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Abstract
Contemporary process industries are constantly confronted with volatile market conditions that jeopardise their
financial sustainability. Various approaches have been proposed in the literature to examine the impact of decentralisa-
tion on the optimal decision making within supply chain systems. Recently, a static game-theoretic approach for the
fair customer allocation within oligopolies was proposed by Charitopoulos et al. (2020). Nonetheless, key issues related
to the modelling and the impact of the related contractual agreements between firms and customers remain largely
unexplored. In the present work, we examine the problem of fair customer allocation in oligopolies under different
contractual agreements within a multiperiod setting. We consider an ensemble of contract types that vary in terms of
pricing mechanisms and duration. The role of fairness is examined following the Nash bargaining scheme and the
overall problem is formulated as a convex MINLP. For its efficient solution we employ two different solution techniques,
i.e. (i) an outer approximation branch and refine global optimisation method and (ii) a piecewise linearisation strategy.
The model impact and the benefits of fairness are evaluated through case studies from an industrial liquids market.
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List of symbols

Sets

c Customers
cti(c,t,i) Set of customer’s tanks for product i
f Oligopoly firms
i Liquid products
k Contracts
p Time periods
t Customer tanks

Parameters

α f Negotiation power of firm f
δ Price increase parameter
costict f p Production cost of product i for customer c

and tank t by firm f in time period p ($)
π

sq
f Status quo profit of firm f

prior to the fair allocation of the customers ($)
Pict f pk Price of product i for customer c and tank t

served by firm f at time period p by contract k ($)
UPCict f p Unit production cost of product i for customer c

and tank t served by firm f at time period p ($)
USCict f Unit service cost of demand of product i

1 Corresponding author: V. Charitopoulos (E-mail:
v.charitopoulos@ucl.ac.uk).

for customer c and tank t served by firm f ($/m3)

Binary Variables

Wc f kp 1, if a customer c is served by a company f
with contract k in time period p

WSc f kp 1, if a customer c is served by a company f
with exactly one contract k in time period p

Continuous Variables

EC f p Electricity cost of firm f for time period p
IC f p Inventory cost of firm f for time period p
Lk Duration of contract k
NC f p Forfeit cost of firm f for time period p
R f p Revenue of firm f for time period p
RC f p Acquisition cost of firm f for time period p
SC f p Service cost of firm f for time period p

Introduction

Game Theory and Optimisation

Game theory has been extensively studied within the pro-
cess systems engineering. Design of supply chains (Leng
and Parlar (2005); Nagarajan and Sošić (2008)) and power
system planning (Zhang et al. (2014)) have been facilitated
from the use of a game theoretic approach. An early exam-



ple of a SC design facilitated by Nash equilibrium analysis
can be found in Sherali and Leleno (1988); they provide so-
lution approached to reach the equilibrium solution of a two
stage production model and evaluate the benefits of a coali-
tion formation. Gjerdrum et al. (2002) presented two differ-
ent solution approaches to solve the problem of fair trans-
fer price and inventory optimisation. Zamarripa et al. (2012)
have investigated the impact of game strategy, either coop-
erative or non-cooperative, as an extra degree of uncertainty
in the original MILP supply chain (SC) problem with uncer-
tain demand. Later on, Mahjoub and Hennet (2014) defined a
minimal set of firms to achieve maximal expected profit and
at the same time employed a profit sharing policy. It is note-
worthy, that the game theoretic approach allows to take into
consideration factors such as social or environmental impact
of a design, which in a different framework would be dif-
ficult to quantify. Examples of game-theoretic approaches
that have a sustainability impact include the modelling of a
sharing economy framework in an organic food SC (Asian
et al., 2019) and the research and development cooperation
between supplier and manufacturer to mitigate spillover rates
(Wu et al., 2021).

Fairness Schemes

Fair profit allocation is one of the main concerns in a co-
operative game theory. An extensive review on fairness mea-
sures for decision-making and conflict resolution has been
provided by Sampat and Zavala (2019). The selection of a
fairness approach is not always straightforward, given that
there may be conflicting objectives such as profit with sus-
tainability pay-off. Lou et al. (2004) have evaluated such
a conflicting problem in order to find the economically and
environmentally optimal status of an industrial ecosystem.
Fairness consideration has been recently accounted in re-
source allocation problems such as load balancing (Bertsi-
mas et al. (2011)), electricity markets (Zavala et al. (2015))
and cost distribution (Liu and Papageorgiou, 2018). Even
though it is common practice to evaluate fairness under the
scope of a specific scheme, recent studies aim to compare
the impact of different fairness schemes. Sampat and Zavala
(2019) have examined different schemes for two interdisci-
plinary case studies, that of a power allocation problem and a
geographical nutrient balancing. Later on, Cruz-Avilés et al.
(2021) have evaluated different fairness schemes for the op-
timal allocation of water networks in eco-industrial parks.

Contractual Agreements

Park et al. (2006) have addressed the problem of contract
modelling in a multi-period framework, including contract
selection in supply chain models. Disjunctive programming
was employed to address both long term and short term op-
erations. The contracts proposed for supply/demand are: a)
fixed price, b) discount after certain amount, c) bulk discount,
and d) fixed duration. A classification of different supply
contract in a multi-period programming problem for optimal
contract selection was examined by Bansal et al. (2007). The
study incorporated the dominant real-life contract features,

such as purchase commitments and flexibility, commitment
duration and bulk prices/ discounts. Qin et al. (2007) evalu-
ate a non-cooperative Stackelberg game, where supplier acts
as the leader and decides on a pricing policy, the buyer re-
acts a follower and determines the annual sales volume. For
this application volume discounts are considered. Calfa and
Grossmann (2015) have incorporated the optimal contract se-
lection in the scheduling problem of a chemical process net-
work, by choosing among the contracts proposed by Park
et al. (2006). Recent publications examined different dis-
count contracts for supplier/ manufacturer agreements in the
process industry (Martı́n and Martı́nez (2018); Kirschstein
and Meisel (2019)).

Problem Statement

For the detailed problem formulation we refer the reader to
Charitopoulos et al. (2020), the equations used in the static
model are augmented by a time series index and hence trans-
formed to a multi-period setting. We will introduce here the
new equations concerning the contractual agreements.

Customer assignment and contracts scheduling

At any time period (p) customers (c) must be served by
one firm (f) and under one type of contract (k). This condi-
tion is modelled by introducing the binary variable Wc f kp and
Eqs.(1)-(2).

∑
f
∑
k

Wc f kp = 1 ∀c, p (1)

Wc f kp −Wc f k,p−1 ≤WSc f kp ∀ f ,c,k, p (2)

Furthermore, at any time period (p) customers (c) may sign
at most one contract (k) with one firm (f). To model this
instance, the binary variable WSc f kp is introduced which de-
notes whether at time period p customer c signed contract k
with firm f along with Eq. (3).

∑
f
∑
k

WSc f kp ≤ 1 ∀c, p (3)

To eliminate the possibility of a customer signing a con-
tract prior to the end of their current one Eq.(4) is introduced.

∑
f

p

∑
p′=p−Lk+1

WSc f kp′ ≤ 1−

∑
f

∑
k′ ̸=k

p

∑
p′=p−Lk′+1

WSc f k′p′ , ∀c,k, p ≥ Lk

(4)

Effectively what Eq.(4) is implying is that if a contract of du-
ration Lk starts at time period p then for the subsequent Lk
periods no other contract (including a renewal of the incum-
bent) is allowed.

To ensure that once a customer signs a contract they must
stay on for the entire duration of their contract Eq.(5) can be
employed.
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Figure 1: Relation between the binary variables WSc f kp
which denote the initiation of a contract and the binary vari-
ables Wc f kp which denote that a contract is active over the
periods spanning its agreed duration Lk.

p+Lk−1

∑
p′=p

Wc f kp′ ≥ LkWSc f kp ∀c, f ,k, p (5)

While Eq.(5) can guarantee that such condition will be stip-
ulated, its relaxation can be poor and thus hinder the compu-
tational efficiency of the model. To this end, we also propose
the Eq.(6) which is equivalent to Eq.(5) but has tighter relax-
ation.

p

∑
p+Lk−1

WSc f kp′ ≤Wc f kp ∀c, f ,k, p ≥ Lk (6)

It can be trivially shown that the relaxation of Eq.(6) is
tighter than Eq.(5). Notice that in order to account for in-
stances where a contract is signed but does not cover its en-
tire duration within the incumbent planning horizon, Eq.(6)-
(5) are only considered for ∀p ≤ |P|−Lk +1. A conceptual
representation of the contract scheduling notions is given in
Fig. 1.

Profit calculation

The profit of each firm f is calculated as the difference be-
tween the revenue and the total costs incurred by the cus-
tomers’ activity. The revenue is calculated as the selling price
of product i multiplied by the resulting product demand from
customers served by each firm. The profit π f ,p for each firm
f and a given time period p is given by Eq.(7).

π f = ∑
p
(R f p −SC f p −RC f p −NC f p −EC f p − IC f p) ∀ f , p

(7)

Note that the formulation of Eq.(7) is equivalent to the one
from Charitopoulos et al. (2020) augmented by a predefined
time set.

Contract formulation

In the examined case studies three different contracts,
Open, Formula and Firm, with varying duration have been

introduced. Open contract (Eq. 8) secures a minimum profit
for the manufacturer over the Unit Production Cost (UPC).

Pict f p,Open =

{
(1+δ1) ·UPCict f p, 2 ≤ p ≤ P−1
UPCict f p, p = {1,P}

(8)

The Formula contract (Eq.9) tailors the selling price based
on the Unit Service Cost (USC) of each customer by a firm
and the Employment Cost Index (ECI) which is fixed to 0.03
for this paper. Note that this contract results in the highest
selling price for every time period

Pict f p,Formula = (δ2 +δ3USCict f +δ4ECI)UPCict f p, ∀p (9)

Finally the Firm contract (Eq.10) the manufacturer’s profit is
safeguarded for all time periods.

Pict f p,Firm = (1+δ5)UPCict f p, ∀p (10)

Fair game-theoretic solution

While perceiving the firms as players who want to simul-
taneously maximise their profit, two fairness schemes ap-
proaches are evaluated. The Naive scheme maximises the
sum of the distinct profits as in Eq.(11).

ΦNV = ∑
f

π f (11)

By formulation, the Naive approach does not account for the
market share before the commencement of the game, to this
extend the Nash fairness scheme is employed. The objective
of the game is to maximise the geometrical mean of the profit
increase over the status quo. Applying a separable linearisa-
tion approach as proposed by Gjerdrum et al. (2001) the final
fair objective is formulated in Eq.12.

Φ̃NS = ln(∏
f
(π f −π

sq
f )

α f ) = ∑
f

α f ln(π f −π
sq
f ) (12)

Despite the above transformation, the corresponding prob-
lem is a MINLP problem with non-linear terms only in the
objective function. Charitopoulos et al. (2020) have proposed
two additional linearisation approaches based on branch and
refine and SOS2 piecewise linearisation strategy which result
in a MILP problem.

Case studies

To illustrate the proposed model, two case studies from an
industrial liquid market will be examined. Initially, the for-
mation of a duopoly is investigated and then, the formation
of an oligopoly comprised of three firms. The examined time
horizon is one year and is discretised into monthly time in-
tervals, p = 1, · · · ,12. The duration of the contracts is fixed
for both case studies to 2 months for Open contract, 1 month
for Formula and 4 months for Firm. The computational ex-
periments were carried in an Intel® Core™i9-10900K CPU
@ 3.70GHZ machine using GAMS v38.2.1.



Duopoly

In the duopoly case study the formation of a coalition com-
prised of two firms f = 2, c = 97 customers with t = 315
tanks and i = 2 trading products has been evaluated. Table
1 summarises the results of the computational experiments
with Nash consideration approaches. Branch and Refine
(BR) approach results in the greatest Nash objective followed
by SOS2 approach. Given the fact that the CPU time is an or-
der of magnitude greater in BR and that the global optimisa-
tion convergence is not always guaranteed, SOS2 approach is
considered the most favourable linearisation approach. In ad-
dition, SOS2 approximations where initially tailored to find
global optimum solutions of problems with a single nonlinear
function in an otherwise linear programming problem (Beale
and Forrest, 1976). Solving the MINLP problem with a local
solver results in increased computational time and the worst
objective.

Table 1: Result comparison for different Nash models.

Solver CPU time [s] Nash objective
MINLP local SBB/CONOPT4 2931 18.48
MILP SOS2 CPLEX 70 18.55

MILP BR CPLEX 973 18.56

Having decided the linearisation approach it is worth eval-
uating different fairness schemes as proposed in the previ-
ous Section. The question of the proposed cooperative ap-
proach is to consider whether the formation of a coalition
between the two firms would increase their profits and which
fairness scheme will facilitate the market. Table 2 suggests
that even though the Naı̈ve scheme maximises the total coali-
tion’s profit, this is achieved by reversing the market share
from 63/37 in the status quo to 46/54. Additionally, the Naı̈ve
scenario results in a 1.2% decrease of Firm’s A profit and the
same time increases the profit of Firm B by almost 100%.
In this solution, Firm A would not agree to form a coalition.
In contrast, the Nash scheme maintains the market share ra-
tio and maximises both the total profit and each firm’s profit.
Despite the fact that Firm B has the smallest market share in
status quo it meets the highest profit increase at 50% with the
Nash scheme.
Table 2: Profit analysis for different fairness schemes and
status quo in Duopoly.

Status quo Naı̈ve Nash
% Profit change A - -1.2 +25.0
% Profit change B - +99.5 +50.7

Market share A 0.63 0.46 0.58

An interesting aspect of the multi-period formulation is
the customer’s mobility. Increased mobility results in For-
feit/Acquisition costs in addition to delays in supply of
the customer duo to un-instalment/instalment of each firm’s
equipment. Even though the Naı̈ve scheme results in a static
customer allocation, see Figure 2, no customers change firms
during the examined time horizon, this does not apply in the
Nash scheme where 4 customers change firms one time and
2 customers change 2 times. Despite some customer mo-

bility, Figure 3 suggests that the dominant cost of Firm A
is the Service cost, comprising the 50.8% of the cumulative
cost from all time periods, followed by the Electricity cost
(42.8%). Service cost accounts the unit service cost, the cost
of swapping product and outsourcing production and is the
dominating cost in the status quo market. Note that with the
Naı̈ve scheme the cost allocation maintains the structure of
the status quo.

Figure 2: Customer loyalty for different fairness schemes.
Total number of customers changed firm: 0 times (Loyal), 1
time (Unfaithful), 2 times (Disloyal), 3+ times (Opportunist).

Figure 3: Cumulative cost allocation for Nash scheme over
12 time periods.

When it comes to the contract selection for both schemes
and all time periods the only contract selected is Formula.
The corresponding Gantt chart of a Disloyal customer based
on the Nash approach is illustrated in Figure 4. Given that
the utility function of the examined game is to maximise the
firms’ profit it is expected that the acquired solution will cor-
respond to the contract with the highest product pricing.

Oligopoly

An additional case study has been examined to evaluate
the formation of an oligopoly comprised of 3 firms. In this
case an additional product is introduced in the market as well,
so the total number of products i = 3, the total number of
customers is c = 81 and the tanks t = 119. Table 3 showcases
the results for the MINLP and MILP models respectively,



Figure 4: Gantt chart for Disloyal customer by Nash ap-
proach, #71. Comparison with the customer’s mobility in
Naı̈ve approach.

only the SOS2 linearisation approach is selected for this case
study. The MILP model with SOS2 variables has the fastest
convergence and to a better final solution compared to the
local MINLP approach.

Table 3: Result comparison for different Nash models.

Solver CPU time [s] Nash objective
MINLP local SBB/CONOPT4 1495 14.17
MILP SOS2 CPLEX 46 14.28

In the oligopoly case study, there is a clear leverage of
Firm C over the other two firms which have a similar market
share in the status quo as suggested by Table 4. The Naı̈ve
approach results in the greatest increase, almost 100%, for
Firm B which has the lowest market share (0.24), while for
Firm C there is a total profit decrease of 9.6%. In contrast,
the Nash fairness scheme maintains the overall balance of
the status quo in terms of market share and at the same time
guarantees a profit increase for all of the involved firms. It
can be observed that the % of profit increase is analogous to
the market share of each firm.
Table 4: Profit analysis for different fairness schemes and
status quo in Oligopoly.

Status quo Naı̈ve Nash
% Profit change A - +23.7 +19.6
% Profit change B - +98.2 +7.1
% Profit change C - -9.6 +28.0

Market share B 0.24 0.38 0.21
Market share C 0.50 0.36 0.53

Figure 5 suggests that in the Nash fairness scheme there
are 1 Opportunist, 1 Disloyal and 5 Unfaithful customers
while in the Naı̈ve scheme there are 2 Unfaithful. The in-
creased customer mobility has an impact on the total cost
as observed in Figure 6, where the Forfeit/Acquisition cost
comprises the 4.2% of the total cumulative cost for Firm C
over 12 months. Overall, the multi-period game theoretic ap-
proach that allows customers to change firms and contracts in
the examined time horizon, results in an improved customer
allocation solution. The % of Service cost is decreased from
59% to 33% while the Electricity cost is increased from 30
to 47%. The game theoretic approach results in a marginal
increase of 4% in the Inventory cost which increases the op-
erational flexibility.

In the oligopoly coalition Open contract has been selected

Figure 5: Customer loyalty for different fairness schemes.
Total number of customers changed firm: 0 times (Loyal), 1
time (Unfaithful), 2 times (Disloyal), 3+ times (Opportunist).

Figure 6: Comparison of cost allocation for status quo and
cumulative over 12 time periods of Nash fairness scheme.

for a few customers both in the Naı̈ve and Nash schemes.
Figure 7 represents the Gantt chart of an Unfaithful customer
in Nash approach. Even though the Nash approach selects
the customer to change firms after t8, the Naı̈ve approach
initially allocates an Open contract with Firm B which is later
transferred to a Formula contract with the same firm.

Figure 7: Gantt chart for an Unfaithful customer by Nash
approach, #5. Comparison with the customer’s mobility in
Naı̈ve approach.

Conclusion

For the examined case studies, the formation of coalitions
was proven beneficial for the firms involved, since it resulted
in increased profits compared to the status quo. The piece-
wise SOS2 linearisation has provided superior solution over
the BR and the local MINLP approach for the examined in-
stances. Among the two examined fairness schemes, the
Nash scheme maintains the relative market structure of the



status quo and at the same time allows for profit increase for
all firms involved in the game. Comparing the games with
different number of players, the formation of an oligopoly
with more than 2 players using the Nash fairness scheme re-
sults in favouring the dominant player in the status quo. In
the case of the duopoly the dominant player met 25.0% profit
increase, while in the oligopoly case 28.5%. It is notewor-
thy, that for an increased number of firms an extra evaluation
needs to be performed, either via the Shapley or Schmeidler’s
value, to determine the stability of the grand coalition in con-
trast to smaller coalition formations.

Future work aims to take into account customers as an ex-
tra player in the game whose utility function is to maximise
their savings.
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