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Abstract
For three decades, model predictive control (MPC) has been the flagship advanced control method in the chemi-
cal process industries. However, most implementations still use heuristic methods for designing MPC estimators,
especially for offset-free MPC implementations. In this paper, we present a recently developed maximum likelihood-
based method for the identification of linear augmented disturbance models for use in offset-free MPC. This method
provides noise covariances that are used to derive Kalman filters and moving horizon estimators, forgoing the need for
manual design and tuning of the estimator. The method is extended to handle closed-loop plant data. We also discuss
design strategies for safe and inexpensive identification experiments. The proposed identification method and estimator
design are evaluated in industrial-scale, real-world case study of a process at Eastman Chemical’s Kingsport plant.
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1. Introduction

Model predictive control (MPC) is widely used in the
chemical process industries as an advanced feedback control
method (Qin and Badgwell, 2003). Some important factors
in the success of MPC are its inherent robustness to distur-
bances and plant-model mismatch, and the ability to track
setpoints without offset (Rawlings, Mayne, and Diehl, 2020,
pp. 46-59, 204-214). As is often noted by industrial practi-
tioners, MPC can be quite forgiving with respect to model er-
rors, aging of the plant, changes in environmental conditions,
and changes in operating conditions. As such, practitioners
have long achieved sufficient performance with heuristic or
out-of-date models, without rigorous methods of identifying
both plant and disturbance models. As stake holders con-
tinue to demand greater performance from their processes,
they require a system of best practices for identifying plant
and disturbance models.

Process modeling and estimator design

Two simple linear process modeling methods are (1) using
SISO identification methods with step response data (Cave-
ness and Downs, 2005), and (2) linearizing a physical plant
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model (Rawlings et al., 2020, pp. 46-59). Neither approach
provides the noise covariance estimates required to design
a Kalman filter (KF) or moving horizon estimator (MHE)
for the MPC implementation. While subspace methods such
as canonical variate analysis (CVA) can be used to estimate
the process and measurement noise covariances, they cannot
be used to estimate the disturbance noise covariance (Qin,
2006; Larimore, 1990). Autocovariance least squares (ALS)
can identify the complete disturbance model, but it has a
high computational cost for minimum variance estimates and
has not seen widespread adoption (Odelson, Rajamani, and
Rawlings, 2006; Zagrobelny and Rawlings, 2015). Autore-
gressive integrating models (i.e., ARIX, ARIMAX, and vec-
tor equivalents) can be used in place of the linear augmented
disturbance model (Sun, Zhao, and Qin, 2011). However,
these approaches do not directly provide state space models,
which are common to MPC theory and implementation.

We present a closed-loop extension of the algorithm pro-
posed in Kuntz and Rawlings (2022). These identification
algorithms are the only existing methods for estimating both
the state-space model coefficients and the disturbance noise
covariances required to implement offset-free MPC.

Towards closed-loop identification experiments

Adopting closed-loop identification experiments is an op-
portunity for significant safety and profitability improve-



ments. Closed-loop identification experiments can then be
conducted online, at and around the optimal operating point,
negating the cost of opening the loop to perform the exper-
iment. New MPCs can then be implemented on processes
controlled with other methods (PID, IMC, etc.) and existing
MPCs be significantly improved with re-identified models.
Closed-loop experiments can be conducted via setpoint per-
turbations that are more predictable and reliable than open-
loop input perturbations. Moreover, the control loop is never
broken, so the MPC is always enforcing constraints through-
out the experiment.

While there are many closed-loop identification methods
available in the literature, none have seen widespread adop-
tion (van der Veen, van Wingerden, Bergamasco, Lovera, and
Verhaegen, 2013). No existing method is able to identify
both the plant and disturbance models, and as a result are
not suited to offset-free MPC implementations. In this pa-
per, we extend the algorithm of Kuntz and Rawlings (2022)
to handle closed-loop data and show that the resulting algo-
rithm provides consistent estimates of the plant and distur-
bance models.

Closed-loop experimentation requires an existing con-
troller, meaning open-loop experiments for MPC design or
PID tuning are still required. To this end we suggest sub-
optimal but safe experiments be done using traditional step-
response designs, or loops be initially closed with PID meth-
ods. The algorithm proposed herein and in Kuntz and Rawl-
ings (2022) will still handle open-loop step responses, and
a closed-loop identification experiment may be run at later
times to produce refined models on demand.

Summary

In this paper, we present a unified method for identifying
linear augmented disturbance models. Our method system-
atizes the identification of new offset-free MPC models and
design of new MPC estimators, allowing practitioners save
time and achieve optimal estimator performance. To validate
the viability of our method in the wider chemical process in-
dustries, we performed a case study on an existing process
at Eastman Chemical’s Kingsport, Tennessee location. The
newly identified model shows clear improvement from the
older step-response model. Moreover, we used a closed-loop
experimental design that is desirable to operations engineers
for its simplicity, safety, and ability to produce predictably
high-quality data. The case study serves as a template for the
use of our method to improve existing MPC performance.

2. Problem statement

The goal of our identification algorithm is to estimate the
following linear augmented disturbance model,

x+ = Ax+Bu+Bdd +w

d+ = d +wd

y =Cx+Cdd + v

 w
wd
v

∼ N(0,Sd) (1)

where x ∈Rn is the model state, u ∈Rnu is the input (manip-
ulated variables), y ∈ Rny is the output (measured variables),

d ∈ Rny is the integrating disturbance state, w and v are the
process and measurement noises and wd is the driving noise
for the disturbances. We assume (w,wd ,v) is uncorrelated in
time. To identify this model, we need to augment a smaller
model that we refer to as the standard model,

x+ = Ax+Bu+w

y =Cx+ v

[
w
v

]
∼ N

(
0,
[

Qw
Rv

])
(2)

Again, we assume (w,v) is uncorrelated in time.
It is worth noting that the particular disturbance model pa-

rameters (Bd ,Cd) are (mostly) inconsequential to the perfor-
mance of the offset-free controller. Consider the following
sufficient condition for offset-free performance (Rajamani,
Rawlings, and Qin, 2009):

rank
[

A− I Bd
C Cd

]
= n+nd (3)

For each (A,B,C) all disturbance models (Bd ,Cd) that satisfy
(3) are equivalent up to a similarity transformation, making
it unnecessary to estimate the parameters (Bd ,Cd) from data.
In the special case where A contains no integrators, the so-
called output disturbance model (Bd ,Cd) = (0, Iny) satisfies
the rank condition (3). This special case is a numerically
advantageous choice in our algorithm.

3. Closed-loop subspace identification

Background and notation

Subspace identification revolves around Kalman predictor
and estimator forms of the model (2) (Qin, 2006). There ex-
ists a steady-state Kalman gain K and innovation error co-
variance Re such that AK := A−KC is stable and

x̂+ = AK x̂+BKz, e := y−Cx̂ iid∼ N(0,Re) (4)

where BK := [B, K], x̂ ∈ Rn are the state estimates, and z :=
[u′ y′]′ is the combined input-output data.

We will use the following notation in this section. Given
a signal {a(k)} and integers p, f , we write the “past” and
“future” horizons of lengths p and f as

Ap(k) :=
[
a(k−1)′ . . . a(k− p)′

]′
A f (k) :=

[
a(k)′ . . . a(k+ f −1)′

]′
and we write the following block matrices

G f :=


0

G1 0
...

. . . . . .
G f−1 . . . G1 0

 , O f :=


C

CAK
...

CA f−1
K


Kp :=

[
B AKB . . . Ap−1

K B
]

H f ,p :=

G1 G2 . . . Gp
...

...
...

G f G f+1 . . . G f+p−1

= O f Kp



where Gi := CAi−1
K BK are the impulse response coefficients

of (4). For any two signals {a(k)}k∈Ia and {b(k)}k∈Ib ,
we denote the sample covariance operator as S{a,b} =

1
Nab

∑k∈Ia∩Ib
a(k)b(k)′ where Nab is the number of elements

in Ia ∩ Ib, and the index sets Ia,Ib are implied from context.
We assume p, f ≥ n throughout.

Estimating the impulse response coefficients

First, we seek to estimate the coefficients Gi. Given any p
large enough so that Ap

K ≈ 0, we can recursively solve (4) to
write the state as follows,

x̂(k) = Ap
K x̂(k− p)+KpZp(k)≈ KpZp(k) (6)

We can also write the following higher-order ARX
(HOARX) model,

y(k)≈CKpZp(k)+ e(k) (7)

where p := max{ f , p}. Notice that the coefficients are a
linear function of the first p impulse response coefficients,
CKp =

[
G1 G2 . . . Gp

]
. The ML estimates of the im-

pulse response coefficients in the HOARX model (7) are
given by

ĈKp = S{y,Zp}S−1{Zp,Zp} (8)

The estimates (8) are unbiased.2 Moreover, the estimate er-
rors EHOARX := ĈKp −CKp = [Ĝ1 −G1, . . . , Ĝp −Gp] are
independent of the innovation sequence e(k) and regression
vectors Zp(k).

Estimating the state sequence

In the notation above we can write the following extended
state-space model

Yf (k)≈ H f ,pZp(k)+G f Z f (k)+E f (k) (9)

For closed-loop data, the future data term G f Z f (k) is corre-
lated with the error vector E f (k) (Qin, 2006). Noting that the
future data coefficients G f is simply a linear function of the
HOARX coefficients, i.e. G f = L(CKp), the future data term
in the model (9) can be “pre-estimated” as follows,

Ỹf (k) := Yf (k)− Ĝ f Z f (k)≈ H f ,pZp(k)+EESS(k) (10)

where Ĝ f = L(ĈKp), and EESS := L(EHOARX)Z f + E f is
zero-mean since EHOARX and Z f are independent.

According to Ho and Kalman (1966), H f ,p must have rank
less than or equal to n, so we estimate it using reduced-rank
regression. According to Larimore (1990); Anderson (1999),
the ML estimate of H f ,p of rank n for the model (10) is given
by

Ĥ f ,p = S{Ỹf ,Zp}J′nJn

where Jn denotes the first n rows of J =U ′S−1/2{Zp,Zp}, and
U are the left singular vectors of the following singular value
decomposition,

S−1/2{Zp,Zp}S{Zp,Yf }S−1/2{Yf ,Yf }=USV ′

2 This neglects numerical errors introduced by the approximation Ap
K ≈ 0.

Given these estimates, we have the rank factorization Ĥ f ,p =

Ô f K̂p where Ô f = S{Ỹf ,Zp}J′n and K̂p = Jn. Moreover, the
estimate K̂p is a consistent and asymptotically normal esti-
mator of Kp (up to similarity transformation). Therefore, we
have consistent and asymptotically normal estimates of the
states,

x̃ = JnZp (11)

Estimating the state-space parameters

Treating the state sequence (11) as the true states, ML es-
timates of the parameters of (2) are[
Â B̂

]
= S{x̃+, t}S−1{t, t} (12a)

Ĉ = S{y, x̃}S−1{x̃, x̃} (12b)

Q̂w = S{x̃+, x̃+}−S{x̃+, t}S−1{t, t}S{t, x̃+} (12c)

R̂v = S{y,y}−S{y, x̃}S−1{x̃, x̃}S{x̃,y} (12d)

where t = [x̃′, u′]′. Since x̃ are consistent estimates and inde-
pendent of the errors (w,v), the estimates (12) are consistent.
This completes the closed-loop identification of the model
(2) from an input-output sequence.

4. Closed-loop disturbance model identification

Choosing the disturbance model

As previously discussed, the disturbance model (Bd ,Cd)
can be chosen to maximize interpretability of the model (1).
We propose general guidelines for choosing the disturbance
model below.

• If Â does not contain integrators, use an output distur-
bance model.

• If Â contains integrators and nu = ny, use an input dis-
turbance model, (Bd ,Cd) = (B,0).

• Otherwise, use some combination of input and output
disturbances, i.e. (Bd ,Cd) = (BĨ1, Ĩ2) where Ĩ1 and Ĩ2 are
diagonal matrices with zeros and ones on the diagonal
and collectively ny nonzero elements.

Models in these forms retain interpretability while ensuring
that the rank condition (3) is satisfied.

Estimating the disturbance sequence

Given a model of the form (2), a disturbance model
(Bd ,Cd), and a state sequence {x̃(k)}N

k=p, we treat the distur-
bance sequence {d(k)}N−1

k=0 as accounting for the long-range
model errors. That is, the long-range output is

y(k) = ĈÂk−px̃(p)+
k−1

∑
j=0

ĈÂk− j−1B̂u( j)

+
k−1

∑
j=0

ĈÂk− j−1(Bdd( j)+w( j))+Cdd(k)+ v(k)



and the predicted long-range output is

ŷ(k) := ĈÂk−px̃(p)+
k−1

∑
j=0

ĈÂk− j−1B̂u( j) (13)

Next, we define the long-range prediction error as z(k) :=
y(k)− ŷ(k) which gives

z(k) =
k−1

∑
j=0

ĈÂk− j−1(Bdd( j)+w( j))+Cdd(k)+ v(k)

Rewriting this as a linear model,

z = Ad+Bw+v, Bw+v ∼ N(0,V ) (14)

where z := [z(p)′, . . . , z(N)′]′ is the sequence of long-
range prediction errors, d := [d(p)′, . . . , d(N)′]′ is the se-
quence of disturbances, w := [w(p)′, . . . , w(N)′]′ and v :=
[v(p)′, . . . , v(N)′]′ are the process and measurement noise
sequences, and

B :=


0

B1 0
...

. . . . . .
BN−1 . . . B1 0

 , B j := ĈÂ j−1,

A := B(I ⊗Bd)+(I ⊗Cd), V := B(I ⊗Qw)B ′+ I ⊗Rv

The model (14) has a MLE solution due to Rao (1971)
and (Magnus and Neudecker, 2019, p. 313):

d̂ = (A ′V †
0 A)†A ′V †

0 z (15)

where V0 := V +AA ′. This is an O(N3) computation with
O(N2) memory requirements. Notice that when Bd = 0 and
Cd = I, we have A = I, V0 = V + I invertible, and

(A ′V †
0 A)†A ′V †

0 = V0V −1
0 = I

Therefore (15) is equivalently written

d̂(k) = z(k) (16)

which is an O(N) computation without additional memory
requirements. It is clear that whenever the system is free
of integrators, the simplified solution (16) is computation-
ally advantageous. A similarity transformation can be used
to find the desired disturbance model after the output distur-
bance model is found (Rajamani et al., 2009).

Estimating the noise covariances

Given the estimated states and disturbances, one can stack
the equations (1) to write a simple covariance estimation
problem,

ẽ(k) :=

x̃(k+1)
d̂(k+1)

y(k)

−

Â Bd B̂
0 I 0
Ĉ Cd 0

x̃(k)
d̂(k)
u(k)

 iid∼ N(0,Sd)

The ML estimate of Sd is therefore Ŝd = S{ẽ, ẽ} (Anderson,
2003, Thm. 8.2.1). Thus, we have found the complete set of
parameters for the model (1), which concludes our descrip-
tion of the algorithm.

5. Case study

Process of interest

To evaluate the proposed closed-loop identification algo-
rithm and experimental design, a case study was conducted
on a reactor at Eastman Chemical’s plant in Kingsport, Ten-
nessee. The chosen process is similar to that used in Cave-
ness and Downs (2005). The process produces dimethyl
terephthalate (DMT) by reacting terephthalic acid (TPA)
with methanol (MeOH). Water is a byproduct of the reaction.
The primary equilibrium reaction can be represented as

TPA+2MeOH −⇀↽− DMT+2H2O

TPA is a solid and enters the reactor in a slurry with
methanol, and additional methanol enters as a vapor. The
reactor has two phases. The reaction takes place in a liquid
phase, and the DMT product, water, excess methanol, and
side products leave the reactor as a vapor and move forward
to a DMT purification section. Xylene is added as reflux to
minimize the carryover of an impurity that results from the
half reaction of TPA and methanol. Xylene does not partic-
ipate in the reaction. A schematic of the reactor is shown in
Figure 1.

The reactor operates under pressure, which is controlled
by manipulating a valve in the vapor line. Heat is supplied
to the reboiler by circulating hot oil through the shell side
of the exchanger. A temperature controller manipulates the
flow of hot fluid supplying the circulation loop to control the
temperature of the heating fluid entering the reboiler. Liquid
level is controlled by manipulating the xylene reflux. Any
change in the material balance that affects the composition of
methanol in the reactor has a large influence on reactor tem-
perature. Infinite-horizon MPC is used to control the reactor
temperature, T , and the production rate (ultimately set by the
slurry feed, F2) and to maintain the methanol feed, F1, at a de-
sired rate. The MPC also handles constraints on two quality-
control variables, r1 and r2, and on the hot oil controller valve
position (used to infer a temperature pinch/constraint on hot
oil temperature, TH ). The manipulated variables are the PID
loop setpoints for the inlet flowrate and utility temperature
controllers, denoted (F1, F2, T H ).

The control objectives are to (1) achieve offset-free set-
point tracking and disturbance rejection, and (2) avoid vio-
lating box constraints on the measured and manipulated vari-
ables. For several decades the reactor has run on an MPC
designed with a step response model (to be referred to as the
“old MPC model”) and hand-tuned estimator, as described in
Caveness and Downs (2005). The inlet flowrate “measure-
ments” are “wrap-around” variables and are supplied as their
PID setpoints, passed through first-order filters. The MPC
runs at a sample time of 5 seconds.

Identification

To identify the process, we used a closed-loop experimen-
tal design based on pulses to the normal MPC setpoints.
Eight setpoint pulses were applied, each lasting about 30
minutes, with 30 minute “rests” between the pulses to al-
low the process to settle back to the normal operating point.
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Figure 1: Schematic of the DMT reactor and MPC control strategy.
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Figure 2: Anonymized data (solid blue), MPC setpoints (dot-
ted black), old model predictions (dot-dashed cyan), and new
model predictions (dashed red) for the closed-loop experi-
ment. Predictions are computed from (13). The model was
fit with n = 19, p = 100, and f = 100.
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Figure 3: Disturbance estimates generated using steady-state
Kalman filter with (left) new model and (right) old model.

The setpoint pulses correspond to a full factorial design of the
three controlled variables.3 The pulses were designed to keep
the manipulated and measured variables within constraints,
and they were checked against historical data to ensure pro-
duction would not be negatively affected.

The process response, the model predictions of the existing
MPC model, and the model predictions for the newly identi-
fied model are shown in Figure 2. Each process variable was
shifted and scaled to anonymize the data. Over the series
of changes to the MPC setpoints, the temperature T and the
methanol flow rate F1 consistently failed to reach their tar-
gets. This is due to plant-model mismatch with the old MPC
model, as that model incorrectly predicts that the tempera-

3 Because the manipulated and controlled variables form a square system,
we could perturb the setpoints without worrying about correlation in the
manipulated variables.



ture will reach setpoint, and the model-predicted transitions
of methanol flow rate are much more sluggish than in reality.
As illustrated in Figure 2, the newly identified model closely
matches the process. In particular, the temperature predic-
tions of the new model are significantly improved over those
of the old model.

Using the new and old models, we computed steady-state
Kalman filter gains and applied them to the identification
dataset to compute the filtered disturbance estimates d̂. These
disturbances are plotted in Figure 3, with each disturbance
centered and re-scaled to facilitate comparison between the
new and old model disturbance estimates. While the old
model disturbance estimates are correlated with the inputs
(right), the new model estimates are uncorrelated with the in-
puts (left). This suggests the new model disturbances are in-
trinsic rather than arising from plant-model mismatch. There
are significant reductions in some of the disturbance covari-
ances, suggesting the new model has changed significantly,
although it is hard to predict how this will impact the estima-
tor performance or overall closed-loop performance.

6. Conclusion

We present a method for identifying linear augmented dis-
turbance models from closed-loop data, which provides all
necessary information to design the MPC estimator. The
method is tested on an existing reactor at Eastman Chem-
ical’s Kingsport, Tennessee plant. We show the method is
able to fit process models from both filtered and unfiltered
measurements. Moreover, the ability to use closed-loop data
allows practitioners to safely and cheaply identify and re-
identify their processes.

There are many possibilities in future case studies of this
technology, including comparisons across competing meth-
ods (ALS, EM) and computational studies. To follow up on
the present case study, the same closed-loop experiment (set-
point deviations) will be performed using the newly identi-
fied model. We will compare the closed-loop performance
of MPC using the two different models over a steady-state
period and setpoint tracking period in order to determine if
model re-identification leads to improved tracking perfor-
mance.
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