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Abstract 

The energy-water demands of metropolitan regions and agricultural ecosystems are ever-increasing. To 

tackle this challenge efficiently and sustainably, the interdependence of these interconnected resources 

has to be considered. In this work, we present a holistic decision-making framework which takes into 

account simultaneously a water and energy supply system with the capability of satisfying metropolitan 

and agricultural resource demands. The framework features: (i) a generic large-scale planning and 

scheduling optimization model to minimize the annualized cost of the design and operation of the energy-

water supply system, (ii) a mixed-integer linear optimization formulation, which relies on the development 

of surrogate models based on feedforward artificial neural networks and first-order Taylor expansions, 

and (iii) constraints for land and water utilization enabling multi-objective optimization. The framework 

provides the operational profiles of all energy-water system elements over a given time horizon, which 

uncover potential synergies between the essential food, energy, and water resource supply systems. 
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Introduction

Metropolitan and agricultural ecosystems are facing 

increased water and energy demands due to rising 

populations. In addition, societies are trying to improve 

their standard of living through economic growth, while 

natural resources are degrading. Overall, this puts immense 

stresses on the resource supply systems (Daher and Mohtar, 

2015). In order to capture the dynamics, operability and 

complexity of these systems, surrogate modeling and 

optimization are of the utmost importance to evaluate trade-

offs between the cost and the resource utilization of supply 

system alternatives. To consider sustainability, the 

interdependence of food, energy, and water resources must 

be modeled, naturally resulting in the incorporation of a 

food-energy-water nexus (FEWN) methodology approach 

(Garcia and You, 2016), where systematic and integrated 

analysis of process structure alternatives is enabled through 

superstructure synthesis (Di Martino et al., 2020, 2021). 

However, optimizing the design of interconnected process 

systems and evaluating interactions and trade-offs between 

sub-systems remains challenging (Ibrić et al., 2021). 

To uncover trade-offs between technology alternatives 

and synergies between interconnected resource systems, a 

time-dependent integrated decision-making framework is 

necessary (Namany et al., 2019). Here, we present a holistic 

planning and scheduling optimization framework 

incorporating the energy and water supply system for 

metropolitan and agricultural resource demand satisfaction. 

The energy supply system based on the selection of 



  

 

 

available renewable energy and energy storage technologies 

is optimized, with the objective to minimize total annual 

cost over a predefined time horizon. Operational parameters 

of a three-stage reverse osmosis (RO) desalination plant are 

determined by supplying the energy for the RO system 

exclusively through the defined renewable energy 

technologies. Vice versa, the water demands of the energy 

supply system must be satisfied by the RO plant. Thus, the 

framework consists of a detailed and interconnected energy-

water supply system. Therefore, periods of high renewable 

resource availability can be used to produce a surplus of 

desalinated water for later usage in biomass farming or 

water demand satisfaction, instead of increasing energy 

storage, since this option might result in a cost advantage. 

Accordingly, the main contributions of this work are the 

linkage of a renewable energy and a RO water supply 

system design and operation optimization framework, as 

well as the consideration of desalinated water storage as a 

form of energy storage.    

The remainder of this paper is structured as follows: 

The problem statement is introduced together with an 

overview of the considered system. Afterwards, the utilized 

surrogate models are presented, together with the overall 

optimization model. Then, the capabilities of the derived 

optimization framework are illustrated in a case study.  

Energy-Water Nexus – Problem Statement 

This work applies a planning and scheduling 

optimization formulation to an energy-water supply system 

to simultaneously satisfy specified energy and water 

demand profiles over a predefined time horizon. The 

optimization framework can not only be used to satisfy the 

water and energy needs of a metropolitan area, but also to 

supply the necessary energy-water resources for farming 

purposes. Therefore, the proposed energy-water supply 

decision-making framework encompasses an energy and 

water sub-system, which is illustrated in Figure 1. The 

energy sub-system is based on the work of Cook et al. 

(2022) and consists of the selected energy sources, energy 

conversion technologies and energy storage technologies. 

To retain the linearity of the model, linear energy 

conversion technology surrogate models have to be derived, 

supplying correlations for cost and land use of each 

technology dependent on the power output. Furthermore, 

the energy profiles of all considered renewable energies 

must be defined. For this work, we consider wind farms, 

solar farms based on single axis tracking and fixed angle, as 

well as biomass in the form of maize as viable renewable 

energy technology options. To consider the water supply 

sub-system, a RO desalination plant model is utilized 

according to the work of Di Martino et al. (2022), since RO 

is the industry leading desalination technology. The RO 

model specifies all operational pressures together with the 

permeate output, to derive the energy consumption of the 

plant. It is important to note, that the necessary water for 

potential biomass farming is supplied by the RO system, 

whereas the energy demands of the RO system must be 

satisfied by the energy system. Overall, obtained solutions 

specify the cost minimal design and operation of the energy-

water supply system, meaning over the predefined time 

horizon hourly energy production and energy storage levels 

are specified together with the RO plant’s water recovery, 

permeate output and energy consumption. Additionally, ε-

constraints for the total land use and total water use are 

introduced to enable multi-objective optimization. No 

losses of the water and energy storage systems are 

considered.  

Figure 1.   Schematic overview of the proposed 

energy-water supply decision-making 

framework for agricultural and metropolitan 

applications. 

 

This planning and scheduling model results in a large scale 

mixed-integer programming problem. To maintain 

solvability, a linear model structure is enforced by 

introducing linear surrogates for all observed nonlinearities 

(Pochet and Wolsey, 2006, Mahdi and Dawood, 2022). 

Overall, this approach yields a mixed-integer linear 

programming (MILP) problem. The model is solved in 

GAMS using the Gurobi solver.  

Model Development 

Surrogate models based on either first-order Taylor 

expansions or piece-wise linear approximations are utilized 

to approximate nonlinearities. All surrogates have been 

derived in MATLAB.    

Energy Supply Sub-System  

According to the work of Cook et al. (2022) linear 

technology surrogates to derive the necessary land and 

annualized cost of each energy conversion technology 

dependent on the annual power output can be derived. To 

consider biomass farming in the form of maize all relevant 

information could be found in the literature (Braun et al., 

2010, Lunik and Langemeier, 2015). To obtain linear 

correlations for solar and wind farms, optimization models 

were utilized to minimize the cost of the system while 

satisfying a predefined power demand and deriving the 

corresponding land use. These mixed-integer linear 

optimization models generally have the same form as 



  

 

summarized in Eq. (1) to (9). Here, 𝑡 ∈ 𝑇 denotes the time 

horizon and time scale under investigation, whereas 𝑛 ∈ 𝑁 

represents the location and numbering of selected energy 

technology units, i.e., wind turbines or solar panels.  

 

𝑚𝑖𝑛 𝐶𝑇𝑜𝑡𝑎𝑙 = 𝐶𝐿𝑎𝑛𝑑 + 𝐶𝑇𝑒𝑐ℎ (1) 

𝑠. 𝑡. 𝐶𝑇𝑒𝑐ℎ = 𝑘𝑇𝑒𝑐ℎ ⋅ 𝑁   (2) 

𝐶𝐿𝑎𝑛𝑑 = 𝑘𝐿𝑎𝑛𝑑 ⋅ 𝐴 ⋅ 𝑁  (3) 

𝑃𝑆𝑢𝑚 ≥ 𝑃𝑇𝑎𝑟𝑔𝑒𝑡     (4) 

𝑃𝑆𝑢𝑚 = ∑ 𝑝𝑛,𝑡𝑛,𝑡 ⋅ 𝑦𝑛,𝑡
𝑜𝑝

   (5) 

𝑦𝑛,𝑡
𝑜𝑝

≤ 𝑦𝑛
𝑏𝑢𝑦

   ∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 (6) 

𝑁 = ∑ 𝑦𝑛
𝑏𝑢𝑦

𝑛    (7) 

𝑝𝑛,𝑡 = 𝑓1(𝑝𝑖𝑛,𝑡 , 𝑛)   ∀𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁   (8) 

𝐴 = 𝑓2(𝐴𝑇𝑒𝑐ℎ , 𝐴𝑆𝑝𝑎𝑐𝑖𝑛𝑔)   (9) 

 

The total cost 𝐶𝑇𝑜𝑡𝑎𝑙 [$/year] is composed of the land 

cost 𝐶𝐿𝑎𝑛𝑑 and the technology cost 𝐶𝑇𝑒𝑐ℎ, as stated in Eq. 

(1). 𝐶𝑇𝑒𝑐ℎ can be derived based on the number of units 𝑁 

and the annualized technology cost factor 𝑘𝑇𝑒𝑐ℎ (Eq. (2)). 

𝐶𝐿𝑎𝑛𝑑 can similarly be derived based on the annualized land 

cost 𝑘𝐿𝑎𝑛𝑑, necessary area per unit 𝐴 [ha] and 𝑁 (Eq. (3)). 

It is important to note that both 𝑘𝑇𝑒𝑐ℎ and 𝑘𝐿𝑎𝑛𝑑 are 

dependent on the location of the technology under 

investigation. Equation (4) ensures that the desired power 

target (𝑃𝑇𝑎𝑟𝑔𝑒𝑡  [kWh/year]) is fulfilled by the generated 

power of the system (𝑃𝑆𝑢𝑚). 𝑃𝑆𝑢𝑚 is derived based on the 

power output of a single unit over time and location 𝑝𝑛,𝑡 

[kW] when it is in operation (Eq. (5)). Operation and 

existence of units is monitored with the binary variables 𝑦𝑛,𝑡
𝑜𝑝

 

and 𝑦𝑛
𝑏𝑢𝑦

, which are correlated as shown in Eq. (6). 

Accordingly, 𝑁 is derived based on 𝑦𝑛
𝑏𝑢𝑦

 in Eq. (7). 

Equation (8) states that the power output of a single unit is 

calculated technology dependent (considered with function 

𝑓1) based on the location of the unit 𝑛 and renewable power 

input 𝑝𝑖𝑛,𝑡, i.e., solar DNI or wind speed. Lastly, Eq. (9) 

denotes the technology dependent calculation (considered 

with function 𝑓2) of 𝐴 based on the area of a unit itself 𝐴𝑇𝑒𝑐ℎ 

and the required spacing between units 𝐴𝑆𝑝𝑎𝑐𝑖𝑛𝑔.  

Then, 𝑃𝑇𝑎𝑟𝑔𝑒𝑡  can be varied within a relevant range to 

obtain land use and system cost dependent on the desired 

power output. The obtained points are approximated with a 

linear regression based on minimizing the squared error. 

This approach results in overall eight model surrogates, 

with mean-square errors (𝑅2) between 0.97 and 1.  

Regarding energy storage technologies, information 

concerning the expected lifespan, efficiency, as well as 

capital and operational cost per capacity need to be 

supplied.   

Water Supply Sub-System 

As presented in Di Martino et al. (2022), a feedforward 

artificial neural network (ANN) with rectified linear units 

(ReLU) as activation functions is used to approximate the 

permeate concentration and the pressure difference across 

the energy recovery device, since it is possible to 

reformulate these ANNs as MILPs. Further, linear 

correlations based on the feed pressures of each stage and 

each parallel flow are used to calculate the retentate 

pressure of each stage and parallel flow, as well as the water 

recovery of each stage. Remaining nonlinearities consist of 

the calculation of the overall system water recovery 

(𝑊𝑅𝑠𝑦𝑠) based on the water recovery of each stage 

(𝑊𝑅1, 𝑊𝑅2, 𝑊𝑅3), the calculation of the permeate volume 

flow (𝑄𝑝) based on the feed volume flow (𝑄𝑓) and 𝑊𝑅𝑠𝑦𝑠, 

as well as the calculation of the energy consumption (𝐸𝐶) 

of the system. To approximate 𝑊𝑅𝑠𝑦𝑠 and 𝑄𝑝 a first-order 

Taylor expansion around the nominal operating point 

(𝑊𝑅𝑠𝑦𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.6039, 𝑊𝑅1
̅̅ ̅̅ ̅̅ = 0.3113, 𝑊𝑅2

̅̅ ̅̅ ̅̅ =

0.2935, 𝑊𝑅3
̅̅ ̅̅ ̅̅ = 0.1860, 𝑄𝑝

̅̅̅̅ = 975
𝑚3

ℎ
), obtained from 

one-and-a-half years of hourly RO operational data, is 

performed as shown from Eq. (10) to (15). 

   

𝑊𝑅𝑠𝑦𝑠 = 𝑊𝑅1 + (1 − 𝑊𝑅1) ⋅ 𝑊𝑅2 + 

(1 − 𝑊𝑅1) ⋅ (1 − 𝑊𝑅2) ⋅ 𝑊𝑅3 (10) 

∇𝑊𝑅𝑠𝑦𝑠 = (

1 − 𝑊𝑅2 − 𝑊𝑅3 + 𝑊𝑅2 ⋅ 𝑊𝑅3

1 − 𝑊𝑅1 − 𝑊𝑅3 + 𝑊𝑅1 ⋅ 𝑊𝑅3

1 − 𝑊𝑅1 − 𝑊𝑅2 + 𝑊𝑅1 ⋅ 𝑊𝑅2

)  (11) 

𝑊𝑅𝑠𝑦𝑠 ≈ 𝑊𝑅𝑠𝑦𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ +  

∇𝑊𝑅𝑠𝑦𝑠(𝑊𝑅1
̅̅ ̅̅ ̅̅ , 𝑊𝑅2

̅̅ ̅̅ ̅̅ , 𝑊𝑅3
̅̅ ̅̅ ̅̅ )𝑇 ⋅ (

𝑊𝑅1 − 𝑊𝑅1
̅̅ ̅̅ ̅̅

𝑊𝑅2 − 𝑊𝑅2
̅̅ ̅̅ ̅̅

𝑊𝑅3 − 𝑊𝑅3
̅̅ ̅̅ ̅̅

) (12) 

𝑄𝑝 = 𝑊𝑅𝑠𝑦𝑠 ⋅ 𝑄𝑓  (13) 

∇𝑄𝑝 = (
𝑄𝑓

𝑊𝑅𝑠𝑦𝑠
)      (14) 

𝑄𝑝 ≈ 𝑄𝑝
̅̅̅̅ +

𝑄𝑝̅̅ ̅̅

𝑊𝑅𝑠𝑦𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⋅ (𝑊𝑅𝑠𝑦𝑠 − 𝑊𝑅𝑠𝑦𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅)  

+ 𝑊𝑅𝑠𝑦𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅ ⋅ (𝑄𝑓 −
𝑄𝑝̅̅ ̅̅

𝑊𝑅𝑠𝑦𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )     (15) 

 

For the relevant ranges of 0.4 ≤ 𝑊𝑅𝑠𝑦𝑠 ≤ 0.85 and 227 

m³/h ≤ 𝑄𝑝 the given correlations are sufficiently accurate 

approximations with 𝑅2 values of 0.98 for both cases. 

Lastly, the energy consumption (𝐸𝐶 in [kW]) of the RO 

system is approximated with a piece-wise linear 

approximation. Originally, the non-linear specific energy 

consumption of the RO plant could be approximated with a 

linear reformulation (Di Martino et al., 2022). However, to 

obtain from the former term the overall energy 

consumption, the specific energy consumption has to be 

multiplied with 𝑊𝑅𝑠𝑦𝑠 and 𝑄𝑓. This results in a trilinear 

term, which could be approximated to an accuracy of  𝑅2 = 

0.99 with a shallow ANN with one hidden layer and two 

nodes with ReLUs as activation functions. The ANN is 

trained with the aforementioned one-and-a-half years of 

operational RO data and subsequently reformulated as a 

MILP. Thus, ultimately resulting in a piecewise linear 

approximation of the energy consumption. The inputs of the 

ANN have been identified as 𝑊𝑅1, 𝑊𝑅2, 𝑊𝑅3 and 𝑄𝑓.  

More information regarding the RO desalination 

operational plant data can be found in Di Martino et al. 

(2022). Details on how to reformulate an ANN with ReLUs 

as activation function can be found in Grimstad and 



  

 

 

Andersson (2019). The obtained weights and biases of the 

ANN approximating 𝐸𝐶 are summarized in Table 1. Table 

2 gives an overview and comparison of the employed 

surrogate models. 

Table 1. Used weights and biases of the shallow 

ANN (1 hidden layer, two nodes) to approximate 

𝐸𝐶 with 𝑊𝑅1, 𝑊𝑅2, 𝑊𝑅3 and 𝑄𝑓. 

Layer Weight Bias 

Hidden 

Layer 

1.1556 -0.5436 0.4116 0.4630  

0.2843  0.1137 0.1071 1.3843 

1.0465 

-0.3829 

Output 

Layer 

0.4638 

0.5371 

-0.9950 

Table 2. Summary and comparisons of the 

presented surrogate models. 

Method Input Output 𝑅2 

Taylor 

Expansion 

𝑊𝑅1, 𝑊𝑅2, 𝑊𝑅3 𝑊𝑅𝑠𝑦𝑠 0.98 

Taylor 

Expansion 

𝑊𝑅𝑠𝑦𝑠 , 𝑄𝑓 𝑄𝑝 0.98 

ANN with 

ReLUs 

𝑊𝑅1, 𝑊𝑅2, 𝑊𝑅3, 𝑄𝑓 𝐸𝐶 0.99 

Energy-Water Optimization Model 

The decision-making optimization framework consists 

of the presented first-order Taylor expansions for 𝑊𝑅𝑠𝑦𝑠(𝑡) 

and 𝑄𝑝(𝑡), the MILP reformulation for  𝐸𝐶(𝑡) based on 

𝑊𝑅1(𝑡), 𝑊𝑅2(𝑡), 𝑊𝑅3(𝑡) and 𝑄𝑓(𝑡), the “combined MILP 

model” as described in Cook et al. (2022) and the RO 

desalination plant model as summarized in Di Martino et al. 

(2022). The referenced RO system is modified to a time 

dependent model by introducing a time index for all 

variables enabling the investigation of time dependent 

interconnected energy-water supply system operation. To 

enforce resource utilization, 𝑊𝑅𝑠𝑦𝑠(𝑡) is restricted 

according to Eq. (16). 

 

𝑊𝑅𝑠𝑦𝑠(𝑡) ≥ 𝑊𝑅𝐿𝑖𝑚    ∀𝑡 ∈ 𝑇    (16) 

 

Furthermore, the water balance equations connecting 

the water and energy supply system for all 𝑡 ∈ 𝑇 are stated 

from Eq. (17) to (21). Here, the linear 𝑄𝑝 surrogate enables 

the direct usage of the RO permeate output in other 

constraints instead of the indirect approach of restricting 𝑄𝑓 

and 𝑊𝑅1, 𝑊𝑅2, 𝑊𝑅3 as done in Di Martino et al. (2022).     

 

𝑄𝑝(𝑡) =  𝑄𝐸𝑛
𝐷 (𝑡) + 𝑄𝑊

𝐷 (𝑡) − 𝑄𝑠𝑡𝑜𝑟(𝑡) + 𝑄𝑟𝑒𝑙(𝑡) (17)   

𝑉(𝑡) = 𝑉(𝑡 − 1) + 𝑄𝑠𝑡𝑜𝑟(𝑡) ⋅ Δ𝑡 − 𝑄𝑟𝑒𝑙(𝑡) ⋅ Δ𝑡 (18) 

𝑄𝑟𝑒𝑙(𝑡1) ⋅ Δ𝑡 ≤ 𝑉(𝑡1)     (19) 

𝑉(𝑡1) ≤ 𝑉(𝑡|𝑇|)      (20) 

𝑉𝑇 ≥ 𝑉(𝑡)      (21)  

 

In Eq. (17) 𝑄𝐸𝑛
𝐷 (𝑡) and 𝑄𝑊

𝐷 (𝑡) denote the water demand of 

the energy system and all other applications, i.e., 

metropolitan and agricultural systems, respectively. 

Further,  𝑄𝑠𝑡𝑜𝑟(𝑡) is the amount of water stored and 𝑄𝑟𝑒𝑙(𝑡) 

the amount of water released from the storage system. The 

water storage balances presented form Eq. (18) to Eq. (21) 

introduces the overall tank volume 𝑉𝑇 and the water storage 

level at each time point 𝑉(𝑡), as well as beginning of time 

and end of time constraints to ensure operability and 

applicability of obtained solutions.  

The energy balance equations for all 𝑡 ∈ 𝑇 from Cook 

et al. (2022) are modified according to Eq. (22) to (25). 

 

𝑃𝑆𝑢𝑚 = ∑ 𝑃(𝑡) − 𝐸𝐶(𝑡)𝑡 + ∑ [𝑃𝑟𝑒𝑙,𝑘(𝑡) − 𝑃𝑠𝑡𝑜𝑟,𝑘(𝑡)𝑡,𝑘 ]

      (22) 

𝑃𝑇
𝐷 ≤ 𝑃𝑆𝑢𝑚      (23) 

𝑃(𝑡) − 𝐸𝐶(𝑡) + ∑ [𝑃𝑟𝑒𝑙,𝑘(𝑡) − 𝑃𝑠𝑡𝑜𝑟,𝑘(𝑡)]𝑘 ≥ 𝑃𝐷(𝑡) (24) 

𝑃(𝑡) = ∑ 𝑛𝑇𝑒𝑐ℎ ⋅ 𝑝𝑇𝑒𝑐ℎ(𝑡)𝑇𝑒𝑐ℎ     (25) 

 

Here, the novelty is to introduce the energy consumption of 

the RO system in the overall energy balance (Eq. (22)) and 

energy calculation at each time point (Eq. (24)). 

Accordingly, energy demand targets to be satisfied in each 

time point (𝑃𝐷(𝑡)) and over the complete time horizon (𝑃𝑇
𝐷) 

can be introduced. The energy derived from all utilized 

renewable energy technologies (summarized in set 

𝑇𝑒𝑐ℎ ={single axis tracking, fixed angle solar panels, wind 

turbines, maize farming}) is calculated as shown in Eq. 

(25). In this case, 𝑛𝑇𝑒𝑐ℎ denotes the number of units of each 

renewable energy technology and  𝑝𝑇𝑒𝑐ℎ(𝑡) the energy 

output of a single technology unit based on the observed 

climate data.  

Thus, the option of building up a desalinated water 

storage instead of energy storage during periods of high 

renewable energy availability is enabled through the 

incorporation of 𝐸𝐶(𝑡) in Eq. (22) and (24). The amount of 

water stored or released from storage based on either a 

surplus or deficit of produced permeate is derived with Eq. 

(17). The water storage level at each time point is calculated 

according to Eq. (18), where for 𝑡 =1 an initial water 

storage level is permitted (𝑉(0)). The tank sizing equations 

are summarized from Eq. (19) to (21).  

The objective of the framework is to minimize the 

annual cost of the energy-water supply system. 

Accordingly, the objective function presented in Cook et al. 

(2022) is extended by the investment and operational cost 

of the RO system, together with the cost of water storage. 

The investment and operational RO cost based on the RO 

plant’s capacity 𝑄𝑝
𝐶𝑎𝑝

 are shown in Eq. (26) and (27), with 

an assumed operating life of 20 years (Wittholz et al., 2008). 

𝑄𝑝
𝐶𝑎𝑝

 is in turn derived according to the observed 𝑄𝑝(𝑡) 

values, as illustrated in Eq. (28).  The cost of water storage 

dependent on the tank volume is displayed in Eq. (29) with 

an assumed lifetime of 30 years (Loh et al., 2002).  



  

 

 

𝐶𝐼𝑛𝑣
𝑅𝑂 = 1.25 ⋅ 10−5 ⋅ 𝑄𝑝

𝐶𝑎𝑝
+ 10.429 ⋅ 106  (26) 

𝐶𝑂𝑝
𝑅𝑂 = 0.45 ⋅ ∑ 𝑄𝑝(𝑡)𝑡       (27) 

𝑄𝑝
𝐶𝑎𝑝

≥ 𝑄𝑝(𝑡)   ∀ 𝑡 ∈ 𝑇     (28) 

𝐶𝑇 = 0.75 ⋅ 𝑉𝑇 + 5000      (29) 

 

The size of the resulting optimization model is 

dependent on the selected timescale and time horizon 

(Brunaud et al., 2019). The size of the model for hourly 

evaluation is illustrated for varying selected time horizons 

in Table 3. The goal is to solve this model for a one-year 

time horizon at an hourly time scale (|𝑇| = 8760). However, 

in this case the size of the model is computationally 

intractable without advanced algorithmic solution 

approaches like Benders or Dantzig-Wolfe decomposition 

strategies. Furthermore, the framework is intended to be 

used for various scenario analyses and multi-objective 

optimization. Therefore, fast solution generation is essential 

(within 1000s to 10000s). To overcome this challenge, 

without using advanced algorithmic strategies, we propose 

employing a steady-state assumption for the water supply 

sub-system. Ultimately, this means that one optimal 

operational point of the RO desalination plant is specified 

over one year, while the energy sub-system is solved at an 

hourly time scale. The obtained solution acts as an upper 

bound of the true optimum and can be used as an initial cost 

estimator. In this case, solutions can be obtained within 

120s.  

Table 3. Size of the energy-water decision making 

model dependent on the time horizon under 

investigation. 

Timeframe #Constraints #Continuous 

Variables 

#Binaries 

1 day 2596 2306 265 

2 weeks 35980 32278 3697 

1 month 77068 69142 7921 

6 months 468688 420502 48181 

1 year 937348 840982 96361 

Case Study 

To illustrate the developed decision-making 

framework and underline its capabilities, it is applied to an 

energy-water supply case study in Texas. Here, renewable 

energies in the form of wind speed and solar DNI are 

plentiful available. Also, the used RO data is based on a 

desalination plant in this location. The objective of this 

study is to evaluate changing resource restrictions in terms 

of water and land utilization on the solution. Specifically, 

how the optimal energy mix and operating points change by 

adjusting εL and εW (see Figure 1). The supply system is 

utilized to satisfy the water and energy demand of a 

metropolitan region combined with greenhouse farming. It 

is assumed that a water demand of 570 m³/h must be 

satisfied at all times by the RO system. Furthermore, the 

water recovery must be at least 60% for efficient resource 

utilization.  Additionally, the energy demand of 100 kW   

together with the energy and water demand of 1 greenhouse 

must be satisfied at all time points. Yara International, Qatar 

Fertiliser Company and Hassad Food farmed tomatoes for a 

one-year time period in Qatar in a pilot water saving 

greenhouse. The results have been summarized in a trial 

report which specifies the greenhouse’s demand profiles, 

which are applied to this case study due to comparable 

climate conditions between the two locations. Initially, the 

water and land use of the supply system are not restricted. 

Then, both resources are simultaneously restricted by 

successively reducing εL and εW. By adjusting these values 

in different ranges other potential energy and water 

applications can be considered. The results of this study are 

summarized in Figure 2, which illustrates how the annual 

energy demand is supplied for various water and land 

restrictions, together with the system cost. The RO system 

operates at 𝑊𝑅𝑠𝑦𝑠 = 60% with 𝑄𝑃 between 568 m³/h and 

600 m³/h, while the 𝑆𝐸𝐶 is approx. constant at 0.3 kWh/m³. 

  

 
Figure 2.   Annualized energy output by technology 

(bars) and annualized cost (points) of energy-water supply 

systems for varying water and land availability. 

 

To underline the framework’s versatility, an energy 

base load demand of 1 GW together with the energy and 

water demand of 10 greenhouses needs to be satisfied at all 

times in a subsequent study. In this case, for all investigated 

land and water restrictions, wind turbines supply at least 

99% of the energy, resulting in a system with annualized 

costs between 1.45 and 2.32 ⋅ 109 $/year and total energy 

outputs between 0.899 and 1.07 ⋅ 103 GWh/year. The RO 

system only constitutes at most 0.35% of the annual cost, 

while the wind farm and the energy storage system denote 

at least 99% of the total cost. For the unrestricted case, the 

wind farm and the storage system contributed 73.5% and 

26% of the total cost, whereas in the most restricted case 

these fractions change to 38.9% and 61%, respectively. 

Interestingly, in both investigated case studies, for all 

presented solutions, water storage as a form of energy 

storage is not selected. This is also the case when the 

investment cost of water storage is neglected in the 

objective function. Intuitively, water storage should be the 

cheaper option to energy storage, however due to the 

steady-state approximation of the water-system and the 



  

 

 

possibility of too high specific energy consumptions of the 

RO system this might not be the case. In this model, energy 

storage is not connected to energy loss, whereas the 

production of water results in energy losses to the system 

due to the energy demands of the RO process. To further 

analyze this observation, the complete time dependent 

system is solved for a two-week time horizon at an hourly 

time scale for an energy demand of 100 kW in addition to 

one greenhouse, together with a 1% water use restriction 

and no restriction on land use. In this case we obtain a 

solution with a water storage tank level as displayed in 

Figure 3. Accordingly, water storage should be considered 

as an alternative to energy storage in coupled dynamic 

energy-water supply systems. The system cost in this case 

is $87,000 with a total energy output of 590,000 kWh/year 

supplied by one wind turbine.  

 

 
Figure 3.   Water tank storage level for two weeks of 

hourly operation (336 hours). 

Conclusion 

We presented an integrated planning and scheduling 

energy-water supply system model capable of satisfying 

varying energy and water demand profiles, dependent on 

the desired application, for minimizing the system’s annual 

cost by deriving the design and all operational parameters 

of the system. The capabilities of the framework have been 

illustrated with a case study focusing on the design and 

operation of an energy-water supply system in Texas based 

on solely renewable energy supply. The proposed system 

can be used to satisfy the water and energy demands of 

metropolitan and agricultural systems, thus incorporating 

all pillars of the FEWN. Moreover, multi-objective analysis 

has been performed by evaluating water and land resource 

restrictions. This in turn underlines the sensitivity of 

solutions to available resource restrictions. It is important to 

note that the presented model is generic in nature and can 

be applied to any region and scale of interest by changing 

the supplied model inputs.  
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