
RECENT ADVANCES IN DISCRETE TIME CHEMICAL PRODUCTION
SCHEDULING MILP MODELS

Nathan Adelgren a,1, Amin Samadi b, and Christos T. Maravelias a,b

a Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08540

b Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540

Abstract
In this paper, we present techniques that reduce the computational time required to solve discrete time-based mixed-
integer programming models for chemical production scheduling. Methods for both batch processes and continuous
processes are presented. The results of several computational tests are included to demonstrate the utility of the novel
solution strategies, reformulations, and tightening constraints presented herein.

Keywords
batch processes, continuous processes, discrete time models, cut generation, tightening, reformulations

Introduction

In the context of a processing facility that converts raw
materials into higher value products by carrying out tasks
in processing units, chemical production scheduling involves
assigning tasks to units and establishing the times at which
the processing of these tasks should begin, possibly subject
to a set of restrictions. As these task assignments and timing
decisions ultimately determine the overall performance of the
plant, scheduling is a crucial decision-making step in chem-
ical manufacturing facilities, with applications in a broad
range of systems, from batch production of low-volume
products such as pharmaceuticals (Papavasileiou et al., 2007)
to crude oil blending (Castro and Grossmann, 2014). De-
termining an appropriate schedule requires knowledge of
the processing times for each task, limitations on the units
to which a given task can be assigned, network connec-
tivities, conversion coefficients, and many other complex,
application-specific details. Research in the field of chem-
ical production scheduling has aimed to account for various
process characteristics such as constraints on utilities and re-
sources (Méndez et al., 2001), changeovers (Wolsey, 1997),
and material transfer restrictions (Giménez et al., 2009). The
overarching goal of considering this wide array of process
characteristics is to develop highly general models that can
be readily employed in a range of industrial applications.

Alongside problem generality, another challenge re-
searchers have been addressing is the computational effi-
ciency of scheduling models. Research efforts to reduce

the computational costs of chemical production scheduling
models have included the development of reformulations
(Velez and Maravelias, 2013), decomposition-based algo-
rithms (Harjunkoski and Grossmann, 2002), parallel comput-
ing tools (Subrahmanyam et al., 1996), and tightening meth-
ods using valid inequalities (Velez et al., 2013).

In this work we present recent advances in discrete time-
based mixed-integer linear programming (MILP) modeling
strategies for production scheduling. We divide our discus-
sion into two categories: (i) developments for batch pro-
cesses, and (ii) developments for continuous processes.

Preliminaries

There are significant modeling differences between batch
and continuous processes, primarily due to the fact that con-
tinuous processes produce (output) and consume (input) ma-
terials continuously and simultaneously, whereas batch pro-
cesses are assumed to consume all required materials at the
start of a task and produce all outputs at the end. The amount
of material produced/consumed in continuous production de-
pends on both the rate and duration of task execution, where
the duration is not strictly fixed. This implies a different
number of degrees of freedom (DOF). Batch processes have
one DOF, which is simply the batch size, but continuous pro-
cesses have two DOF: the rate and the duration of time that
the task is processed. To account for this discrepancy, MILP
models built for batch processes must be modified in order
to appropriately model continuous processes. Hence, in this

1 Corresponding author. Email: na4592@princeton.edu.

work we first discuss advances in MILP modeling techniques
designed for batch process and later discuss advances for
continuous processes.

We employ the following convention for notation: (i) sets
are indicated using bold, upper-case, Roman letters, (ii) in-
dices are indicated using lower-case Roman letters, (iii) pa-
rameters are indicated using lower-case Greek letters, and
(iv) variables are indicated using non-bold, upper-case, Ro-
man letters. Throughout the work we utilize i∈ I to represent
tasks, j ∈ J to represent processing units, k ∈ K to represent
materials, and n ∈ N to represent discrete time points. We
note that, while the typical use of a n∈N is to represent a dis-
crete time point that is nδ time units beyond the start of the
scheduling horizon, it can also be used to represent the time
period [(n−1)δ ,nδ). For a given i ∈ I we use Ji ⊆ J to rep-
resent the set of units capable of processing task i. Addition-
ally, for a given k ∈ K we use I+k ,I

−
k ⊆ I to represent the sets

of tasks producing and consuming material k, respectively.
The MILP models we employ also rely on the parameters: η

— the scheduling horizon; δ = η

|N| — the discretization time
step; τi, j — the time required to process task i ∈ I in unit
j ∈ Ji. β MAX

j /β MIN
j — the maximum/minimum capacity of

unit j ∈ J; χMAX
k — the maximum amount of material k ∈ K

that can be stored; ρi,k — the conversion coefficient of ma-
terial k ∈ K produced or consumed by task i ∈ I; and ξk,n —
the net shipment of material k ∈ K at time n ∈ N. The binary
variable Xi, j,n ∈ {0,1}, which equals 1 if task i ∈ I begins
in unit j ∈ Ji at time point n ∈ N, is also used in our MILP
models.

Batch Processes

This section is divided into two parts. In the first we dis-
cuss advances for batch processes in single-stage environ-
ments, and in the second we discuss advances for batch pro-
cesses in network environments.

Single-Stage Environments

In recent years both MILP modeling and constraint
programming (CP) have emerged as particularly powerful
tools for solving single-stage scheduling problems, but both
have difficulties solving rather large, challenging problems.
Hence, researchers have been developing hybrid MILP/CP
approaches capable of capitalizing on the strengths of both
methods. To our knowledge, however, all hybrid MILP/CP
approaches proposed in the literature rely on a continuous
representation of time. Here we present a novel hybrid
MILP/CP method that employs a discrete representation of
time. Specifically, our proposed approach embeds both a dis-
crete time MILP model and a CP within a branch-and-cut
(BC) framework. The discrete time MILP serves as a high
level subproblem to which BC is initially applied, and the
CP serves as a low level subproblem that is used for check-
ing feasibility and generating cuts throughout the course of
the solution process. Our approach works in three phases.
First, a pre-processing phase is used to modify the model pa-
rameters to ensure that any schedule that can be feasibly im-
plemented in continuous time is also feasible for the discrete

time MILP. BC is then employed to compute the discrete time
solution having the lowest processing cost. In this phase,
each time an integer feasible solution is found we check the
continuous time feasibility of the solution and add appropri-
ate cuts in the case of infeasibility. Finally, a post-processing
phase is used to convert the task start times assigned by the
optimal discrete time solution to feasible values in continu-
ous time.

For the sake of space, we do not include the formulations
of the MILP or CP models that we employ, but we note that
the MILP model is taken from Chapter 4.4 of (Maravelias,
2021). Additionally, due to the complex nature of the overall
procedure we propose, we do not include details of the pre-
or post-processing phases. We note, however, that the post-
processing phase is equivalent to the second phase of the Dis-
crete Continuous Algorithm (DCA) of Merchan et al. (2016).
A high level description of the main step of our proposed ap-
proach, namely the processing of integer feasible solutions
discovered during the course of BC, is given in Algorithm 1.

Algorithm 1 PROCESSINTEGERSOLUTION(X)

Input: X — an integer feasible solution
Output: An integer feasible solution X∗ such that seq j(X∗)
is feasible for all j ∈ J, if one has been discovered.

1: Set AllFeas = true and X∗ = X .
2: for j ∈ J do
3: if seq j(X) is not feasible then
4: Cut off infeasible subsequences of seq j(X).
5: Let X ′

j be the solution to the low-level CP.
6: if X ′

j is not feasible then
7: Cut off asn j(X).
8: Set AllFeas = false.
9: else set seq j(X∗) = seq j(X ′

j)

10: else set seq j(X∗) = seq j(X).
11: if AllFeas is true then return X∗.
12: else return /0.

Note that in Algorithm 1, for a given integer feasible so-
lution X and j ∈ J we use asn j(X) to denote the set of tasks
that X assigns to j. Similarly, we use seq j(X) to denote the
sequence in which the tasks in asn j(X) are processed.

Using different pre-processing approaches, we employ
three variants of our proposed procedure (denoted DTR full,
DTR MIP0, and RPTT) and compare against three alternative
approaches: (i) directly solving the continuous time MILP
model described in Chapter 4.3 of Maravelias (2021), (ii)
directly solving the discrete time MILP model described in
Chapter 4.4 of Maravelias (2021), and (iii) using the hybrid
MILP/CP method referred to as Algorithm 4 in (Sadykov and
Wolsey, 2006). Each of these methods was programmed us-
ing the C++ programming language and a combination of the
CPLEX 20.1 C API (for MILP modeling) and C++ API (for
CP modeling). All of the computational tests described in
this work were conducted using a computing cluster running
Springdale Linux 8. For our current test, we set a time limit
of 5 hours and utilized 49 randomly generated instances.
All six approaches successfully solved 41 of these instances

within the time limit, and results for these instances are sum-
marized in the performance profile displayed in Figure 1.

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

F
ra

ct
io

n
of

 In
st

an
ce

s
S

ol
ve

d
In

 L
es

s
T

ha
n

'k
' T

im
es

 T
he

Fa
st

es
t I

ns
ta

nc
e

●
●

●
● ●

●
●

●

●

●
● ● ●

●

● ● ● ● ●
●

● ●

● ● ●
● ●

● ●

● DTR full
DTR MIP0

RPTT
Discrete
Continous
SW Hybrid

Figure 1: Results for Our Hybrid MILP/CP Approach

Recognize from Figure 1 that while the hybrid MILP/CP
method of Sadykov and Wolsey (2006) (SW Hybrid) was the
fastest approach for over 60% of the considered instances,
our RPTT approach was fastest for the remainder. Although
it cannot be ascertained from Figure 1, we point out that
the majority of the instances for which the SW Hybrid ap-
proach took less time than our RPTT approach were solved
very quickly – in most cases both approaches took less than
1 second. Further recognize that for approximately 10% of
the considered instances, all other approaches took over 10
times the time utilized by our RPTT approach.

Network Environments

Beginning with the MILP model presented in Chapter
7.2.2 of (Maravelias, 2021), Velez and Maravelias (2013)
propose a reformulation that involves adding an integer vari-
able Ni, j that represents the number of times task i is carried
out in unit j. Specifically, the authors add the constraint

∑
n∈N

Xi, j,n = Ni, j ∀ i ∈ I, j ∈ Ji (1)

and bound Ni, j as

0 ≤ Ni, j ≤ ⌊η/τi, j⌋ ∀ i ∈ I, j ∈ Ji. (2)

Velez and Maravelias (2013) state that their motivation for
proposing this reformulation is that for many scheduling
problems there are multiple feasible solutions having the
same objective value and the same (task, unit) pair assign-
ments. Moreover, as these assignments frequently occur at
different time points in different solutions, the authors state
that branching on Ni, j can lead to faster solution times due to
the fact that each such branching decision is able to eliminate
multiple suboptimal solutions simultaneously.

It can be shown, however, that the benefits of defining
Ni, j and adding Eqs. (1) and (2) extend beyond those men-
tioned above because it is not only the branching phase of
branch-and-bound (BB) that benefits from these additions.
As such, we propose the use of several additional integer
variables and associated constraints. Consider the variables

Ni ∈ Z the number of times task i is performed,
N j ∈ Z the number of times unit j performs a task,
Nn ∈ Z the number of tasks performed at time t, and
N ∈ Z the total number of tasks performed,

that can be incorporated using the following constraints and
bounds:

Ni = ∑
j∈Ji

∑
n∈N

Xi, j,n; 0 ≤ Ni ≤ ∑
j∈Ji

⌊
η

τi, j

⌋
∀ i ∈ I (3)

N j = ∑
i: j∈Ji

∑
n∈N

Xi, j,n; 0≤N j ≤

 η

min
i: j∈Ji

{
τi, j

}
∀ j ∈ J (4)

Nn = ∑
i∈I

∑
j∈Ji

Xi, j,n; 0 ≤ Nn ≤ min{|I|, |J|} ∀n ∈ N (5)

N = ∑
i∈I

∑
j∈Ji

∑
n∈N

Xi, j,n;

0 ≤ N ≤ min

∑
i∈I

∑
j∈Ji

⌊
η

τi, j

⌋
,∑

j∈J

 η

min
i: j∈Ji

{
τi, j

}
 (6)

As each of the variables Ni, j, Ni, N j, Nt , and N serves to
keep record of a quantity of interest, we refer to each as a
record keeping variable. We now summarize the results of
a study in which we compare the performance of BB when
a carefully chosen subset of these record keeping variables
are included within our model. We note that this, as well as
the remainder of the tests described in this work, were con-
ducted using GAMS v36.1 for modeling and CPLEX 20.1
as the MILP solver. The tests described here are performed
using a combination of instances obtained from minlp.org

and from the authors of (Velez and Maravelias, 2013). In
total, we utilize 15 instances and consider three objectives:
(i) makespan minimization, (ii) cost minimization, and (iii)
profit maximization. For brevity, and because the results for
all objective types displayed relatively similar patterns, we
only present results for cost minimization here. We report
results for all instances that at least one of the considered for-
mulations was able to solve in under 5 hours. The results are
summarized in the performance profile displayed in Figure 2.

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

F
ra

ct
io

n
of

 In
st

an
ce

s
S

ol
ve

d
In

 L
es

s
T

ha
n

'k
' T

im
es

 T
he

Fa
st

es
t I

ns
ta

nc
e

● ● ● ● ●

●

● ●

● N
B

I
BIA

BIJA
BIJNA

Figure 2: Results for Record Keeping Variables

In Figure 2, we use the following notation: N — no
record keeping variables are added to the model; B — only
Ni, j is added; I — only Ni is added; BIA — Ni, j, Ni, and
N are added simultaneously; BIJA — Ni, j, Ni, N j, and N
are added simultaneously; and BIJNA — Ni, j, Ni, N j, Nn,
and N are added simultaneously. We note that N is se-
lected as it represents the default formulation with no record
keeping variables included, B is selected as it represents the
most promising reformulation considered in (Velez and Mar-
avelias, 2013), and the rest of the considered reformulations
are selected due to their relatively strong performance. Of
the 15 instances considered, there were 2 that no considered
formulation was able to solve in 5 hours, 1 that was solved
in under 5 hours by B and BIJA but not by N (B — 2163.8s;
BIJA — 16.17s), and 2 that were solved in under 5 hours by
BIJA but not be either N or B (BIJA — 1.355s avg). More-
over, of the remaining 10 instances, there were 7 that at least
one of the formulations N, B, or BIJA took more than 5 sec-
onds to solve, and on average BIJA solved these in 1.77% of
the time used by N and 87.67% of the time used by B.

Continuous Processes

In the field of chemical production scheduling, less focus
has been given to continuous processes relative to batch pro-
cesses because the simultaneous production and consump-
tion of materials alongside the flexibility to choose the dura-
tion of task execution adds a layer of processing complexity
to the problems. Additionally, batch processes oftentimes
have processing time limitations and material handling re-
strictions, which their continuous process counterparts do
not possess, that reduce the feasible region of the problem.
Strategies to more efficiently model continuous processes are
needed in order to decrease computational times, especially
when considering transient operations such as startups, shut-
downs, and direct transition tasks that notably escalate model
complexity; transient operations can result in the addition
of four more binary variables per task in conjunction with
the ancillary constraints needed for their modeling. A gen-
eral optimization framework that accurately represents sys-
tem dynamics is presented, specifically transient operations.
We introduce tightening constraints with the goal of decreas-
ing the computational times of solving continuous produc-
tion scheduling models.

Modeling Parameters and Variables

A continuous task is modeled using subtasks with pro-
cessing times of one discrete time step. A run of a continuous
task is defined as a set of consecutive, single-period subtasks.
The minimum/maximum flowrates of a task i ∈ I executed in
a unit j ∈ Ji during each time period are comparable to batch
sizes in the batch process model, so they are represented sim-
ilarly (β MIN

i, j /β MAX
i, j). In terms of run duration, parameters to

enforce run length restrictions (τMIN
i, j /τMAX

i, j) are also applied.
In addition to the Xi, j,n binary variables, two new bi-

nary variables containing information about the start and end
times of a run are employed. Respectively, Y S

i, j,n and Y E
i, j,n

signify that a run of task i in unit j starts, or ends, at time

n. For details on how these variables are incorporated in the
model, see Eqs. (16) and (17) of (Wu and Maravelias, 2021).

Demand Propagation Algorithm

Starting with known customer demands, a preprocessing
approach, designated as the demand propagation algorithm
(DPA), is used to tighten the original formulation by remov-
ing solutions that cannot realistically achieve the desired pro-
duction demands. The DPA exploits known information such
as demand, network structure, conversion coefficients, and
processing rates in order to assign values to a set of parame-
ters that we subsequently employ within a novel set of tight-
ening constraints. Specifically, the DPA produces ωk for each
k ∈ K and µ̃i for each i ∈ IP, where ωk represents the lower
bound on the amount of a material required to satisfy demand
and µ̃i represents the lower bound on the production of a task
required to satisfy demand.

The DPA uses several record-keeping sets: KNC ⊆ K —
the set of materials for which ωk has not been calculated,
INC ⊆ I — the set of tasks for which µ̃i has not been calcu-
lated, KA ⊆K — the set of materials available for calculating
ωk, and IA ⊆ I — the set of tasks available for calculating µ̃i.
Also, KF ⊆ K is the set of all final products, and IP ⊆ I is the
set of production tasks (i.e., excludes transition tasks).

Algorithm 2 DPA(I,J,K,N)

Input: Sets I,J,K,N (along with all associated parameters)
Output: ωk ∀k ∈ K and µ̃i ∀i ∈ IP.

1: Set KNC = K, INC = IP, KA = KF, and IA = /0.
2: ωk = ∑

n∈N
ξk,n ∀k ∈ KA

3: while |INC|+ |KNC|> 0 do
4: νi,k = max{ωk,0} ∀k ∈ KA : |I+k |= 1, i ∈ I+k

⋂
IP

5: νi,k = 0 ∀k ∈ KA : |I+k |> 1, i ∈ I+k
⋂

IP

6: Set KNC = KNC\KA and IA = {i : i ∈ I+k ,k ∈ KA}.
7: Set KA = /0.
8: µi = max

k: i∈I+k

{
νi,k
ρi,k

}
∀i ∈ IA

9: µ̃i = µi +∆µi ∀i ∈ IA

10: Set INC = INC\IA and KA = {k : i ∈ I−k
⋂

IA}.
11: Set IA = /0.
12: ωk =− ∑

i∈I−k

µ̃i

ρi,k
− s0

k ∀k ∈ KA

13: return
(
{ωk : k ∈ K},{µ̃i : i ∈ IP}

)
The first step of the DPA is to add all materials to the KNC

set, all production tasks to the INC set, and all final products
to the KA set. We also initialize IA as the empty set. Then, ωk
is calculated for available materials. The while loop ensures
that eventually all production tasks and all materials have an
associated µ̃i and ωk, respectively.

We next calculate νi,k, a parameter that links materials
with the tasks that can produce them, for all available mate-
rials k ∈ KA and tasks i ∈ I+k . If more than one task is able
to produce the same material, then the minimum processing
time of those tasks will be zero because certain tasks could
theoretically handle all of the production allowing one task to

not produce. In these cases, a different tightening constraint
will need to be used. We then update our record-keeping sets
accordingly and calculate µi for all available tasks.

On line 8 of Algorithm 2, the term inside the bracket is
the total amount of material that all tasks need to produce
in order to satisfy demand. However, this quantity might
not be in the attainable production range of the task or unit
based on operational restrictions such as run length duration,
τMIN

i, j /τMAX
i, j , or production rate, β MIN

i, j /β MAX
i, j . A new pa-

rameter, µ̃i, is determined based on the amount of material
that a task-unit pair can feasibly produce. Line 9 uses ∆µi to
achieve the minimum attainable production amount that will
satisfy final demand. If µi already falls within the attainable
range, then ∆µi = 0 and µ̃i = µi.

After µ̃i is calculated on for available tasks, IA, on lines
10 and 11 we update our record-keeping sets and propagate
backwards again to determine ωk for all materials that are
consumed by the previously available tasks. Note that ρi,k
will be negative in line 12 of Algorithm 2 because materials
are being consumed by tasks. Additionally, any initial in-
ventory is considered by subtracting it from the amount of
production needed. Hence, ωk can be negative in the case
of a large initial inventory. However, νi,k cannot be negative
due the enforced lower bound of 0 on line 4. The motivation
for this bound is our desire not to trivially reverse propagate
negative values. Through the use of the while loop beginning
on line 3, we continue propagating backwards until ωk and µ̃i
have been calculated for all materials and tasks, respectively.

Tightening Constraints

The first tightening constraint we introduce is defined for
each i ∈ IP and imposes a lower bound on the sum of Xi, j,n
over all units j ∈ Ji and time periods n ∈ N. A valid value
for this bound is obtained by dividing µ̃i by the maximum
production rate over all j ∈ Ji and rounding up. We have

∑
j∈Ji

∑
n∈N

Xi, j,n ≥

µ̃i

max
j∈Ji

{
β MAX

i, j

}
 ∀i ∈ IP. (7)

We now consider materials k ∈ K for which |I+k |> 1, i.e.,
more than one task is able to produce k. In this case, the
minimum processing time for all i ∈ I+k can be zero since it
is possible that all demand for k can be satisfied using only
tasks in I+k \{i}. Hence, for each such material we compute
the minimum amount of time that the tasks in I+k must collec-
tively run in order to produce the required amount of k and
use this value to bound the task execution binary variables.
This gives

∑
i∈I+k

∑
j∈Ji

∑
n∈N

Xi, j,n ≥

ωk

max
i∈I+k , j∈Ji

{
β MAX

i, j ρi,k

}
 ∀k : |I+k |> 1.

(8)

We note that when units with different production rates
can process the same task, Eq. (7) may not provide a tight

bound. Thus, in this case we develop an alternative to Eq.
(7) by considering the production amounts of the tasks be-
ing executed rather than their production times. Specifically,
for each i ∈ IP we introduce a new parameter µ̂X

i , which
is similar to µ̃i and serves as a lower bound on the sum of
β MAX

i, j Xi, j,n over all units j ∈ Ji and time periods n ∈ N. The
resulting constraint is then:

∑
j∈Ji

∑
n∈N

β
MAX
i, j Xi, j,n ≥ µ̂

X
i ∀i ∈ IP (9)

Recognizing that in Eq. (9) we have not considered situa-
tions in which multiple tasks can produce the same material,
an additional constraint that exploits this case is written as
follows:

∑
i∈I+k

∑
j∈Ji

∑
n∈N

ρi,kβ
MAX
i, j Xi, j,n ≥ ωk ∀k : |I+k |> 1 (10)

We have now presented all of our proposed tightening
constraints that utilize the task execution binaries, Xi, j,n, and
turn our focus to constraints that incorporate the run initiation
binaries, Y S

i, j,n. To begin, for each task i ∈ IP we can calculate
the minimum number of runs of i that are needed in order to
satisfy demand and use this value to bound the sum of Y S

i, j,n
over all units j ∈ Ji and time periods n ∈ N as follows:

∑
j∈Ji

∑
n∈N

Y S
i, j,n ≥

µ̃i

max
j∈Ji

{
β MAX

i, j τMAX
i, j

}
 ∀i ∈ IP (11)

Situations in which multiple tasks can produce a given
k ∈ K can be exploited by ensuring that, collectively, enough
runs of the tasks in I+k are started in order to achieve demand.
This can be enforced using the following constraint:

∑
i∈I+k

∑
j∈Ji

∑
n∈N

Y S
i, j,n ≥

ωk

max
i∈I+k j∈Ji

{
β MAX

i, j ρi,kτMAX
i, j

}
∀k : |I+k |> 1

(12)

Finally, we introduce constraints in which we consider
production amounts rather than production times. These are
given below:

∑
j∈Ji

∑
n∈N

β
MAX
i, j τ

MAX
i, j Y S

i, j,n ≥ µ̂
Y
i ∀i ∈ IP (13)

∑
i∈I+k

∑
j∈Ji

∑
n∈N

ρi,kβ
MAX
i, j τ

MAX
i, j Y S

i, j,n ≥ ωk ∀k : |I+k |> 1 (14)

Computational Performance

We conducted a test in which a total of 239 cost mini-
mization instances were solved. We tested the original model
as well as four formulations utilizing tightening constraints:

• nX incorporated Eqs. (7) and (8)

• pX incorporated Eqs. (9) and (10)

• nYS incorporated Eqs. (11) and (12)

• pYS incorporated Eqs. (13) and (14)

The results of our test are summarized in the performance
profile displayed in Figure 3.

Figure 3: Performance chart comparing solve times of the
original model to formulations with tightening constraints.

It is clear from Figure 3 that incorporating our proposed
constraints into the model yields significant reductions in
computational times. All of the models incorporating the
tightening constraints significantly outperformed the original
model, but the tightening constraints using the run initiation
binary variables clearly performed the best. The nYS formu-
lation solved 36.2% of the instances the fastest, and the pYS

formulation solved the remaining 63.8% of instances faster
than all of the other formulations. These results demonstrate
the effectiveness of incorporating tightening constraints in
continuous process scheduling models.

Conclusion

We have presented three novel approaches for reducing
the computational time utilized when solving discrete time-
based MILP models for chemical production scheduling.
Two of these techniques are designed for use when model-
ing batch processes, and one for use when modeling contin-
uous processes. The first of our batch process methods, a
hybrid MILP/CP branch-and-cut approach, produced results
comparable with current state-of-the-art approaches on about
90% of the instances we tested, but on the other 10% our ap-
proach showed significant reductions in computational effort,
solving these instances in approximately a tenth of the time
required by the fastest of the other approaches we compared
against. Our second method for batch processes involves re-
formulating the base MILP model by adding so-called record
keeping variables and constraints that place upper bounds on
their values. We demonstrate that in most cases the inclu-
sion of these variables in the MILP model results in pro-
found speedups; often reducing the solution time to under
2% of the time used when no such variables are included in
the model. Finally, the method we present for continuous
processes, which involves adding constraints to the MILP
model that tighten its linear programming relaxation, also re-
duces required computational time substantially. In fact, for
approximately 50% of the instances we tested, the best per-
forming of our proposed sets of tightening constraints results
in a solution time that is less than a tenth of the time required
by the original formulation.

References

Castro, P. M. and I. E. Grossmann (2014). Global op-

timal scheduling of crude oil blending operations with
RTN continuous-time and multiparametric disaggregation.
Industrial and Engineering Chemistry Research 53(39),
15127–15145.

Giménez, D. M., G. P. Henning, and C. T. Maravelias (2009,
sep). A novel network-based continuous-time represen-
tation for process scheduling: Part I. Main concepts and
mathematical formulation. Computers and Chemical En-
gineering 33(9), 1511–1528.

Harjunkoski, I. and I. E. Grossmann (2002). Decomposi-
tion techniques for multistage scheduling problems us-
ing mixed-integer and constraint programming methods.
Computers and Chemical Engineering 26, 1533–1552.

Maravelias, C. T. (2021). Chemical Production Scheduling:
Mixed-Integer Programming Models and Methods. Cam-
bridge University Press.

Méndez, C. A., G. P. Henning, and J. Cerdá (2001). An
MILP continuous-time approach to short-term scheduling
of resource-constrained multistage flowshop batch facili-
ties. Computers and Chemical Engineering 25, 701–711.

Merchan, A. F., H. Lee, and C. T. Maravelias (2016).
Discrete-time mixed-integer programming models and so-
lution methods for production scheduling in multistage fa-
cilities. Computers & Chemical Engineering 94, 387–410.

Papavasileiou, V., A. Koulouris, C. Siletti, and D. Petrides
(2007). Optimize manufacturing of pharmaceutical prod-
ucts with process simulation and production scheduling
tools. Chemical Engineering Research and Design 85(7
A), 1086–1097.

Sadykov, R. and L. A. Wolsey (2006). Integer programming
and constraint programming in solving a multimachine as-
signment scheduling problem with deadlines and release
dates. INFORMS Journal on Computing 18(2), 209–217.

Subrahmanyam, S., G. K. Kudva, M. H. Bassett, and J. F.
Pekny (1996). Application of Plant Distributed Design and
Computing to Batch Scheduling. AIChE Journal 42(6),
1648–1661.

Velez, S. and C. T. Maravelias (2013, mar). Reformula-
tions and branching methods for mixed-integer program-
ming chemical production scheduling models. Industrial
and Engineering Chemistry Research 52(10), 3832–3841.

Velez, S., A. Sundaramoorthy, and C. T. Maravelias (2013,
mar). Valid Inequalities Based on Demand Propagation
for Chemical Production Scheduling MIP Models. AIChE
Journal 59(3), 872–887.

Wolsey, L. A. (1997). MIP modelling of changeovers in
production planning and scheduling problems. European
Journal of Operational Research 99, 154–165.

Wu, Y. and C. T. Maravelias (2021). A general framework
and optimization models for the scheduling of continuous
chemical processes. AIChE Journal 67(10), 1–15.

