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Abstract
Supply and manufacturing networks throughout the chemical industry involve different processing steps at distinct loca-

tions. Their network complexity makes operation vulnerable to uncertainty and disruptions from unplanned events. Effective
recovery is a major problem as clearly shown with the current disruptions of supply chains. An appropriate response needs
to include order management: product allocation, delay shipments, price renegotiation, amongst others. We propose a mul-
tiperiod mixed-integer linear programming (MILP) model that integrates information from plant production and scheduling,
shipping, and order management to generate an optimal response that minimizes the financial impact of supply chain disrup-
tions. We present a motivating example based on a real life study case from the chemical industry. A comparison between
the optimal solution and other intuitive approaches is presented where we demonstrate that the solutions provided by our
model result in the highest profit. Also, three different disruption scenarios are presented to demonstrate the capabilities
of the model of handling both discrete-event and continuous limitation disruptions. Finally, a sensitivity analysis on the
cancellation penalty is performed to show the impact of this cost on the profit as well as the number of cancellations made.
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Introduction
The supply chains of high value-added chemicals have

more variability and uncertainty compared to commodity
products since they need multiple steps for their production
and distribution, and are tied to several types of demands.
The customized product portfolio adds to the demand uncer-
tainty as individual products may be aligned to single cus-
tomers instead of being influenced by the combined demand
of a larger market. This means the variability of the final
demand depends on each individual customer leading to a
higher uncertainty in prediction and assessment of operation
plans. Similarly, many fine chemicals require several pro-
cessing steps that are performed at distinct locations around
the globe. This results in a significant increase of trans-
portation requirements, and makes the supply chain more
susceptible to logistics disruptions.
Given the above features, these supply chains are increas-
ingly vulnerable to potential disruptions. Supply chain dis-
ruptions can lead to significant economic losses, including
increased costs to meet customer orders, penalties associated

with delayed orders, or even lost revenue due to failure in
fulfilling existing orders. Furthermore, existing customer
satisfaction can be significantly reduced when an order is
delivered late or cancelled. Therefore, effective optimiza-
tion of decisions along the supply chain is needed to reduce
the economic and operational impacts of unplanned events.
Rerouting current inventories, increasing production at non-
disrupted locations, buying finished products from competi-
tors or third parties, and managing existing order deadlines
are some of the decisions that can be made to mitigate the
impact of the disruption.
In many industrial cases, responses to disruptions are made
in a decentralized and empirical way which is resource in-
tensive, inefficient, and results in sub-optimal supply chain
performance. Furthermore, localized decisions lead to cas-
cading impacts on other parts of the supply chain, and can
lead to unstable and suboptimal responses. In this work we
develop a comprehensive framework for optimizing supply
chain decisions under disruptions. More specifically, this
work presents a mathematical programming model to opti-
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mize the immediate response to an unplanned disruption.

Literature Survey
Research in the design and operation of supply chains

under disruptions is a burgeoning area. The literature on the
subject has been growing, with contributions coming from
various disciplines. The purpose of this section is to intro-
duce some of works that have addressed this problem such as
network analysis, discrete-event simulation, and optimiza-
tion. Leveraging knowledge of the network topology can
be helpful to design and operate supply chains under disrup-
tions. If the network has a specific structure, assumptions can
be made about its behavior, allowing for development of tai-
lored algorithms or heuristics. Specific structure approaches
consider the number of elements in the supply chain and the
ways they are connected. For instance, Kim et al. (2005)
studied a single supplier three-component supply chain net-
work and developed a centralized model to satisfy a target
service level. To achieve this, they used artificial intelli-
gence techniques to design an evolving policy that changes
throughout realizations.
In a similar way, other authors have developed several ap-
proaches that include both heuristics and exact algorithms
for specific topologies of the problem that rely on graph and
queuing theory (Snyder and Shen, 2019). These approaches
include a reduction of the system to one with partial systems
or using heuristics for base-stock levels. These authors ex-
ploit different types of topologies in the chain to determine
the optimal replenishment and allocation policies.
Optimization under the framework of mathematical program-
ming is widely used to study supply chains under disrup-
tion. This approach is flexible for different structures and
is amenable to algorithms that provide optimality guaran-
tees. One optimization model that is currently considered for
supply chain management is the guaranteed service model
(GSM). This model assumes stationary normal demand, no
back orders, and decentralized control with base stock poli-
cies (Simpson Jr, 1958; Graves and Willems, 2000; Bossert
and Willems, 2007). The resulting model is a mixed-integer
nonlinear programming (MINLP) formulation which con-
siders decentralized decisions and nonlinear terms in the
modelling equations. Recently, Achkar et al. (2021) showed
that the MINLP model can be reformulated as a quadrati-
cally constrained program with significant improvements in
computational efficiency.
Process control systems are addressed using optimization to
develop optimal control policies. Perea-Lopez et al. (2003)
integrated concepts of model-predictive control with the sup-
ply chain to find optimal inventory policies. This work uses
a multiperiod model to capture system behaviour based on
past and current information. The resulting model is a mixed-
integer linear program (MILP) that is solved using closed-
cycle control techniques.

Problem Statement
Given an arbitrary supply chain and manufacturing net-

work topology, the goal is to determine production, shipping,
inventory and order management schedules to optimally mit-

igate the impact of a disruption, and bring the system back
to a stable operation while maximizing its profit. Most of the
literature concerning supply chain under disruptions tackles
the design problem. That is, they seek to find the optimal
node placement and inventory level under a steady behaviour.
However, optimal recovery is an entirely operational problem
that has not been fully addressed in the literature.
We extend the framework proposed by Perea-Lopez et al.
(2003) to handle general network topologies meaning that
there are no assumptions in the structure of the network and
the connections between its components. The echelons for
which decisions need to be optimized in a supply chain and
manufacturing network are plants and warehouses. These
echelons face both internal or external demand, meaning that
orders can be placed from other internal echelons or directly
from external customers. These general networks allow any
arbitrary number of suppliers, plants, warehouses and cus-
tomers, as well as arbitrary connections amongst them. Fig-
ure 1 shows the possible edges that can exists between the
different components of the network and indicates which
echelons hold inventory.

Figure 1: General Topology Sketch

Supplier-plant and supplier-warehouse connections are
considered, and both plants and warehouses are allowed to
store raw material in inventory. Similarly, these two types
of nodes are permitted to store both intermediate and final
product as well, given the existence plant-plant and plant-
warehouse edges. Under this framework, plants are capable
of both producing and storing materials (whether it is raw
material, intermediate product or final product). Storing
material in plants enables them to satisfy their internal and
external demands by depleting inventory, manufacturing fi-
nal product or a combination of both. This feature permits
a much more flexible and broad response to satisfy the in-
dependent demand from customers as well as the dependent
demand imposed by other downstream echelons.
We also, extend the work of Perea-Lopez et al. (2003) to
support late delivery and order cancellation decisions. These
are necessary given that, once a disruption occurs, it might
not be feasible to deliver the original order schedule on time.
Hence, the model accounts for late deliveries at a higher
price to be able to satisfy customer orders. Given the case
where an order can only be delivered past its original due
date, it might be worth considering paying a high fixed price
and cancelling the order instead of delivering the order sig-
nificantly late. Cancelling an order may relieve the network



allowing allocation of resources to other orders more effi-
ciently, resulting in a more cost effective response.
There are two main types of disruptions that are addressed.
The first one is the occurrence of a discrete event such as the
unavailability of a specific route or the failure of equipment
within a plant. The second type of event is associated with
a continuous limitation. These disruptions can represent, for
instance, a reduction in the transport capacity on a particular
route, or partial delivery of a scheduled order from an up-
stream supplier.

Proposed Model
We propose a multiperiod mixed-integer linear program-

ming (MILP) formulation to provide optimal supply chain
decisions in response to disruptions. The model considers
multiple elements in the supply chain, including suppliers,
production facilities, warehouses, and customers; as well as
the available transportation options and routes. Key decision
variables include the shipment amount and route, material
purchases (raw, intermediate, or final products), plant pro-
duction schedule, and customer delivery dates and amounts.
When a disruption occurs, the company seeks an effective
response to reduce the impacts of that disruption considering
financials and customer satisfaction. Examples of reactive
decisions that can be considered to mitigate consequences
include:

• Shipping adjustments: Adjusting the amount, route, or
transportation mode for internal shipping of material
can be an effective mechanism to mitigate the disrup-
tion. For example, if an important order for a key con-
sumer is at a risk of being delivered late, incurring ex-
tra expenses to ship via air-freight could help to avoid
a lost sale and reduce the overall economic impact of
the disruption.

• Use of the existing stock: Given that there is inventory
throughout the plants and warehouses in the network,
we can consider reallocating this stock (i.e., reducing
inventory levels) to help mitigate the disruption. In-
ventory can provide a buffer against disruption, and
we may adopt different inventory policies during the
disruption recovery period.

• Plant production and scheduling: Changing the pro-
duction level, re-scheduling the manufacturing orders
according to product priority, or buying intermediate
materials from third parties can be considered to over-
come disruptions at the expense of increasing the cost
of operation.

While these options provide degrees of freedom for supply
chain recovery, the impact of any of these decisions on the
entire supply chain can be non-intuitive. The outcome of the
model is a schedule that shows how to react to a given dis-
ruption, while considering financial and customer satisfac-
tion objectives. The multiperiod MILP model is capable of
optimizing inventories at appropriate facilities, can provide
an optimal production schedule (e.g., including overproduc-
tion), and the possibility of purchasing additional raw ma-
terial or products from third parties or suppliers. Moreover,

since the optimization is performed as soon as the unplanned
event takes place, the model is able to alert supply chain man-
agers if customer orders are not able to be delivered as sched-
uled to evaluate the financial impact of cancelling an order.
The goal of the proposed optimization formulation is not only
to effectively respond to the disruption, but also to return to
baseline operations once the unplanned event has been ad-
dressed. This can be done by fixing the inventory variables
in the last time period to the values they had before disrup-
tion. Note that the model integrates all the echelons in the
supply and production network to develop schedules that ac-
count for the entire operation in a unified way. In that sense,
decisions will be made in a manner that the overall optimal-
ity of the system is achieved as a whole rather than relying
on local or empirical decisions which are suboptimal for the
enterprise.

The model assumes known order quantities and frequen-
cies for all customers. Similarly, time delays across the
network are deterministic and known for all of the arcs.
Routes that have same origin and destination but use differ-
ent transportation modes are modeled using different arcs.
All products are assumed to be manufactured in a continuous
operation, hence, no batch scheduling dynamics are consid-
ered within the plants. Finally, the length and impacts of the
disruptions are deterministic and known as they occur.

Model Formulation
In this section we present the multiperiod Mixed-Integer

Linear Programming (MILP) model formulation for the op-
timal response given a disruption. This model considers a
set of different materials M, as well as suppliers S, plants P,
warehouses W and customers C that are connected through a
set of arcs A. Similarly, the time periods are considered over
a discretized time horizon T . The MILP formulation is as
follows:
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The objective of the model is to maximize profit from the
sales (λD) as shown in Equation (1). This profit accounts
for several costs such as buying raw material (λC), manufac-
turing cost (λP), shipping cost using different transportation
types (road, marine or air-freight) (λA) and holding inventory
cost at both plants and warehouses (λIP and λIW respec-
tively). Furthermore, this model accounts for cost of deliv-
ering late (λU ), and for a high fixed charge in case the order
needs to be cancelled (λδ). Equation (2) models the time
delay that takes place at shipping or manufacturing. Here,
F in

mat represents the quantity of material m that enters an arc a
at a given time period t, while Fout

mat represents that same flow
coming out of the arc after a delay τ (Fout

ma{t+τ}). The input
and output flows of the network are calculated in Equations
(3) and (4), respectively. The quantity to buy of material m
from supplier s at a time period t (Bmst ) is calculated by ac-
counting for all of the arcs that come out of supplier s (Aout

s ).
Similarly, to calculate the demand satisfied of material m
to customer c at a time period t (Dmct ) the model accounts
for all arcs coming into that customer c (Ain

c ), which might
come from either plants or warehouses. Equations (5) and
(6) correspond to the inventory balance of raw materials
and products inside the plants. In these equations φrm cor-
responds to the bill of material m used in recipe r, which
accounts for material transformation and its sign depends if
m is being consumed or produced (− or + respectively). A
simple inventory balance for the warehouses is calculated in
Equation (7). The unmet demand of material m to customer
c at a time period t (Umct ) is calculated in Equation (8) as
an inventory balance to be able to account for accumulated
unmet demand across time periods. Given that the unmet de-
mand is non-negative, as stated in Equation (11), the model
can choose to cancel a specific order (yδ = 1), which will
relieve the system but at a high fixed price (λδ). To model
the network recovery after the disruption, we include final
time constraints for both plants and warehouses modeled in
Equations (9) and (10). These constraints force the supply
chain to return to the same inventories it had at the before the
disruptive event since we do not want a complete depletion
of the inventory as a solution. Finally, Equations (11)-(13)
state the discrete/continuous nature of the variables.

Motivating Case Study
The supply chain network we consider manufactures ten

different products, and consists of two raw material suppli-
ers, two plants, two warehouses, and nine customers that
are satisfied from both manufacturers and warehouses. We
consider the operation over a four month period (|T | = 120
days) and a sketch of the motivating example is presented in
Figure 2.

Figure 2: Supply Chain and Manufacturing Network Topol-
ogy for the Motivating Example

The first plant (Plant 1) uses the two different raw ma-
terials (Raw A and Raw B) to make six products (DP, Fluid
F, Blend A, Blend B, Blend C and Blend C1). The produc-
tion processes of Plant 1 are assumed to be continuous for
all the products that are being manufactured. In this plant,
two products (labeled in the figure as DP and Blend C1) are
sold to a customer directly, while the rest of the products are
packed in steel drums and shipped to Warehouse 1 through
road transportation. Note that Blend C is both an intermedi-
ate material in the production of Blend C1 as well as a final
product that is delivered to Warehouse 1.
Once in Warehouse 1, these four products can be sold di-
rectly to local customers, or shipped to Warehouse 2 through
marine transportation. There, three products (labeled in the
figure as Blend A, Blend B, and Blend C) are sold directly
to local customers. Fluid F is transshipped to Plant 2 to be
further processed into four different final products (SR 1 -
SR 4) and sold to local customers. All nine customers have
independent demand frequencies and order quantities.
Due to its size and complexity, the network can be exposed
to unplanned events that cause disruptions in its operation.
This particular network can face, for example, three different
types of disruptions that will negatively impact the overall
operation.

• Plant equipment failure: This causes a reduction or
complete loss of production at the plant facility, im-
pacting downstream consumers and inventory levels
for both upstream and downstream elements.

• Route unavailability: A given arc in the supply chain is
not capable of transporting any material for a specific
time window. In this case, the network becomes par-
tially disconnected, hence, re-routing material or using
other transport modes is required.

• Logistics resource limitations: The transport of mate-
rial between supply chain elements can be impacted
by availability of appropriate logistics resources (e.g.,



packing materials like steel drums or availability of
drivers for truck transport).

These examples can cause a reduction in available mate-
rial for downstream processes and delays in deliveries of
customer orders. However, these can also impact upstream
operations and cause inventory management challenges. For
example, a plant failure causes an increase of available raw
material that can impact upstream suppliers and producers.
There are several objectives to consider when optimizing the
supply chain operation. The cost of recovery is important,
and one of the goals is to maximize the profit of the operation
by delivering orders on time while reducing costs. Similarly,
it is key to account for customer satisfaction to maintain the
reputation of the company for future business. Therefore,
delivering late (Umct ) or cancelling orders (yδ

mct ) are heavily
penalized in the objective.

Results and Discussion
The proposed multiperiod MILP model (1)-(13) was for-
mulated for the case study for a total of 120 time periods,
each of 1 day length, leading to 2,280 0-1 variables, 15,360
continuous variables, 12,736 constraints and 36,171 nonzero
elements for the base case using Pyomo (Bynum et al., 2021).
The optimal solution was obtained in a Intel(R) Core(TM)
I7-1165G7 at 2.80GHz with 4 cores using Gurobi v9.5.1
(Gurobi Optimization, LLC, 2022) as a solver. The opti-
mality gap used was 0.1% and the solution time reported by
Gurobi was 0.11 seconds for the base case. All the values
presented in the case study were obtained using fabricated
data, therefore, these numbers do not represent the real life
values an industrial operation.

Comparison with intuitive approaches
The optimal response from the model is compared with other
intuitive responses that may considered by local decision-
makers. Consider the disruption where, out of the usual 1000
special pallets, there are only 300 of them available to pack
material in the ships that go from Warehouse 1 to Warehouse
2. A possible intuitive approach could be sending all the units
required using air-freight to overcome the shortage in the ma-
rine port. Another intuitive approach could also be, instead
of using air-freight, to deplete the existing inventory in Ware-
house 2 to satisfy the demand while the rest is sent using the
available pallets. Table 1 compares the profit of the optimal
solution given by the model with the profits resulting from
these two intuitive approaches.

Table 1: Optimal Response and Intuitive Approach
Comparison

Approach Profit [103$] Decrease [%]

Optimal Response 3,601 -
Air-freight Only 3,156 12.38

Inventory Depleting 3,148 12.58

The optimal solution integrates different types of the deci-
sions in a way that is not necessarily intuitive. Nevertheless,
this response proves to be better than other approaches given

that it yields the highest profit. Particularly for this exam-
ple, the output of the proposed optimization model results
in a profit around $445,000 larger than the approach where
air-freight is used to overcome the disruption. This reduc-
tion in profit comes from sending all the required units via
air-freight, which is the most expensive transportation mode.
Similarly the optimal response has an objective approxi-
mately $453,000 larger than the approach where inventory is
depleted. Depleting inventory is one of the least expensive
responses to a disruption. However, this approach yields a
lower profit as well. This occurs because the available prod-
uct in inventory is not sufficient to cover the total demand.
Here, the model depletes all the existing inventory to satisfy
part of demand but is forced to deliver late the other part
which was not covered by the allocated inventory.

Scenario evaluation
Here, three different disruptions are presented to illustrate
the capabilities of the model when handling different dis-
ruptions. These scenarios are compared against a base case
where there is no disruption and the model is solved to opti-
mality. Scenario 1 consists of the failure of two of the three
main reactors that operate in parallel at Plant 1. This dis-
ruption causes the maximum production of the plant to be
reduced to a third of the original capacity for the complete
time horizon. Scenario 2 implies the total unavailability of
the land routes that go from Plant 1 to Warehouse 1 for the
first three months. Finally, Scenario 3 is the combination of
Scenarios 1 and 2. Table 2 presents a profit comparison of
the different scenarios. Furthermore, it also shows the total
number of units of product that were delivered late, as well
as the number of orders cancelled throughout the four month
operation.

Table 2: Scenario Comparison

Scenario Profit [103$] Late Units Cancellations

Base 3,706 233 0
1 2,867 19 26
2 3,490 365 1
3 2,746 38 26

As one could expect, the base case has the largest profit given
that there is no disruption occurring. However, even in the
base case, given the high demand of the customers, the op-
timal schedule decides to deliver late a total of 233 units.
Given the high penalty associated with cancelling an order,
the model chooses to not make any cancellations for the base
case. In Scenario 1 the optimizer decides to deliver 19 units
late (considerably less than the base case) at the expense of
cancelling 26 orders to overcome the disruption. Completely
closing the truck routes proves to have a negative impact in
the profit of the company. This is due to the fact that the
other alternative (air-freight) is more expensive and has a
smaller capacity than the trucks. Hence, the model chooses
to deliver late 132 more units than in the base case, but it also
decides to cancel one order. Finally, it can be observed that
Scenario 3 has the greatest negative impact and lowest opti-
mal profit. In this scenario, the optimal response requires the



same number of cancellations as Scenario 1, but the number
of late deliveries increases compared to this scenario yielding
a profit around $960,000 lower than the base case.

Sensitivity analysis
Th case study assumes a constant cost for order cancellations
for all scenarios as λδ

mct = $10.000 ∀m ∈ M,c ∈ C, t ∈ T .
In practice, calculating this penalty is far from trivial. Can-
celling an order not only implies a lost sale but it also affects
the good will of the company with its customers, which might
affect the future orders from the customer or even result in
the loss of the customer. Evaluating methods for calculating
this penalty is beyond the scope of this work. Nevertheless,
since this parameter has a significant influence in the over-
all decisions made by the model, a sensitivity analysis is
presented in Figure 3 to illustrate how the optimal solution
might change given variations in this cost.

Figure 3: Cancellation Cost Sensitivity Analysis
This analysis was performed under Scenario 1 with a fixed
value of λδ for all materials, customers and time periods. It
can be observed that the profit drops as the the penalty for
order cancellation increases. For small penalty values, the
model chooses to cancel orders that are not being able to
deliver on time instead of delivering them late. However, as
the cancellation cost increases, it becomes more profitable
to deliver the orders late instead of paying larger penalties
for cancellation. This can be inferred by observing that the
number of order cancellations also decreases with λδ.

Conclusions
This work proposes a multiperiod MILP model to ad-

dress the optimal operational response of a multiproduct
supply chain and manufacturing network once a disruption
occurs. This model is able to handle general network topolo-
gies allowing plants and warehouses to have both internal
and external demand. First, the output of the optimization
model was compared with intuitive approaches and to show
that our model yields a higher profit than other solution
approaches. We also demonstrated the capabilities of the
model by proposing scenarios with both continuous and dis-
crete disruptions over different time windows.

The proposed model be can further extended to incorporate
detailed production scheduling within the plants. Accounting
for internal operations within the plant allows the optimiza-
tion to re-schedule the production to satisfy orders according
to the client priority and overall profit maximization. In a
similar way, the currently deterministic model can be further
extended to account for uncertainty in disruption occurrence.
Note that accounting for all these decisions and features si-
multaneously, while considering supply chain complexity
and the available degrees of freedom results in a large-scale
MILP optimization problem that may require advanced solu-
tion approaches for efficient computational performance.
Given that we showed that the model is highly sensitive to
the value of the cancellation cost penalty, future work in-
cludes developing strategies that help to estimate that value.
These estimations need incorporate not only the loss sales
that cancellations imply, but also capture the negative impact
on the good will of the company.

Acknowledgements
The authors thank the Dow Chemical Company for moti-

vating the work and providing the case study.

References

Achkar, V. G., B. Brunaud, R. Musa, C. A. Mendez, and
I. E. Grossmann (2021). Integrated guaranteed service
approach for multi-echelon inventory optimization. IN-
FORMS Annual Meeting, Anaheim, CA.

Bossert, J. M. and S. P. Willems (2007). A periodic-review
modeling approach for guaranteed service supply chains.
Interfaces 37(5), 420–436.

Bynum, M. L., G. A. Hackebeil, W. E. Hart, C. D.
Laird, B. L. Nicholson, J. D. Siirola, J.-P. Watson, and
D. L. Woodruff (2021). Pyomo–optimization modeling in
python (Third ed.), Volume 67. Springer Science & Busi-
ness Media.

Graves, S. C. and S. P. Willems (2000). Optimizing strategic
safety stock placement in supply chains. Manufacturing &
Service Operations Management 2(1), 68–83.

Gurobi Optimization, LLC (2022). Gurobi Optimizer Refer-
ence Manual.

Kim, C., J. Jun, J. Baek, R. Smith, and Y.-D. Kim (2005).
Adaptive inventory control models for supply chain man-
agement. The International Journal of Advanced Manu-
facturing Technology 26(9), 1184–1192.

Perea-Lopez, E., B. E. Ydstie, and I. E. Grossmann (2003).
A model predictive control strategy for supply chain op-
timization. Computers & Chemical Engineering 27(8-9),
1201–1218.

Simpson Jr, K. F. (1958). In-process inventories. Operations
Research 6(6), 863–873.

Snyder, L. V. and Z.-J. M. Shen (2019). Fundamentals of
supply chain theory. John Wiley & Sons.


