝟐) + 𝒃(𝟐) (17) 

The only hidden layer with the ReLU activation 
function (second layer) could be converted into the mixed-
integer linear constraints with the big-M formulation.  

Surrogate-Embedded Optimization for Process Design 

The surrogate-embedded optimization for process 
design is formulated in Eq. (18) using the different data-
driven surrogate models of 𝐹¶(𝑑): 

𝐦𝐚𝐱
𝒚,𝑸,𝝆,𝒙	

𝔼𝛚∈𝛀[𝑷𝒓𝒐𝒇𝒊𝒕(𝛚)] 

𝒔. 𝒕.		𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔	(𝟏) − (𝟗) 

𝔼𝛚∈𝛀[𝑮𝑾𝑷(𝛚)] ≤ 𝜺𝟐 

𝑭£(𝒅) 	≥ 𝚫𝟏 

(18) 

The uncertain parameters used in the stochastic 
programming are biomass supply, chemical prices, and 
electricity supply from different sources since the empirical 
distributions could be estimated from historical data. On the 
other hand, the uncertainties in conversion coefficients and 
products' supply and demand are considered in the 
flexibility index subproblem to ensure feasibility without 
making assumptions on the actual parameter probability 
distribution. The resulting model is an MINLP problem 
with nonlinearity in the economic objective function and 
flexibility requirement constraints. After piece-wise 
linearization of the capital and fixed operating cost, the 
model is converted to a MILP problem if the surrogate 
model 𝐹¶(𝑑)  is also formulated by linear equations with 
integer variables. If the surrogate model is nonlinear, this 
design optimization problem becomes challenging to solve.  



  

Case Study Results and Discussion 

The epsilon constraint method is utilized to build the 
Pareto curve of the biorefinery's profit and GWP trade-off 
by varying the parameter 𝜀µ in Eq. (18). Δ± is the minimum 
flexibility index level required for the biorefinery, which is 
chosen as 0.3 for the case study. 

Since the rest of the biorefinery design problem is 
MILP, the feed-forward neural network surrogate with 
ReLU activation function will retain the model linearity and 
be solved by the efficient CPLEX solver. When embedded 
into the GAMS optimization model, each neural introduces 
one extra integer variable in the ReLU function. On the 
other hand, the SVR and Lasso regression models are 
nonlinear and non-convex, requiring the use of a global 
MINLP solver, such as BARON. All optimization models 
are implemented in GAMS 33.1 on a computer with Intel 
Xeon E-2274G CPU @ 4.00GHz 32 GB RAM. 

The biorefinery design problem that maximizes the 
process profit while maintaining a minimum flexibility 
index level is solved using the three surrogate constraints 
mentioned above, and the results are compared in Table 1. 
This is the first point on the multi-objective optimization 
Pareto front when 𝜀µ is the lowest. 

Table 1. Computation results using different 
surrogate models for flexibility index 

Surrogate 
Model 

SVR with 
RBF 

3rd-order 
Lasso 

FFNN with 
ReLU 

Training R2 95% 89% 98% 
Testing R2 94% 88% 97% 
Solver BARON BARON CPLEX 
Design Problem 
Solution time  3600 s 285 s 6 s 

Gap 7% 0.5% 0% 

The SVR model with RBF kernel is able to fit the 
flexibility index model with relatively low training and 
testing errors. Nonetheless, at least 66 support vectors have 
to be included even after tuning the model’s 
hyperparameter. The fitted SVR model with RBF kernels is 
highly non-convex, making the upper bound updating 
progress very slow in the global optimization of the MINLP 
problem. During the course of optimization, the upper 
bound of profit does not improve even after 3600s, leaving 
an optimality gap of 7%. Hence, it is not practical to embed 
SVR surrogate models with RBF kernels in the design 
problem even though it provides accurate model prediction.  

On the other hand, through cross-validation, a 
polynomial regression model with all 3rd features is capable 
of approximating the flexibility index. However, even with 
only 4 input variables, there are 16 trilinear non-convex 
terms, which also poses challenges to obtaining good 
relaxations. If only the bilinear terms are retained, and other 
trilinear interaction terms are ignored, the model could 
capture part of the trend in the flexibility index (testing 
R2=88%) while still making the optimization problem 
solvable.  

With only one hidden layer of 45 neurons, the ReLU 
feed-forward neural network model is able to fit the 
flexibility index very well. More importantly, this model 
does not introduce any nonlinearity or a large number of 
binary variables into the original MILP formulation. 
Therefore, this MILP model is solved efficiently in 6 s using 
the CPLEX solver.  

Next, ten equidistant points from the Pareto curve of 
the GWP and profit are obtained using the ReLU feed-
forward neural network surrogate. The new Pareto front 
with flexibility requirement is obtained within 41 s by 
gradually increase 𝜀µ  and solve the MILP of Eq. (18) 
(orange points in Figure 2). These Pareto points are then 
benchmarked against the designs without flexibility 
consideration (Pareto solutions of Eq. (18) without the 
constraint on 𝑭£(𝒅), blue points in Figure 2). As illustrated 
in Figure 2, a clear trade-off exists between the economic 
and environmental performances. This is because the 
candidate technologies that produce high value-added 
products are also energy-intensive and emit more 
greenhouse gases during the production stage. The 
comparison between both Pareto curves also demonstrates 
that the biorefinery capacities tend to be over-designed to 
improve the process flexibility. This capacity rise allows the 
biorefinery to treat more raw materials from different 
sources in case of extremely low reaction conversion and 
insufficient biomass supply. Inevitably, it causes higher 
emissions during the plant construction and more capital 
investment.  

Figure 2.   Pareto Curve of Biorefinery's GWP 
and Profit Using FFNN surrogate model 

Meanwhile, the Pareto curve points with better GWP 
performance correspond to the biorefinery configurations 
with higher plant capacities and thus high flexibility index. 
They already have a high enough flexibility index to satisfy 
the flexibility requirement and need no capacity adjustment. 
Consequently, these points collapse into the old Pareto 
curve that does not consider flexibility during its design. 



  
 
Conclusions 

This work formulated the biorefinery design problem 
with flexibility index requirements under multiple 
uncertainty sources. Stochastic programming formulation is 
adopted for the overall integrated process design and aims 
for better average economic and environmental 
performance under different supply and price scenarios. 
Flexibility index constraints to reduce the operational risks 
by accounting for process-feasibility-related parameters 
(demand and conversion) that are difficult to obtain 
empirical distributions. This framework is able to handle 
different uncertain parameters without exaggerating the 
uncertainties in biorefinery's profitability and emissions by 
introducing assumptions on parameters' distribution. 

Different data-driven surrogate models are developed 
for the process flexibility index and embedded into the two-
stage stochastic programming biorefinery design problem 
as the flexibility requirement constraints. Although the SVR 
model has higher model prediction accuracy owning to the 
RBF kernel, it also brings the non-convexity into the overall 
process design optimization. The 3rd-order polynomial 
Lasso regression model with fewer nonconvex terms makes 
the surrogate-embedded optimization solvable but has 
lower prediction accuracy. In both cases, the nonlinearity 
and non-convexity of the surrogate model result in a 
computationally expensive MINLP optimization problem 
that requires the use of a global solver. 

On the other hand, the feed-forward neural network 
with the ReLU activation function can fit the flexibility 
index well with only one hidden layer. This piece-wise 
linear activation function was reformulated with binary 
variables keeping the optimization problem as MILP. With 
this data-driven surrogate model choice, the biorefinery 
design problem with flexibility index requirement could be 
solved efficiently with relatively high accuracy. 

Acknowledgments 

The authors gratefully acknowledge financial support 
from the National Science Foundation (NSF GCR CMMI 
1934887) and the U.S. Department of Energy (DE-
EE000788-7.6). 

References 

Bhosekar, A., et al., (2021) Multiobjective Modular Biorefinery 
Configuration under Uncertainty, Industrial & 
Engineering Chemistry Research, 60, 12956-12969  

Bhosekar, A.; Ierapetritou, M., (2020) Modular Design 
Optimization using Machine Learning-based Flexibility 
Analysis, J. Process Control, 90, 18-34  

Floudas, C. A.; Grossmann, I. E., (1987) Synthesis of flexible heat 
exchanger networks with uncertain flowrates and 
temperatures, Comput. Chem. Eng., 11, 319-336  

Grossmann, I. E.; Floudas, C. A., (1987) Active constraint strategy 
for flexibility analysis in chemical processes, Comput. 
Chem. Eng., 11, 675-693  

Katz, J., et al., (2020a) Integrating deep learning models and 
multiparametric programming, Comput. Chem. Eng., 
136, 106801  

Katz, J., et al., (2020b) The Integration of Explicit MPC and ReLU 
based Neural Networks, IFAC-PapersOnLine, 53, 
11350-11355  

Kim, S. H.; Boukouvala, F., (2020) Surrogate-based optimization 
for mixed-integer nonlinear problems, Computers & 
Chemical Engineering, 140, 106847  

Luo, Y.; Ierapetritou, M., (2020) Comparison between different 
hybrid life cycle assessment methodologies: a review 
and case study of biomass-based p-xylene production, 
Ind. Eng. Chem. Res., 59, 22313-22329  

Martín, M.; Martínez, A., (2015) Addressing Uncertainty in 
Formulated Products and Process Design, Ind. Eng. 
Chem. Res., 54, 5990-6001  

Metta, N., et al., (2021) A novel adaptive sampling based 
methodology for feasible region identification of 
compute intensive models using artificial neural 
network, AlChE J., 67, e17095  

Misener, R.; Floudas, C. A., (2010) Piecewise-Linear 
Approximations of Multidimensional Functions, J. 
Optim. Theory Appl., 145, 120-147  

Nandi, S., et al., (2004) Hybrid process modeling and optimization 
strategies integrating neural networks/support vector 
regression and genetic algorithms: study of benzene 
isopropylation on Hbeta catalyst, Chem. Eng. J., 97, 
115-129  

Ochoa, M. P., et al., (2021) Novel flexibility index formulations 
for the selection of the operating range within a design 
space, Comput. Chem. Eng., 149, 107284  

Pulsipher, J. L.; Zavala, V. M., (2018) A mixed-integer conic 
programming formulation for computing the flexibility 
index under multivariate gaussian uncertainty, 
Computers & Chemical Engineering, 119, 302-308  

Rogers, A.; Ierapetritou, M., (2015) Feasibility and flexibility 
analysis of black-box processes Part 1: Surrogate-based 
feasibility analysis, Chem. Eng. Sci., 137, 986-1004  

Sahinidis, N. V., (2004) Optimization under uncertainty: state-of-
the-art and opportunities, Comput. Chem. Eng., 28, 971-
983  

Schweidtmann, A. M.; Mitsos, A., (2019) Deterministic Global 
Optimization with Artificial Neural Networks 
Embedded, Journal of Optimization Theory and 
Applications, 180, 925-948  

Swaney, R. E.; Grossmann, I. E., (1985) An index for operational 
flexibility in chemical process design. Part I: 
Formulation and theory, AIChE Journal, 31, 621-630  

Terrell, E., (2022) Estimation of Hansen solubility parameters 
with regularized regression for biomass conversion 
products: An application of adaptable group 
contribution, Chem. Eng. Sci., 248, 117184  

Tribe, M. A.; Alpine, R. L. W., (1986) Scale economies and the 
“0.6 rule”, Eng. Costs Prod. Econ., 10, 271-278  

Wang, H., et al., (2016) Flexibility analysis of process supply 
chain networks, Comput. Chem. Eng., 84, 409-421  

 


