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Abstract 

In Gaussian Process (GP), when the Automatic Relevance Determination (ARD) structured kernel 
function is applied, each input feature is assigned a corresponding length scale. The feature importance is 
inversely proportional to the corresponding length scale, and the feature selection can be performed based 
on the feature importance ranking result. Among the ARD-based feature selection methods, no uniform 
score exists for quantifying the output variation explained by feature subsets. This study proposes a feature 
selection approach based on the GP mean function derivative decomposition. A cumulative feature 
importance score titled derivative decomposition ratio (DDR) measuring the cumulative feature 
importance of feature subsets is introduced. The DDR is used to determine the optimal feature subset, 
which is the most relevant feature subset with good predictive performance. The approach is applied to 
identify relevant dimensionless inputs for predicting liquid entrainment fraction in two-phase flow in a 
hybrid model. The feature selection result from DDR is compared with the feature importance results 
obtained by normalizing the average partial derivatives of the output over the inputs. By iteratively adding 
features following a descending order feature importance, the relation between the cumulative feature 
importance of feature subsets and the performance of the model built using the corresponding feature 
subset is investigated. The results reveal that the proposed feature selection approach can identify the 
optimal feature subset for the case study. The hybrid model built using the optimal subset has an identical 
Root Mean Squared Error (RMSE) as the model built with full feature space. 
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Introduction

To simulate and predict the system behavior, data-
driven models are developed based on the relationship 
inferred from process data. The feature space of the process 
data is composed of measurable properties of the system 
being observed (Chandrashekar and Sahin, 2014). When a 
model is built to map the input to the output space, the 
presence of redundant input variables could result in 
superfluous computational time, model overfitting, and 
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poor model performance (Jović et al., 2015). The extra 
model complexity due to irrelevant input features also 
impedes visualization. Building a model with relevant input 
features reduces model complexity and computational 
resources required to build and execute the model, helps to 
understand the data, and improves the model performance 
(Carlos Molina et al., 2002). Irrelevant feature removal is 



  
 
considered a data preprocessing step to ensure the model’s 
efficiency and effectiveness (Liu, 2010). 

Feature selection is defined as reducing the 
dimensionality of data to improve machine learning 
performance (Chandrashekar and Sahin, 2014; Liu, 2010). 
Generally, feature selection methods can be classified into 
three categories, filter, wrapper, and embedded methods 
(Guyon and Elisseeff, 2003). The filter methods employ a 
score measuring the statistical relevance between input and 
output features directly from data without building models 
(Kumar and Minz, 2014). The input features with an 
importance score below a predefined threshold are 
identified as irrelevant and pruned (Chandrashekar and 
Sahin, 2014). The filter methods are computationally 
efficient because they do not require building a model to 
link the inputs and the outputs (Guyon and Elisseeff, 2003).  

Wrapper methods pick the optimal feature subset by 
evaluating the performance of a particular machine learning 
strategy. A specific subset generation strategy is employed 
to construct subsets of input features, and the optimal subset 
is determined by assessing the performance of the model 
built using the subsets (El Aboudi and Benhlima, 2016). 
Because the model-building process is time-consuming, the 
wrapper methods are computationally more expensive than 
filter methods (Carlos Molina et al., 2002). 

The feature selection is incorporated into the model 
training process for the embedded methods. The feature 
importance is inferred from the model parameters. Then, the 
relevant features are picked according to the feature 
importance ranking results. Embedded methods reduce the 
computational expense compared to wrapper methods by 
eliminating the need for generating many subsets and 
building the corresponding models (Chandrashekar and 
Sahin, 2014). Some embedded feature selection approaches 
are developed for specific machine learning techniques. For 
example, the Lasso regression assigns zero weights to 
irrelevant features by introducing regularization terms 
(Tibshirani, 1996). In Random Forests (RFs), the feature 
importance is estimated from the Mean Decrease in 
Impurity (MDI) (Breiman, 2001). For Neural Networks 
(NNs), the feature importance is quantitatively evaluated 
using the output gradient over the inputs (Varma, 2020). 

Gaussian Process (GP) is a non-parametric Bayesian 
regression characterized by its mean and covariance 
(Williams and Rasmussen, 2004). For GP models, a 
commonly used feature selection method is sensitivity 
analysis. Blix and Eltoft (2018) evaluate the feature 
importance by integrating the squared partial derivative of 
the GP mean function over inputs. Piironen and Vehtari 
(2016) measure the feature importance using the Kullback-
Leibler divergence (KLD) change of the posterior 
distribution when adding a feature to train the model. 
Features contributing more to the KLD change are 
considered more important. Paananen et al. (2019) assess 
the feature importance by observing the KLD variability of 
the posterior distribution and the posterior mean prediction 
when changing the input value. Another feature selection 
approach is the automatic relevance determination (ARD), 

which infers the relative input feature importance from the 
inverse of input-dependent length-scale in the kernel 
function (Paananen et al., 2019). Williams and Rasmussen 
(1995) detected the irrelevant inputs by ranking the features 
using the relative feature importance inferred from ARD.  

One limitation of the feature selection approaches for 
GP models is that the selection is based on the ranking 
results without a standard that classifies the relevant and 
irrelevant features. Ghoshal and Roberts (2016) proposed 
adding an irrelevant feature as a baseline to the GP model 
input space to overcome this limitation. They recommended 
that features with importance values two orders of 
magnitude greater than the baseline feature be considered 
relevant to the output. However, none of the existing GP-
based feature selection methods quantifies the cumulative 
feature importance. If the cumulative feature importance 
were quantified, the contributions of different feature 
subsets to the cumulative could be assessed, enabling the 
identification of the optimal feature subset.  

This study proposes a new feature selection approach 
based on the cumulative feature importance evaluation. The 
change in the output is represented using the squared 
magnitude of its total derivative. By decomposing this 
derivative into partial derivatives, the change in the output 
caused by varying each input variable is quantified by the 
squared magnitude of the partial derivative over each input 
feature. As the squared partial derivative magnitude is 
cumulative, the percentage of output change explained by 
each input feature is represented by the ratio of squared 
magnitude of partial derivative over the total derivative, 
which we define as derivative decomposition ratio (DDR). 
The DDR provides information for ranking the input 
features and enables selecting features at a specified 
cumulative feature importance value. The proposed feature 
selection approach prunes the irrelevant variables and 
reduces the computational burden without reducing the 
model performance. We applied the proposed feature 
selection approach to a parallel structured hybrid model 
developed for estimating the liquid entrainment fraction in 
two-phase flow. The proposed feature selection method was 
compared to normalized sensitivity (NS) derived from the 
sensitivity analysis introduced by Blix and Eltoft (2018). 
The next section describes the proposed feature selection 
methodology. Section 3 presents the application of the 
methodology on a hybrid model that predicts liquid 
entrainment fraction in two-phase flow. The results and 
discussion are summarized in Section 4, followed by 
conclusions and future directions in Section 5.  

Methodology 

Gaussian Process with ARD kernel 

The Gaussian Process (GP) modeling is a supervised 
learning method with a theoretical basis in statistics. A GP 
is characterized by its mean and covariance functions 
(Williams and Rasmussen, 2006). Each input variable is 



  

assigned a length scale 𝑙𝑙ℎ in the kernel function with ARD 
structure to infer the feature importance. As an example, the 
squared exponential (SE) kernel with ARD structure of two 
points 𝒙𝒙𝑝𝑝 and 𝒙𝒙𝑞𝑞 are shown in Eq. (1). 

𝑘𝑘�𝒙𝒙𝑝𝑝,𝒙𝒙𝑞𝑞 � =  𝜎𝜎𝑓𝑓2 𝑒𝑒𝑒𝑒𝑒𝑒 �−∑
�𝑥𝑥𝑝𝑝ℎ−𝑥𝑥𝑞𝑞ℎ�

2
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𝑑𝑑
ℎ=1 � + 𝜎𝜎𝑛𝑛2∆𝑝𝑝𝑞𝑞 (1) 

In Eq. (1), d is the dimension of input x, 𝑙𝑙ℎ  is the 
characteristic length scale corresponding to the hth 
dimension of input x, 𝜎𝜎𝑛𝑛2  is the output variance, the 
parameter 𝜎𝜎𝑓𝑓2  is the output-scale amplitude, and 𝛥𝛥𝑝𝑝𝑞𝑞  is 
Kronecker delta, which is one if 𝑒𝑒 = 𝑞𝑞 and zero otherwise. 
The hyperparameters for the GP in Eq. (1) are 𝜃𝜃 =
{𝜎𝜎𝑓𝑓 ,𝜎𝜎𝑛𝑛 , 𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑑𝑑} , and they are estimated by the 
Maximum Likelihood Estimation (MLE) (Rasmussen, 
2003). This paper used a Python-based package, GPy (GPy, 
2012), to estimate the hyperparameters. 

The values of the mean function and its variance for the 
unseen test data 𝑋𝑋∗ are obtained by calculating the posterior 
distribution using the training data set (𝑋𝑋, 𝛿𝛿) via Eq. (2). 

𝑓𝑓∗|𝑋𝑋,𝛿𝛿,𝑋𝑋∗ ~ 𝑁𝑁 �𝑓𝑓∗� , 𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓∗)�

𝑓𝑓∗� = 𝐾𝐾(𝑋𝑋,𝑋𝑋∗)𝑇𝑇[𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼]−1𝛿𝛿
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(2) 

where 𝑓𝑓∗ is the outputs for the test data given the inputs 𝑋𝑋 
and outputs 𝛿𝛿 of the training data and the inputs of the test 
data 𝑋𝑋∗. The outputs follow a normal distribution with 𝑓𝑓∗�  as 
mean and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓∗)  as variance. In Eq. (2), K is the covariance 
matrix, and I is the identity matrix. 

Derivative decomposition ratio (DDR) 

Blix and Eltoft (2018) analyzed the feature importance 
by evaluating the variation of the GP mean function in the 
hth direction. They defined the sensitivity of the hth input 𝑠𝑠ℎ 
as the integral of the squared partial derivative over N 
number of training samples. The empirical estimate of the 
sensitivity is shown in Eq. (3). 
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where 𝜙𝜙(𝒙𝒙) is the predicted mean function, 𝒙𝒙𝑛𝑛  is the nth 
input vector, and 𝑒𝑒𝑛𝑛ℎ  is the hth input in 𝒙𝒙𝑛𝑛 . If the mean 
function 𝑓𝑓∗�  is substituted into Eq. (3), the resulting 
empirical estimate of the GP mean sensitivity is obtained 
and shown in Eq. (4). 
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where 𝛼𝛼𝑝𝑝 = (𝐾𝐾(𝑋𝑋,𝑋𝑋) + 𝜎𝜎𝑛𝑛2𝐼𝐼)−1 𝛿𝛿𝑝𝑝 is the weight for the pth 

sample of the GP mean function, 𝛿𝛿𝑝𝑝 is the pth sample output, 
and 𝑒𝑒𝑝𝑝ℎ and 𝑒𝑒𝑞𝑞ℎ are the hth input of 𝒙𝒙𝑝𝑝 and 𝒙𝒙𝑞𝑞. Although the 
feature selection can be performed by ranking the mean 

sensitivity values defined by Eq. (4), they only provide a 
relative feature importance score and cannot be directly 
used to assess the total contribution of the selected (or 
individual) features to the changes in the output.  

Here, we adopt the differential form of the total 
derivative to evaluate the individual contribution of each 
feature to the changes in the output. For example, in Figure 
1, the total derivative 𝑑𝑑𝜕𝜕(𝒙𝒙) 

𝑑𝑑𝒙𝒙
 is decomposed into partial 

derivatives from three inputs. Given a mean function 𝜙𝜙(𝒙𝒙) 
with H inputs (i.e., 𝒙𝒙 has H elements), the total derivative is 
the sum of the H partial derivatives, as shown in Eq. (5). 
The relationship between magnitudes of the total derivative 
and partial derivatives is given in Eq. (6). Based on Eq. (6), 
if the output change caused by each input is represented by 
the magnitude of each squared partial derivative, total 
importance from the total feature space sums up to the 
squared magnitude of the total derivative. The ratio of each 
squared magnitude of partial derivative to the total 
derivative is proportional to the contribution of a unit 
change in each input to the change in the output. We define 
this ratio as the derivative decomposition ratio (DDR) and 
estimate it using Eq. (7). We then use the sum of 
corresponding DDRs to assess the cumulative contribution 
of a feature subset. 

 
Figure 1.   Example of total derivative decomposition 
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The 𝐷𝐷𝐷𝐷𝐷𝐷ℎ  calculates the fraction of change in 𝜙𝜙(𝒙𝒙) 
caused by a unit change in the hth feature at each sample and 
averages this fraction over N samples. In Eqns. (5)-(7), 𝒙𝒙ℎ 
represents the hth feature, and 𝑒𝑒ℎ𝑖𝑖  represents the hth feature 
of the ith sample.  



  
 

Another approach to estimating the contribution of 
each feature to the output variation is normalizing the 
sensitivity (Blix and Eltoft, 2018). For the hth feature, we 
define normalized sensitivity (NS) in Eq. (8). 

𝑁𝑁𝑆𝑆ℎ = 𝑠𝑠ℎ
∑ 𝑠𝑠ℎ𝐻𝐻
ℎ=1

    (8) 

The DDR is calculated by estimating the feature 
contribution ratio at each sample and then averaging this 
ratio over all samples. In contrast, the NS is calculated by 
first averaging the contribution of each feature and then 
calculating a ratio of this average effect. The DDR and the 
NS are cumulative and sum up to one when the GP model 
is trained using the full feature space. Therefore, the total 
contribution of a feature subset can be estimated by the 
score calculated by summing the individual DDR or NS 
values of the features within the subset. Subsets with high 
cumulative feature importance scores are expected to have 
predictive importance and performance similar to the full 
feature set. The cumulative feature importance scores 
enable the determination of the optimal (i.e., smallest) 
feature subset given a predefined threshold. 

Case Study 

The proposed DDR-based feature selection approach is 
applied to determine the optimal feature subset for a hybrid 
model estimating the liquid entrainment fraction (Deng et 
al., 2022). A hybrid model comprises a first principle and a 
data-driven model (Von Stosch et al., 2014). The data-
driven model is a GP regression model in this study. The 
GP regression model is trained using a dataset of liquid 
entrainment measurements given pipe diameter (ID), 
inclination angle (θ), gas density (𝜌𝜌𝐺𝐺), liquid density (𝜌𝜌𝐿𝐿), 
gas viscosity (𝜇𝜇𝐺𝐺), liquid viscosity (𝜇𝜇𝐿𝐿), gas-liquid surface 
tension (σ), superficial gas velocity (𝑐𝑐𝑆𝑆𝐺𝐺), and superficial 
liquid velocity (𝑐𝑐𝑆𝑆𝐿𝐿). The dataset is compiled from open 
literature, and the complete list of its sources can be found 
in Deng et al. (2022). It contains 1,662 liquid entrainment 
measurements in small-scale laboratory settings. To extend 
the model from laboratory to field scale, dimensional 
analysis is introduced to update the inputs from dimensional 
variables to dimensionless numbers (DNs). The proposed 
DDR is then applied to prune the irrelevant DNs.  

Hybrid model for liquid entrainment fraction 

Deng et al. (2022) developed a hybrid modeling 
approach to estimate the entrainment fraction and its 
uncertainty. A set of semi-mechanistic and empirical 
models developed for multiple flow orientations were 
combined with a data-driven model. A Gaussian Process 
(GP) model (Williams and Rasmussen, 2006) was built as 
the data-driven model to estimate the model discrepancy, 
defined as the difference between the experimental 
measurement and the semi-mechanistic model prediction. 
In this study, one of the hybrid submodels from Deng et al. 
(2022) (which employs Zhang et al. (2003) model as the 

semi-mechanistic model) is adopted to investigate the 
effectiveness of the proposed feature selection approach. 

Dimensional analysis 

Dimensional analysis (DA) is introduced to extend the 
model to regions where the experimental data is scarce or 
not available. DA is a common approach for grouping and 
reducing the number of phenomena relevant input variables 
in chemical engineering (Cheng and Cheng, 2004). 
Dimensional analysis develops DNs and updates the 
dimensional inputs with the DNs. Inference from the 
process response and DNs may provide a deeper 
understanding of the process mechanism. Furthermore, 
using DNs as inputs may extend the applicability of a model 
from laboratory to field scale (Ruzicka, 2008). In this study, 
the GP model inputs are replaced by DNs identified using 
the method proposed by Dai et al. (2022). The method 
yielded 49 unique DNs identified from the dimensional 
variables. We filtered the DNs to remove highly correlated 
ones using the Pearson correlation coefficient. From a set of 
DNs with correlation coefficients greater than ±0.95, only 
one is kept in the filtered set. The filtered set included 35 
DNs as potential inputs to build the GP model. 

Computational experiment details for evaluating DDR-
based feature selection approach  

The DDR is applied to remove irrelevant inputs given 
the complete input feature set, 35 DNs, for predicting model 
discrepancy. After building a GP, the percentage of output 
variation explained by subsets of features is estimated using 
the corresponding cumulative DDR. Subsets with a high 
cumulative DDR are expected to result in a better GP model 
accuracy. A computational experiment is designed by 
training a series of models with iteratively expanded feature 
subsets to study the relationship between the cumulative 
feature importance estimated as the sum of DDRs and the 
resulting model performance. The steps of the experiment 
are outlined in Figure 2. 

 
Figure 2.   The experimental procedure used to train GP 
models with forward feature selection 



  

A GP model trained with the full feature set is used to 
estimate the feature importance for each input. The 
computational experiments employed a wrapper method 
with forward selection (Rodriguez-Galiano et al., 2018) 
(Figure 2). Within each iteration, one feature is added to the 
subset following the descending order of the feature 
importance. The data is split into 70% and 30% as training 
and test sets. The GP model performances on both sets are 
measured using the Root Mean Squared Error (RMSE) 
defined in Eq. (9), where 𝑦𝑦𝑗𝑗𝑒𝑒 and 𝑦𝑦�𝑗𝑗𝑒𝑒  represent the jth 
experimental measurement and prediction, respectively. J is 
the total number of samples. Monte Carlo Cross Validation 
(MCCV) with 30 replicates is used to calculate an average 
RMSE for each feature set. 

𝐷𝐷𝑅𝑅𝑆𝑆𝑅𝑅 =  �1
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Experiments are performed twice, once using DDR 
(calculated using Eq. (7)) and once using NS (calculated 
using Eq. (8)) as the metric to assess feature importance. 
The first experiment set investigated if adding a feature with 
higher DDR contributes more to the model performance 
enhancement. By tracking the model performance in 
subsequent iterations, the experiment also explores if 
models trained using feature subsets with higher cumulative 
feature importance give lower RMSEs. The optimal subset 
of features is determined when the average model RMSE 
reaches a steady low value or is the lowest. The second 
experiment set investigates using NS as the metric.  

Results and Discussion 

The feature selection results using DDR and NS are 
summarized in Figures 3 and 4. The red lines show the 
change in cumulative DDR or NS as the number of DNs 
used as inputs for training the GP model increases. The blue 
and green lines are the RMSEs for training and test data sets. 

Figure 3 shows that as the number of DNs increases in 
the feature subset, the average RMSEs for training and test 
data decrease while the average cumulative DDR 
approaches one. When the subset includes nine or more 
features, the average RMSEs and the cumulative DDR 
reach a steady value, suggesting that adding more features 
does not significantly improve the RMSE. In fact, the 
RMSE of the model trained using the full feature set is 
almost equal to the RMSE of the GP model trained using 
the selected nine features. These results suggest that feature 
subsets with a cumulative importance score close to one (the 
selected nine features) yield GP models with very similar 
performance as the full feature set. Features with small 
DDRs do not contribute to the model performance. These 
results suggest that the feature subsets with desired model 
performance can be constructed using the cumulative DDR. 

 
Figure 3.   Feature selection using DDR and resulting 
model performance 

Figure 4.   Feature selection using NS and resulting model 
performance 

Figure 4 shows the model RMSEs for training and test 
data as the number of features increases following the 
descending order feature importance provided by NS. When 
the number of features reaches nine, the addition of a new 
feature does not further enhance the model performance. A 
comparison of Figures 3 and 4 reveals that although the 
MCCV replicate results of DDR and NS are not identical, 
the average RMSEs and the optimal feature subset size 
chosen using NS are the same as DDR. The difference 
between NS and DDR is that the NS calculates the ratio of 
the mean partial derivative while the DDR calculates the 
mean of the partial derivative ratio for the partial derivative 
of each feature at each sample. Theoretically, the NS would 
provide a more robust feature importance score when 
outliers are present in the data. In this case study, there is no 
significant difference between the DDR and the NS results. 

In Figures 3 and figure 4, it can be seen that the MCCV 
RMSEs fluctuate for subsets containing six to eight 
features. This is because DDR and NS are developed from 
derivatives, which depend on sample locations. The 
randomness in data splits results in differences in sample 
location-dependent feature importance, which drives the 
feature ranking volatility and feature addition order within 
each cross-validation replicate. As the number of features 
increases, both the cumulative feature importance curve and 
the RMSE curves become flattened, which suggests that 
features with higher DDR and NS reduce the RMSE of the 
model more than features with lower feature importance 
score. When the optimal feature subset is obtained, the 
cumulative DDR and NS are both above 0.99, and the 
optimal subsets determined from the two methods are close 
to each other. We consider the smallest subset with a 
cumulative score higher than 0.99 the optimal subset. 



  
 
Conclusions and Future Directions 

This study introduced a Gaussian Process embedded 
feature selection approach. The approach focuses on the 
decomposition of the feature importance and develops a 
ratio, DDR, which represents the percentage of output 
change explained by the corresponding feature. The DDR is 
cumulative, and the total contribution from a subset of 
features can be obtained by summing up the DDRs of 
features in the subset. The cumulative feature importance 
score, the sum of DDRs, enables determining the optimal 
feature subset for any predefined cumulative feature 
importance score. The approach is compared with another 
cumulative feature importance score defined as normalized 
sensitivity (NS). Both approaches were applied to detect 
relevant inputs for a liquid entrainment fraction prediction 
model. The DDR-based feature selection approach reduced 
the feature set size by 70% without reducing the model 
RMSE. The optimal feature subset can be determined when 
the cumulative DDR approaches a high value, which was 
0.99 in the case study. The feature selection results were 
close for DDR and NS-based approaches. Future work will 
investigate the effectiveness of the DDR and NS-based 
feature selection methods more extensively. 
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