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We present a sensing framework that combines a convolutional neural network (CNN) and fast IR (infrared spectroscopy)
for classifying mixed plastic waste (MPW) streams containing various types of plastic materials. Importantly, this type
of spectral data can be collected in real-time; consequently, this method facilitates the high-throughput characterization
of MPW. The proposed CNN architecture, which we call PlasticNet, employs a Gramian angular representation of the
spectrum. We demonstrate that this 2-dimensional (2D) matrix representation highlights correlations between different
frequencies (wavenumber) and significantly improves classification accuracy compared to the use of spectra alone (a 1D
vector representation).
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Introduction

Plastics are inexpensive and long-lasting materials that can
be easily shaped into a variety of products for a wide range
of applications, including food packaging, construction, and
electronics. As a result, plastics production has increased sig-
nificantly over the past seven decades. Along with the rapid
growth of plastic production, the rate of plastic recycling
growth is also concerning. In particular, mixed plastic waste
(MPW) has posed significant ecological and environmental
challenges, but only 8.7% of it is recycled [1]. The major-
ity of recycled plastics are downgraded to low-value prod-
ucts; for instance, high-density polyethylene (HDPE) used in
milk jugs is frequently reprocessed into less expensive con-
struction materials, such as plastic tables and chairs [2]. The
low-value products significantly reduce the incentive to recy-
cle municipal solid waste. Multiple types of plastic mixtures
that are contaminated with other materials cannot be iden-
tified by an inefficient sorting system, which is the primary
cause of the difficulties in recycling MPW [3].

Because the majority of municipal solid waste (MSW) is
disposed of in landfills, new recycling methods (pyrolysis
[4], plastic alloying [5], etc.) are being investigated; however,
all of these solutions require an understanding of the compo-
sition of MPW, particularly the potential contaminants [6].

1 Corresponding author: Victor M. Zavala (E-mail:
zavalatejeda@wisc.edu).

A single plastic component has been successfully identified
using nondestructive techniques such as infrared (IR) spec-
troscopy, X-ray diffraction, and other methods [7, 8, 9, 10].
Among these techniques, IR spectroscopy has garnered par-
ticular interest due to its ability to identify plastic polymers
with accuracy. However, IR spectra may be obscured for
various reasons (i.e., they may contain systematic errors and
noise), which can make spectral identification difficult.

Recently, deep learning techniques such as convolutional
neural networks (CNNs) have been applied to the analysis
of IR spectral data, as they show promise for improved pre-
diction accuracy and noise tolerance [11]. CNNs can au-
tomatically extract and organize discriminative features di-
rectly from the raw data in a hierarchical fashion, without the
need to precompute engineering-crafted features. Chen et al.
used a one-dimensional (1D) CNN to analyze NIR spectra
and obtained satisfactory outcomes [12].

Despite their high identification accuracies, these methods
are unsuitable for industrial applications because they either
require manual sample collection or have slow data collec-
tion rates. In industrial settings, MPW pellets are rapidly
transported along a conveyor belt, necessitating real-time
sorting at high data collection rates. Therefore, a production-
ready MPW sorting system requires equipment for rapid data
collection (also known as “online”) and an effective identifi-
cation algorithm. In addition, recent studies have only iden-
tified the signal of a single plastic composition in municipal
solid waste. IR signals from MPW containing two or more



plastic compositions may present additional difficulties for
the CNN method.

In this paper, we summarize the results from our two pre-
vious papers [13, 14]. In the first work, we propose a com-
putational framework to characterize plastic components of
MPW by analyzing the attenuated total reflection-Fourier
transform infrared spectroscopy (ATR-FTIR) spectra using
CNNs. Experimental data was obtained by preparing small
sheets of plastics of different shapes and used ATR-FTIR to
scan sheets for 10 different types; this data collection ap-
proach mimics how rigid waste plastics are found in online
processing of MPW streams. In the second work, we propose
to use a fast mid infrated (MIR) spectrometer to enable online
plastic component measurements (see Fig. 1). Specifically,
the fast MIR spectrometer uses a solid-state crystal that can
change its refractive index and polarization based on tem-
perature and voltage [15, 16]. It can measure IR spectra in
the range of 800-5000 cm−1 at a speed up to 400 Hz (S2050
2.0-5.0 µm Fiber Spectrometer, NLIR), with a resolution of
6 cm−1 (2048 pixels) and a sensitivity of 10 pW/nm. The ex-
perimental data was obtained by measuring small black plas-
tic pellets colored with carbon black. Twelve different types
of plastic, a binary blend, and a ternary blend were measured
with a fast IR spectrometer at 200 Hz for a better signal-to-
noise ratio. This data collection method mimicked the online
MPW processing. We show that the combination of IR and
CNN creates a powerful, inexpensive, and rapid method for
analyzing the composition of plastic waste, which enables
the recycling and reproduction of high-quality plastics in the
future.

Experimental Data Collection and Preparation

The ATR-FTIR dataset studied included spectra for 10
different, commercially-available plastic materials (see Fig.
2). Specifically, these were butadiene styrene (ABS), acrylic
(AC), polyethylene (PE), polyethylene terephthalate (PET),
polybutadiene (BR), polycarbonate (PC), polyisoprene (PI),
polystyrene (PS), polypropylene (PP), and polyvinyl chloride
(PVC).

The MIR dataset studied included spectra for 12 com-
mercially available plastic materials commonly found in the
MPW (see Fig. 3). The following materials were considered:
acrylonitrile ABS, high impact polystyrene (HIPS), nylon-
12 (PA12), PE, PET, polylactic acid (PLA), poly(methyl
methacrylate) (PMMA), polyoxymethylene (POM), PP, PS,
PVC, and PC. Additionally, two plastic blends were used as
samples. The binary blend consisted of ABS and PC in a 1:1
ratio, whereas the tertiary blend was comprised of PP, PE,
and PS in a 1:1:1 ratio. Except for the PS samples, which
contained blue pigments, every sample of plastic was black.

Data Processing

For each ATR-FTIR plastic sample, 70 spectra were ob-
tained. Each spectrum had 4150 data points, where each
point represents the intensity at a given wavenumber (cm−1).
Each spectrum is encoded in a vector in R4150. For each MIR
plastic sample, 5000 spectra were acquired. Each spectrum

had 1600 data points (encoded in a vector in R1600). All spec-
tra were normalized to be in the range [0,1] to facilitate the
ML analysis:

x̂ =
x−min(X)

max(X)−min(X)
(1)

where x was the original vector (a raw spectrum), x̂ was the
normalized vector (a normalized spectrum), and X was a ma-
trix obtained by stracking all original vectors. Similarly, by
stacking all the normalized vectors, we obtained the normal-
ized spectra matrix X̂ , which was randomly split into a train-
ing set and a test set.

The training set is the dataset used to fit the parameters of
ML models during the learning process. The test set is an
independent dataset used to evaluate the performance (accu-
racy) of the ML model. Thirty percent of the elements of
the training set were chosen at random and utilized as the
validation set for tuning the ML architecture. To verify the
robustness and generalizability of the ML model, we used a
5-fold cross-validation method.

Computational Framework

The proposed framework incorporates a CNN architecture
that we refer to as PlasticNet. PlasticNet can function as a 1D
CNN because its architecture converts IR spectra to vectors
(1D data objects). PlasticNet can also operate as a 2D CNN
because the framework includes a Gramian angular fields
method that transforms spectral vectors into GAF matrices
(2D data objects). The framework also consists of saliency
analysis techniques that enable us to comprehend the charac-
teristics that CNNs look for in IR spectra when identifying
plastic components.

1D CNN

The architecture of the proposed 1D CNN is shown in Fig.
4. 1D CNNs extract features from IR spectra by convolu-
tion and pooling operations. An IR vector was directly fed
into the 1D CNN, which we refer to as PlasticNet (1D). It
included four convolutional layers, two max-pooling layers,
and three fully connected layers. Each convolutional layer
had 64 filters of size 3, while the max-pooling layer had fil-
ters of size 2. Each fully connected layer had 64 nodes. The
activation function is rectified linear unit (ReLU).

Gramian Angular Fields

Although the vector representation of IR spectra already
provides a wealth of information, the correlations between
different frequencies are not encoded in a clear manner. Re-
cently, Gramian angular fields (GAF) have been used to map
time-series objects into matrices to capture correlation struc-
tures; this data transformation technique has been demon-
strated to improve classification accuracy when analyzed
with 2D CNNs [17]. Our hypothesis is that the accuracy of
predictions can be improved by applying a similar principle
to IR spectra. GAF represents vectors in polar coordinates
and transforms these angles into symmetric matrices using



Figure 1: Experimental setup of the fast mid-infrared upconversion system.

Figure 2: Normalized ATR-FTIR spectra of various plastic
materials.

Figure 3: Normalized MIR spectra of various plastic materi-
als.

Figure 4: Architectures of (a) PlasticNet (1D) and (b) Plastic-
Net (2D). The plastic network (1D) inputs a spectrum vector
and outputs the predicted plastic type.

a variety of operations. Gramian angular summation fields
(GASF) and Gramian angular difference fields (GADF) are
the two different types of GAFs. Each component of GASF
and GADF is the cosine of the angle sum and the sine of the
angle difference, respectively. Normalizing IR spectra to a
value between 0 and 1 is the initial step in constructing the
GAF matrix. The second step following normalization is to
represent the normalized vector x̂ in polar coordinates using
the following transformations:

φi = arccos(x̂i), i = 1, · · · ,n (2)

ri =
i
n
, i = 1, · · · ,n (3)

where i is the index of the n-dim vector entry; φ ∈ Rn is the
angle vector, and r ∈ Rn is the radius vector. Finally, the
GASF and GADF matrices are obtained as

GASF = cos(φi +φ j) = x̂T x̂−
√

I− x̂2
T√

I− x̂2 (4)

GADF = sin(φi−φ j) =
√

I− x̂2
T

x̂− x̂T
√

I− x̂2 (5)

where I = [1, · · · ,1] is a univer row vector of size n. Although
the resulting GASF and GADF matrices are dense and large,



they can be reduced using the piecewise aggregation approx-
imation (PAA) method [18]. Fig. 5 depicts the conversion
of spectra to GASF and GADF matrices. The matrices are
represented as grayscale images.

Figure 5: Conversion from 1D signal to GASF and GADF
matrices. The 1D signal is first mapped to the polar co-
ordinate system and finally converted to GASF and GADF
matrices. Encoding the 1D signal into GAF matrices cap-
tures the relationship between the signal intensity at different
wavenumbers.

2D CNN

2D CNNs are commonly used to classify images, which
are multichannel matrices (tensor). For example, 2D CNNs
are usually used to classify RGB images (each channel is a
color channel). In our method, we use a two-channel data
representation with the GASF and GADF matrices as chan-
nel embeddings. The size of the input varies from 25×25×2
to 200× 200× 2, depending on the scale of the PAA reduc-
tion. The 2D convolution operation looks for meaningful
patterns from GASF and GADF matrices. The two-channel
GASF/GADF object is fed into a 2D CNN, which we refer
to as PlasticNet (2D). PlasticNet (2D) contains four 2D con-
volutional layers, two 2D max-pooling layers, and three fully
connected layers (Fig. 4). The 2D convolutional layer has 64
filters of size 3×3, and the 2D max-pooling layer has filters
of size 2×2. The setups for all hyperparameters are the same
as those used in PlasticNet (1D).

Saliency Analysis

Saliency maps are commonly employed to highlight fea-
tures in the input data that are deemed pertinent to the predic-
tions of a CNN model. In our case, these techniques attempt
to emphasize aspects of the specific object of input data that
the CNN is searching for. Among all saliency map meth-
ods, the most theoretically complete is the integrated gradi-
ent (IG) method [19, 20]. For the PlasticNet (2D) case, let
V ∈ R100×100×2 be the input and θ be the parameter vector,
the CNN can be written as a large and complicated equation
complicated equation F(V ;θ) : R100×100×2→Rc, where out-
put is the classification probability of c types of plastics. The
loss function is then L(F(V ;θ)) : Rc→ R. The saliency map

S ∈ R100×100×2 calculated by the IG as

S = abs
(
(V −V̄ ) ·

∫ 1

0

∂L(V̄ +β(V −V̄ ;θ))

∂V
dβ

)
(6)

where V̄ ∈ R100×100×2 is a baseline input that represents the
absence of a feature in the input V and only contains zero
values typically.

Results and Discussion

Classification results for ATR-FTIR and MIR data are pre-
sented in Fig. 6 and 7, respectively, along with comparisons
of different input sizes.

For ATR-FRIR data, PlasticNet (2D) with an input size
of 200× 200× 2 has the highest accuracy of 87.29%. Sup-
port vector machine has a comparable accuracy of 86.14%.
The accuracy of PlasticNet (2D) is always higher than that
of PlasticNet (1D), indicating that the conversion from the
original 1D signal to 2D GAF matrices captures more infor-
mation. The accuracy of PlasticNet (2D) increases as the
input matrix increases, indicating that a larger input matrix
contains more information.

Figure 6: Comparison of the accuracy of CNN-based meth-
ods and other ML algorithms for ATR-FTIR data.

For MIR data, PlasticNet (1D) and (2D) with an input size
of 100×100×2, and K-nearest neighbor all have 100% ac-
curacy. The red bars represent perfect classification accuracy.
The accuracy of PlasticNet (2D) increases as the input ma-
trix increases, indicating that a larger input matrix contains
more information. However, using only 78% of the 1D data
volume, PlasticNet (2D) with an input size of 25×25×2 can
still achieve 99.2% accuracy. This facilitates faster prediction
and less memory requirements for plastic networks. Specif-
ically, the prediction time for a single spectrum is about 121
µs (∼8200 Hz), which is only 58% of the time for 1D CNN
(208 µs, ∼4800 Hz). All CNN methods have sufficiently fast
prediction rates compared to the fast MIR readout rate of 200
Hz in our measurements. Table 1 provides a comparison of
the overall accuracy obtained with all CNN architectures ex-
plored as well as prediction time for a single spectrum.

For MIR data, we also performed a multilabel classifica-
tion to determine the constituent plastic components in bi-
nary (ABS/PC) and ternary (PP/PE/PS) blends. For the bi-
nary blend, the algorithm predicted that it contained 99.8%
ABS and 99.7% PC. For the ternary blend, it predicted that it
contained 100% PE, PP, and PS and no other components.

To understand exactly what the CNNs have learned from
the spectra, we used saliency maps to find the most important



Figure 7: Comparison of the accuracy of CNN-based meth-
ods and other ML algorithms for MIR data.
Table 1: Overall Prediction Time Found with Different CNN
Architectures and Other Machine Learning Models for MIR
data.

Prediction time (µs)
1D 208±5

2D (25×25) 121±7
2D (50×50) 300±5
2D (75×75) 361±3

2D (100×100) 1218±24
SVM 7188±31
RF 41±1

KNN 1564±8

regions for classification. For ATR-FTIR data, we used the
results for PlasticNet (2D) with an input size of 200× 200,
since this has the highest accuracy. Fig. 8 shows the spectrum
and its important regions of PE. The average saliency map
for each plastic was studied because each spectrum has some
subtle differences, and the common significant patterns were
of interest. The darker regions in Fig. 8c are the most im-
portant ones. Specif- ically, the horizontal bands near 2900
cm−1 and vertical bands 2400 cm−1 were dark, which indi-
cates the importance of the signal at these frequencies. Fig.
8d, shows the significant signal locations (shaded regions)
and the raw spectrum. The bands between 2800 and 2900
cm−1 were of importance. This region provides characteris-
tic IR bands for PE.

For MIR data, we used the results for PlasticNet (2D) with
an input size of 100× 100. Fig. 9 shows the spectrum and
its important regions of ABS/PC. The darker regions in Fig.
9c are the most important ones. Specifically, the dark clus-
ters have a horizontal location near 3200 and 3600 cm−1 and
a vertical location near 3600 cm−1, which indicates the im-
portance of the signal at these frequencies. Fig. 9d, shows
the significant signal locations (shaded regions) and the raw
spectrum. The bands between 2700 and 3000 cm−1 and be-
tween 3200 and 3600 cm−1 were of importance.

Conclusion

convolutional neural network (CNN) framework for clas-
sifying different types of plastic materials that are commonly
found in MPW based on ATR-FTIR and fast MIR spectra
was developed. An important aspect of this type of spec-
tral data is that it can be collected in real-time; as such, this
approach provides an avenue for the high-throughput char-

Figure 8: aliency analysis for PE. The average (a) GASF and
(b) GADF matrices of size 200× 200, where darker colors
represent larger values. (c) The average saliency map of size
200×200. The darker regions are the most important regions
for classification. (d) The average IR spectrum and the most
important signals, shaded in gray. The most important region
includes the bands between 2800 and 2900 cm−1, which are
the characteristic IR peaks of the PC.

Figure 9: Saliency analysis for ABS/PC. The average (a)
GASF and (b) GADF matrices of size 100× 100, where
darker colors represent larger values. (c) The average
saliency map of size 100× 100. The darker regions are the
most important regions for classification. (d) The average IR
spectrum and the most important signals, shaded in gray. The
most important region includes the bands between 2700 and
3000 cm−1 and between 3200 and 3600 cm−1.

acterization of MPW. The proposed CNN framework (which



we call PlasticNet) uses a Gramian angular representation of
the IR spectra and we show that this approach reaches over-
all classification accuracies of 87% for ATR-FTIR data and
100% for MIR data. The frame can identify not only pure
plastics but also colored plastics and multiplastic blends. In
addition, the CNN framework had a fast prediction rate com-
pared to other ML methods, matching the readout rate of fast
MIR. This allows us, in the future, to build software to au-
tomatically acquire high-throughput IR data and combine it
with CNN to predict the plastic composition in real time.
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