
Characterizing Event Constraints with General Disjunctive Programming

Joshua L. Pulsipher a,1, Daniel Ovalle a, Hector D. Perez a, Carl D. Laird a and Ignacio E. Grossmann a

a Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract
In this paper, we present a generalized disjunctive programming (GDP) representation of event constraints and lever-
age GDP solution strategies to solve optimization problems involving this challenging class of constraints. Event con-
straints are a new modeling paradigm that generalizes joint-chance constraints from stochastic optimization to enforce a
constraint on the probability of satisfying a set of constraints aggregated via application-specific logic (constituting an
event). This new constraint class offers significant modeling flexibility in posing measured infinite-dimensional optimiza-
tion constraints (e.g., chance constraints), but can be challenging to reformulate/solve due to difficulties in representing
arbitrary logical conditions and specifying a probabilistic measure on a collection of constraints. To address these chal-
lenges, we derive a GDP representation of event constrained optimization problems, which readily enables us to pose
logical event conditions in a standard form and allows us to draw from a suite of GDP solution strategies to tackle this
problem class. We illustrate these findings with a stochastic power grid design case study.

Keywords
Infinite-dimensional optimization, Generalized disjunctive programming, Stochastic programming, Chance constraints.

Problem Definition and Setting

We consider stochastic optimization (SO) problems that are
subject to event constraints:

min
z∈Z,q(ξ)∈Q

Mξ f (z,q(ξ),ξ)

s.t. g j(z,q(ξ),ξ)≤ 0, j ∈ J , ξ ∈ Dξ

Pξ (Ω(h(z,q(ξ),ξ)≤ 0))≥ α

(1)

following the notation introduced in Pulsipher et al. (2022),
where the authors established a unifying abstraction for
infinite-dimensional optimization (InfiniteOpt) problems and
introduced the notion of event constraints. Here, ξ ∈ Dξ ⊆
Rnξ are uncertain parameters, z∈Z ⊆Rnz are first-stage vari-
ables, q(ξ) ∈ Q ⊆ Rnq are second stage variables, f (·) is
the cost function measured by the measure operator Mξ, and
g j(·), j ∈ J , are constraints strictly enforced over Dξ (i.e., al-
most surely). The event constraint is enforced on a collection
of constraints hi(·) ≤ 0, i ∈ I , which are combined with the
event logic encoded in Ω : {True,False}|I | 7→ {True,False};
the probability of incurring this event is constrained by the
minimum probability level α ∈ [0,1]. We refer the reader to
(Pulsipher et al., 2022) for an intuitive introduction on event
constraints.

Event constraints are a new constraint class that gener-
alizes classical joint-chance constraints; the later have been

applied to a wide variety of problem classes in the litera-
ture which include optimal power flow (Baker and Toomey,
2017), model predictive control (Paulson et al., 2020),
scheduling (Liu et al., 2020), process design/intensification
(Wendt et al., 2002), flexibility/reliability analysis (Pulsipher
and Zavala, 2019), and portfolio planning (Pagnoncelli et al.,
2009). Joint-chance constraints constrain the event when the
intersection (i.e., Ω uses the logical AND operator ∧) of con-
straints h(·)≤ 0 are held and are expressed:

Pξ

(∧
i∈I

hi(z,q(ξ),ξ)≤ 0

)
≥ α. (2)

We note that the literature typically omits explicitly express-
ing the operator ∧. This exacts that all the constraints
h(·) ≤ 0 must be enforced jointly for a particular realiza-
tion of ξ. Such a condition may be overly restrictive in a
variety of problems where application-specific logic can be
incorporated to enforce a less strict condition on the con-
straints. For instance, it might be sufficient to satisfy only
a certain subset of customer demands in a distribution sys-
tem. Event constraints provide the modeling flexibility to
embed such logic into SO formulations. Following Pulsipher
et al. (2022), event constraints can apply to general Infini-
teOpt problems, but we restrict the scope of this work to SO
for simplicity in presentation.

1 Corresponding author. Email: pulsipher@cmu.edu.

Event constraints are complex modeling objects that can
be challenging to formulate and solve. In the special case of
joint-chance constraints, a variety of reformulation/solution
techniques have been proposed in the literature. Due to the
difficulty in determining the joint probability density func-
tion needed for exact analytical reformulations of (2), big-
M constraint representations that use binary variables y(ξ) ∈
{0,1} are often used to reformulate (2):

hi(z,q(ξ),ξ)≤ (1− y(ξ))Mi, i ∈ I ,ξ ∈ Dξ

Eξ[y(ξ)]≥ α
(3)

where Mi ∈ R+ is a sufficiently large upper bound that al-
lows relaxing the constraint when yi(ξ) = 0. Moreover, (3) is
typically transformed into a finite-dimensional optimization
problem via sample average approximation (SAA) using ran-
dom samples {ξ̂k : k ∈ K } (Pagnoncelli et al., 2009):

hi(z,qk, ξ̂k)≤ (1− yk)Mi, i ∈ I , k ∈ K
1

|K | ∑
k∈K

yk ≥ α.
(4)

This SAA approach is simple to implement, but can become
intractable for complex systems with a large number of sam-
ples. To alleviate this limitation, several iterative cutting-
plane solution strategies have been proposed such as branch-
and-cut decomposition (Luedtke, 2014) and combinatorial
Benders’ cuts (Codato and Fischetti, 2006). Moreover, a
few extensions of classical disjunctive programming have
been made to solve SAA representations of joint-chance con-
straints (Vielma et al., 2012). Alternative solution techniques
include data-driven kernel smoothing, which seeks to esti-
mate the density function of joint-chance constraints (Calfa
et al., 2015), and differentiable SAA, which produces a rep-
resentation that approximates the quantile function (Peña-
Ordieres et al., 2020). However, connections to generalized
disjunctive programming (GDP) have not yet been explored
to our best knowledge.

General event constraints have been solved using big-M
constraints and SAA (similar to (4)), where the event logic is
encoded via manually derived auxiliary constraints with ad-
ditional binary variables (Pulsipher et al., 2022). However,
such big-M representations are prone to the scalability limi-
tations that are often seen in problems involving joint-chance
constraints. Furthermore, as the complexity in the event logic
increases, deriving valid auxiliary constraints that encode this
logic is non-trivial and error prone if done manually.

To address these issues, we propose a GDP representation
of general event constraints. Generalized disjunctive pro-
gramming provides an intuitive representation for event con-
straints that provides a straightforward methodology for en-
forcing arbitrary event logic. A variety of solution techniques
have been developed to effectively solve GDP problems that
leverage the special structure present in GDP formulations
(Grossmann, 2021). Moreover, there are software tools such
as DisjunctiveProgramming.jl and Pyomo.GDP to easily
implement this problem class (Chen et al., 2021). The con-
tributions of this work are:

• The expression of event constraints in SO via GDP.

• The application of GDP solution strategies to
event/joint-chance constrained problems.

• The use of atleast(·) logic from constraint program-
ming in characterizing events.

• The demonstration of the effect of varied event logic
in shaping the Pareto frontier.

Below we provide relevant background on GDP, derive
the GDP formulation for event-constrained SO problems, and
we present an illustrative case study using a stochastic opti-
mal power system design problem.

Generalized Disjunctive Programming

GDP provides a modeling abstraction that represents
mathematical optimization problems via algebraic con-
straints, disjunctive constraints, and Boolean logic (Raman
and Grossmann, 1994; Grossmann and Trespalacios, 2013).
Although mathematical programs with discrete decisions
are traditionally modelled via mixed-integer programming
(MIP), using GDP has several benefits:

• Modeling systems directly via MIP can result in signif-
icantly different computational performances depend-
ing on the algebraic formulation chosen to represent
the same set of constraints involving discrete decisions
(Grossmann and Trespalacios, 2013). In contrast, GDP
provides a level of abstraction that relies on the under-
lying logic behind the discrete decisions in the system.
The result is a unifying mathematical model that can
then be tackled via different solution methods. Rather
than being tied to a fixed mathematical representation,
as is the case with MIP, the algebraic formulation best
suited to the problem can be selected and fine tuned.

• GDP enables more intuitive modeling since discrete
decisions (and the relationships between them) are
usually better understood in terms of disjunctions and
Boolean logic propositions. Using this approach can
often aid the modeler in avoiding common modeling
mistakes that occur when mixed-integer constraints are
used directly to represent logic-based decisions.

General Form

The general GDP formulation is:

min
z,Y

f (z)

s.t. g(z)≤ 0∨
i∈Ik

[
Yik

hik(z)≤ 0

]
, k ∈ K

Ω(Y) = True

Yik ∈ {True,False}, i ∈ Ik, k ∈ K
z ∈ Z

(5)

with global continuous constraints g(z) ≤ 0, Boolean vari-
ables Y , and propositional logic Ω : {True,False}|Ik|×|K | 7→
{True,False} which can encode a variety of logical opera-
tors including the NOT (¬), AND (∧), OR (∨), implication
(⇒), and equivalence (⇐⇒) operators. Each disjunction k

is assumed to be proper, meaning that only one disjunct i∈ Ik
is enforced. The Boolean variable Yik indicates which set of
constraints hik(z)≤ 0 is enforced in each disjunction.

GDP is a generalization of Disjunctive Programming
(DP) (Balas, 2018; Hooker, 2009), where DP uses binary
variables in place of the Boolean variables in the disjunc-
tions, and 0-1 algebraic constraints in place of the Boolean
logic propositions. DP is also restricted to linear constraints.
GDP also uses logical propositions which allows intuitive
modeling of the relationships between the discrete decisions.

Solution Strategies

The modeling abstraction of GDP makes a suite of solu-
tion methods available. One common approach is to perform
the direct reformulation of the GDP model to an equivalent
MIP model. Here, the logical propositions Ω are converted
into Conjunctive Normal Form (CNF), and the resulting CNF
propositions are translated into algebraic constraints, where
the Boolean variables Y are replaced by binary variables y
(see Grossmann and Trespalacios (2013)). In addition, the
algebraic constraint ∑i∈Ik

yik = 1, k ∈ K , is added to en-
force exclusive nature of the disjunctions. The algebraic con-
straints inside the disjuncts can then be reformulated with one
of the following methods.

• Big-M reformulation (Raman and Grossmann, 1994):
Each constraint is enforced or relaxed via a binary vari-
able yik, which relaxes the constraint by adding a suffi-
ciently large M ∈R+ when yik = 0. This is straightfor-
ward, but may result in loose continuous relaxations,
which may degrade performance.

• Hull reformulation (Lee and Grossmann, 2000): The
formulation is lifted into a higher-dimensional space
via variable disaggregation. Its continuous relaxation
is obtained by intersecting the convex-hulls of the dis-
juncts belonging to each disjunction. This approach
increases the number of variables and constraints, but
can have significantly tighter continuous relaxations
relative to big-M.

These reformulation approaches can also be used in conjunc-
tion with the following solution methods:

• Hybrid Cutting Plane Methods: The big-M reformu-
lation approach is strengthened via convex-hull cuts
(Sawaya and Grossmann, 2005) or basic steps (Tres-
palacios and Grossmann, 2016).

• Disjunctive Branch-and-bound (DBB) (Lee and Gross-
mann, 2000): Branching is done on the disjunct whose
reformulated binary variable is closest to 1 (the re-
maining disjuncts in that disjunction are assigned to
the complementary branch).

• Logic-based Outer-approximation (LOA) (Türkay and
Grossmann, 1996): If the GDP is nonlinear, the prob-
lem is decomposed by sequentially solving a reduced
NLP and a relaxed MILP problem.

• Relaxation with Integer Cuts (RIC) (Grossmann,
2002): LOA is enhanced with integer cuts to ensure
candidate binary solutions y∗ are not revisited.

GDP Event Constraint Formulations

In this section, we derive the GDP formulation for general
event-constrained SO problems following the form of (1).

Infinite-Dimensional Formulation

To derive the formulation in its natural infinite-
dimensional form, we begin by defining Boolean variables
Yi(ξ)∈ {True,False}, i ∈ I , for each constraint hi(·)≤ 0, i ∈
I in (1) that indicate when each constraint is satisfied (i.e.,
if Yi(ξ) = True, then hi(·)≤ 0). With these we can impose a
disjunction at each constraint:[

Yi(ξ)

hi(ξ)≤ 0

]∨[
¬Yi(ξ)

hi(ξ)> 0

]
, i ∈ I , ξ ∈ Dξ (6)

where we write hi(ξ) := hi(z,q(ξ),ξ) for compactness in pre-
sentation. Using the property that Pξ(·) = E[1(·)] (where
1(·) is the indicator function), we can represent the event
constraint in (1) using the Boolean variables Yi:

Ω(Y (ξ)) ⇐⇒ W (ξ), ξ ∈ Dξ (7a)

Eξ[W (ξ)]≥ α (7b)

where W (ξ) ∈ {True,False} indicates whether an event oc-
curs satisfying the event logic function Ω(·). Here, the log-
ical constraints encoded in (7a) can be systematically con-
verted into linear inequalities by converting them to CNF
following the methodology described in (Raman and Gross-
mann, 1991).

Substituting (6) and (7) into (1), we obtain the the full
GDP formulation for event-constrained SO problems:

min Mξ f (z,q(ξ),ξ)

s.t. g j(z,q(ξ),ξ)≤ 0, j ∈ J , ξ ∈ Dξ[
Yi(ξ)

hi(ξ)≤ 0

]∨[
¬Yi(ξ)

hi(ξ)> 0

]
, i ∈ I , ξ ∈ Dξ

Ω(Y (ξ)) ⇐⇒ W (ξ), ξ ∈ Dξ

Eξ[W (ξ)]≥ α

q(ξ) ∈ Q , ξ ∈ Dξ

Yi(ξ),W (ξ) ∈ {True,False}, i ∈ I , ξ ∈ Dξ

z ∈ Z.

(8)

In the following section, we describe how (8) can be made
finite-dimensional via SAA; however, we note that the GDP
reformulations described in this section can be applied di-
rectly to (8) before SAA or any other finite transformation
technique is applied.

Sample Average Approximation

Commonly, SO problems are transformed into a finite-
dimensional form (making it compatible with conventional
optimization solvers). We accomplish this via SAA by se-
lecting samples {ξ̂k : k ∈ K } that are typically drawn ran-
domly from the distribution of ξ, although more advanced

sampling schemes such as importance sampling can be used
(Nemirovski and Shapiro, 2006). Applying SAA to (8):

min
1

|K | ∑
k∈K

f (z,qk, ξ̂k)

s.t. g j(z,qk, ξ̂k)≤ 0, j ∈ J , k ∈ K[
Yik

hi(ξ̂k)≤ 0

]∨[
¬Yik

hi(ξ̂k)> 0

]
, i ∈ I , k ∈ K

Ω(Yk) ⇐⇒ Wk, k ∈ K
atleast(ceil(α|K |),W)

qk ∈ Q , k ∈ K
z ∈ Z

(9)

where Yk is the variable collection {Yik, i ∈ I}. Taking inspi-
ration from constraint programming, we express the expecta-
tion using the atleast(·) condition which enforces that at least
ceil(α|K |) of the indicator variables Wk = True. Here, ceil(·)
rounds up to the nearest integer. We let Mξ = Eξ for simplic-
ity in presentation, but any risk measure Mξ can be used fol-
lowing SAA transformations common to SO (Ruszczyński
and Shapiro, 2006).

We also note that alternative transformations (e.g., poly-
nomial chaos expansion) can be applied to (8) to obtain a
tractable finite-dimensional formulation as discussed in (Pul-
sipher et al., 2022).

Case Study

In this section, we study the design of the IEEE-14
power distribution network with stochastic demand proposed
by (Dabbagchi, 1962) by adapting the formulation given in
(Pulsipher and Zavala, 2019). The goal is to minimize the
cost of adding generator/line capacity to the grid subject to
an event constraint over the capacity constraints (i.e., the
event describes how the capacity limits are respected in re-
sponse to random demand). The objective is posed with the
added generator capacities zg,i ∈Zg, i∈ I , and line capacities
zl,ℓ ∈ Zl , ℓ ∈ L ,:

min ∑
i∈I

cg,izg,i + ∑
ℓ∈L

cl,ℓzl,ℓ (10)

with unit costs cg,i ∈ R+ and cl,ℓ ∈ R+. This is subject to a
flow balance at each node n ∈ N with line flows ql(ξ), gen-
eration qg(ξ), and uncertain demand ξ ∼ N (µ,Σ) (using the
same values of µ and Σ presented in (Pulsipher and Zavala,
2019)):

∑
ℓ∈L in

n

ql,ℓ(ξ)− ∑
ℓ∈Lout

n

ql,ℓ(ξ)+ ∑
i∈In

qg,i(ξ)− ∑
r∈Rn

ξr = 0 (11)

where In is the set of generators at node n, Rn is the set of
demands at node n, and L in

n ,Lout
n denote the set of lines that

flow toward and away from a node n, respectively. We ex-
press the disjunction that arises from satisfying the capacity
limit at each generator i ∈ I for a given demand ξ:[

Yg,i(ξ)

qg,i(ξ)≤ q̄g,i + zg,i

]∨[
¬Yg,i(ξ)

qg,i(ξ)> q̄g,i + zg,i

]
(12)

where q̄g,i are the existing generator capacities. Similarly,
we enforce a disjunction at each line ℓ ∈ L under a specific
demand ξ:

[
Y L

l,ℓ(ξ)

−q̄l,ℓ− zl,ℓ > ql,ℓ(ξ)

]∨ Yf ,ℓ(ξ)

−q̄l,ℓ− zl,ℓ ≤ ql,ℓ(ξ)

ql,ℓ(ξ)≤ q̄l,ℓ+ zl,ℓ

∨[

YU
l,ℓ(ξ)

ql,ℓ(ξ)> q̄l,ℓ+ zl,ℓ

] (13)

where q̄l,ℓ are the existing line capacities. Here, either the
capacity limit of the line is met Yl,ℓ or one of the lower/upper
limits is violated (indicated by Y L

l,ℓ and YU
l,ℓ, respectively). Fi-

nally, we enforce an event constraint logic over the collection
of capacity constraints, using a Boolean variable W (ξ) that
accounts for the result of the event encoded in Ω(·) (which
will be varied following Eqns. (15) and (16) below):

W (ξ) ⇐⇒ Ω(Yg(ξ),Yl(ξ)), ξ ∈ Dξ

Eξ[W (ξ)]≥ α, ξ ∈ Dξ.
(14)

Equations (10)-(14) are combined to yield an infinite-
dimensional event-constrained formulation following (8).
We apply SAA following our previous discussion us-
ing 1,000 Monte Carlo samples of ξ where each
element of each realization is truncated at 0 such
that no negative demands are incurred. The source
files are available at https://github.com/infiniteopt/
source-code/tree/main/gdp_event_constrs.

Pareto Frontier under varied Event Logic

We explore how different event logic Ω(·) impacts the
Pareto frontier of this design problem. In particular, we
consider intersection logic (i.e., a joint-chance constraint as
shown in (2)):

Ω∧(Yg,Yl) :=

(∧
i∈I

Yg,i

)
∧

(∧
ℓ∈L

Yl,ℓ

)
(15)

in juxtaposition to using atleast(·) logic to relax the number
line/generator limits that have to be respected:

Ωatleast(Yg,Yl ;Yg,min,Yl,min) :=atleast(Yg,min,Yg) ∧
atleast(Yl,min,Yl)

(16)

where Yg,min ∈ {1, . . . ,5}, Yl,min ∈ {1, . . . ,20} are the mini-
mum number generator and line capacity limits enforced for
a particular value of ξ, respectively. We solve the problem
using a range of α values and several choices of Yg,min and
Yl,min. In each case, the corresponding GDP model is solved
using the big-M reformulation in Pyomo.GDP with Gurobi
v9.5.1 as the solver on a Linux machine with 8 Intel®
Xeon® Gold 6234 CPUs running at 3.30 GHz with 128 total
hardware threads and 1 TB of RAM running Ubuntu.

https://github.com/infiniteopt/source-code/tree/main/gdp_event_constrs
https://github.com/infiniteopt/source-code/tree/main/gdp_event_constrs

Figure 1: Pareto frontiers obtained using Ω∧(·) and
Ωatleast(·) using varied values of Yg,min and Yl,min.

Figure 1 shows the optimal Pareto frontiers correspond-
ing to each choice of Ω(·). As we would expect, the inter-
section logic Ω∧(·) incurs the greatest costs since it strictly
enforces that every capacity constraint be satisfied for each
instance of ξ. Hence, we have to add more capacity to the
design relative to the frontiers derived from Ωatleast(·) for a
fixed probability level α. We observe how decreasing the
values of Yg,min and Yl,min decreases the costs in engineering
sufficient capacity for feasible operation. For this applica-
tion, this means that if only a subset of line/generator capac-
ity constraints need to be respected for a particular demand
profile ξ̂, then we can embed that logic into our problem for-
mulation and obtain a lower cost design relative to using tra-
ditional joint-chance constraint formulations. Hence, we can
use application specific logic to avoid over-engineering in de-
sign problems.

Figure 2: The mean computational time (±1σ) required to
solve each Pareto pair for varied Yg,min and Yl,min.

Figure 2 shows how the different event logic affects the
solution time of the problem. In particular, we average over
the time required to solve each Pareto pair when comput-
ing the Pareto frontier with a specified Yg,min and Yl,min using
the big-M reformulation method. Note that the event with
Yg,min = 5 and Yl,min = 20 denotes traditional intersection
logic Ω∧(·) that arises from joint-chance constraints. Inter-
estingly, all but one instance (i.e., Yg,min = 5 and Yl,min = 19)
exhibit reduced computational times relative to the joint-

chance baseline. This highlights that events with more com-
plex logic aggregation do not necessarily incur increased
computational cost, and in fact, can lead to reduced com-
putational cost in certain cases.

Solution Method Comparison

Finally, we compare the performance of the different
GDP transformation methods in this case study. In particu-
lar, we use the big-M, cutting-plane, and hull transformation
methods and use classical joint-chance constraint logic (i.e.,
Ω∧(·)). Figure 3 shows the performance plot indicating the
fraction of Pareto pair instances that each method solved as a
function of wall-time. Generally, the cutting plane method
proposed in (Trespalacios and Grossmann, 2016) required
the least amount of time to solve every Pareto pair. This can
likely be attributed to the cutting plane formulation having a
tighter relaxation relative to the big-M approach. The hull re-
formulation exhibits the worst performance, likely due to the
computational burden resulting from the increased formula-
tion size, despite being the tightest formulation. We leave the
comparison of other GDP solution techniques to future work.

Figure 3: Performance of various GDP transformation meth-
ods in solving Pareto pairs with Ω∧(·).

Conclusions and Future Work

In this work, we present a GDP formulation for event-
constrained SO problems, which capture conventional joint-
chance constraints as a special case. GDP enables introduc-
ing arbitrary event logic, which can be systematically refor-
mulated into linear algebraic constraints using CNF (auto-
mated in software such as DisjunctiveProgramming.jl
and Pyomo.GDP). Using GDP also opens up a suite of solu-
tion methods, of which the cutting plane method was found
to provide some computational advantages in the case study
shown relative to classical big-M approaches.

Future work will include extending the GDP formulation
to general InfiniteOpt problems (e.g., dynamic optimization).
Extending some of the solution strategies developed in the
joint-chance constraint literature (e.g., branch-and-cut de-
composition and data-driven kernel smoothing) to event con-
strained problems is also interesting direction of future re-
search. Finally, this new class of GDP problems inspires the
development of new solution strategies that are better suited
for problems with a large number of disjunctions.

Acknowledgements

We thank the Center for Advanced Process Decision-
making for supporting this work.

References

Baker, K. and B. Toomey (2017). Efficient relaxations for
joint chance constrained ac optimal power flow. Electric
Power Systems Research 148, 230–236.

Balas, E. (2018). Disjunctive programming. Springer.

Calfa, B. A., I. E. Grossmann, A. Agarwal, S. J. Bury,
and J. M. Wassick (2015). Data-driven individual and
joint chance-constrained optimization via kernel smooth-
ing. Computers & Chemical Engineering 78, 51–69.

Chen, Q., E. S. Johnson, D. E. Bernal, R. Valentin, S. Kale,
J. Bates, J. D. Siirola, and I. E. Grossmann (2021). Py-
omo.gdp: an ecosystem for logic based modeling and op-
timization development. Optimization and Engineering,
1–36.

Codato, G. and M. Fischetti (2006). Combinatorial benders’
cuts for mixed-integer linear programming. Operations
Research 54(4), 756–766.

Dabbagchi, I. (1962). Ieee 14 bus power flow test case. Amer-
ican Electric Power System, Golden CO.

Grossmann, I. E. (2002). Review of nonlinear mixed-integer
and disjunctive programming techniques. Optimization
and engineering 3(3), 227–252.

Grossmann, I. E. (2021). Advanced optimization for process
systems engineering. Cambridge University Press.

Grossmann, I. E. and F. Trespalacios (2013). System-
atic modeling of discrete-continuous optimization mod-
els through generalized disjunctive programming. AIChE
Journal 59(9), 3276–3295.

Hooker, J. N. (2009). A principled approach to mixed in-
teger/linear problem formulation. In Operations research
and cyber-infrastructure, pp. 79–100. Springer.

Lee, S. and I. E. Grossmann (2000). New algorithms for non-
linear generalized disjunctive programming. Computers &
Chemical Engineering 24(9-10), 2125–2141.

Liu, B., Q. Zhang, X. Ge, and Z. Yuan (2020). Cvar-based ap-
proximations of wasserstein distributionally robust chance
constraints with application to process scheduling. Indus-
trial & Engineering Chemistry Research 59(20), 9562–
9574.

Luedtke, J. (2014). A branch-and-cut decomposition algo-
rithm for solving chance-constrained mathematical pro-
grams with finite support. Mathematical Program-
ming 146(1), 219–244.

Nemirovski, A. and A. Shapiro (2006). Scenario approxi-
mations of chance constraints. In Probabilistic and ran-
domized methods for design under uncertainty, pp. 3–47.
Springer.

Pagnoncelli, B. K., S. Ahmed, and A. Shapiro (2009). Sam-
ple average approximation method for chance constrained
programming: theory and applications. Journal of opti-
mization theory and applications 142(2), 399–416.

Paulson, J. A., E. A. Buehler, R. D. Braatz, and A. Mes-
bah (2020). Stochastic model predictive control with joint
chance constraints. International Journal of Control 93(1),
126–139.

Peña-Ordieres, A., J. R. Luedtke, and A. Wachter (2020).
Solving chance-constrained problems via a smooth
sample-based nonlinear approximation. SIAM Journal on
Optimization 30(3), 2221–2250.

Pulsipher, J. L. and V. M. Zavala (2019). A scalable stochas-
tic programming approach for the design of flexible sys-
tems. Computers & Chemical Engineering 128, 69–76.

Pulsipher, J. L., W. Zhang, T. J. Hongisto, and V. M. Zavala
(2022). A unifying modeling abstraction for infinite-
dimensional optimization. Computers & Chemical Engi-
neering 156, 107567.

Raman, R. and I. E. Grossmann (1991). Relation between
milp modelling and logical inference for chemical process
synthesis. Computers & Chemical Engineering 15(2), 73–
84.

Raman, R. and I. E. Grossmann (1994). Modelling and
computational techniques for logic based integer program-
ming. Computers & Chemical Engineering 18(7), 563–
578.

Ruszczyński, A. and A. Shapiro (2006). Optimization of risk
measures. In Probabilistic and randomized methods for
design under uncertainty, pp. 119–157. Springer.

Sawaya, N. W. and I. E. Grossmann (2005). A cutting plane
method for solving linear generalized disjunctive program-
ming problems. Computers & chemical engineering 29(9),
1891–1913.

Trespalacios, F. and I. E. Grossmann (2016). Cutting plane
algorithm for convex generalized disjunctive programs.
INFORMS Journal on Computing 28(2), 209–222.

Türkay, M. and I. E. Grossmann (1996). Logic-based minlp
algorithms for the optimal synthesis of process networks.
Computers & Chemical Engineering 20(8), 959–978.

Vielma, J. P., S. Ahmed, and G. L. Nemhauser (2012). Mixed
integer linear programming formulations for probabilistic
constraints. Operations Research Letters 40(3), 153–158.

Wendt, M., P. Li, and G. Wozny (2002). Nonlinear chance-
constrained process optimization under uncertainty. In-
dustrial & engineering chemistry research 41(15), 3621–
3629.

