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Abstract
Multi-objective optimization is an important tool for sustainable decision making that takes into account environ-
mental, social, and governance outcomes. For problems of four or more objectives, dimensionality reduction approaches
are needed to be able to apply rigorous global optimization methods for finding the Pareto frontier in a tractable manner.
For optimal real-time operation, scheduling, and control problems, the correlating versus competing nature of objectives
, which influences how best to reduce objective dimensionality, can vary as dynamic parameters change when solving
the optimization problem repeatedly in a moving horizon. This work attempts to analyze the sensitivity of objective
correlation through the use of a green ammonia production case study. It considers operating cost, carbon emissions,
water usage, and electrolyzer safety objectives and examines their correlation strength as the cost and related emissions
of purchasing electricity from the power grid changes. Results of the study show that correlation between cost and
emissions are near perfect when the time-varying cost and emissions factor profiles are in phase, and low when they are
anti-phase. Furthermore, the variance of objective correlations and the best objective grouping over time is demonstrated
through the analysis of historical power cost and average grid emissions data from CAISO.
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Introduction and Background

Recent global events and investor emphasis on environ-
mental, social, and governance (ESG) outcomes have mo-
tivated the consideration of more than traditional economic
objectives when making decisions at all levels of the chemi-
cal enterprise, including those associated with real-time op-
eration, scheduling, and control of chemical systems. Multi-
objective optimization is an ideal tool for understanding
the tradeoffs inherent when considering disparate objectives.
Rigorous scalarization methods such as the weighted sum or
epsilon constraint approaches, combined with global opti-
mization solvers such as CPLEX or BARON, can provide
a set of trade-off solutions provably on the Pareto frontier,
such that each point in the solution set represents the best
one can feasibly do in one objective without harming another.
Unfortunately, these methods scale very poorly to “many-
objective” optimization problems of four objective functions
or more, to the point where heuristic evolutionary algorithms
are the current method of choice for solving problems in the
many-objective optimization community (Emmerich, 2018).
Historically, the process systems community has been resis-
tant to using such heuristic approaches in decision making
when they can be avoided, due to concerns with degradation
in economic performance and process safety associated with
suboptimal decision making and a desire to be able to calcu-
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late an optimality gap, or worst case of how far the current
solution is from the best solution.

In order to make a rigorous solution approach tractable
for many-objective problems, a reduction of objective di-
mensionality to three or fewer objectives is required. There
exist several methods for systematically achieving this, the
vast majority of which perform dimensionality a posteriori
to generating at least part of or an approximation of the full
space Pareto frontier. Approaches which achieve this include
principal component analysis (Saxena et al., 2013), aggrega-
tion trees (de Freitas et al., 2015) or dominance preservation
strategies (Brockhoff and Zitzler, 2009). The goal of these
methods is to remove objectives that are uninformative in the
full space Pareto solution, or equivalently, group together ob-
jectives which are inherently correlated, pointing towards the
same solution. Alternatively, one can also group objectives
together based on physical classification, with the “three pil-
lars of sustainability” (economic, environmental, and social
objectives) often forming the basis of such a grouping. More
recently, our team has developed a dimensionality reduction
method for (mixed integer) linear many-objective optimiza-
tion problems that systematically achieves dimensionality re-
duction a priori to solving the many-objective problem on
the basis of problem structure and the overlap of cost vec-
tor projections onto constraint surfaces (Russell and Allman,
2022). Results from this work showed the algorithm’s abil-
ity to identify groupings of objectives such that correlating
objectives are put in the same group, competing objectives
are put in different groups, and minimal information is lost



in objective grouping in multiple energy system design and
supply chain optimization case studies.

In optimal real-time operation, scheduling, and control
problems, the standard decision making framework is such
that an optimization problem is not just solved once but in-
stead repeatedly over time in a moving-horizon fashion. At
each time point, critical problem parameters such as initial
conditions, feedstock costs, product demands, weather fore-
casts, or output set points can be different than they were in
the previous solve. As these parameters change, so can the
correlating vs. competing nature of objectives in a many-
objective optimization problem. As such, it makes sense that
the objectives we wish to group together in order to achieve
an informative should not be static, but instead evolve dy-
namically based on the sensitivity of objective correlations
with dynamically varying problem parameters.

In this work, we present an initial effort towards under-
standing the sensitivity of objective correlations in many-
objective problems via the analysis of an ammonia produc-
tion operation case study. Ammonia is a critical chemical
supporting modern society, with its primary use for nitroge-
nous fertilizer, either through direct application to crops or as
a chemical precursor to other fertilizers such as urea. It has
also been proposed as a medium for long-term energy stor-
age, or as an easily transportable liquid energy or hydrogen
carrier. Traditionally, ammonia production utilizes fossil fu-
els for hydrogen generation, and accounts for about 2% of
global greenhouse gas emissions. Recently, there has been
immense academic, governmental, and industrial interest in
green ammonia, whereby the ammonia production process
is powered completely by renewable energy, typically gen-
erating hydrogen from water electrolysis. From a systems
perspective, recent research has shown that green ammo-
nia systems can be implemented at a distributed scale using
modular units (Palys et al., 2019), and can be operated in a
time-varying fashion to exploit intermittency in, for example,
renewable energy production or energy costs (Allman and
Daoutidis, 2018). Due to recent global events and economic
inflation, natural gas and conventional ammonia prices have
rapidly increased in the past year from between $400 and
$850 for the previous ten years prior up to over $1450 in the
last year, making green ammonia production more economi-
cally promising than ever before. This system is an ideal sys-
tem to analyze for determining objective sensitivites to dy-
namic parameters, as there are inherently various economic,
environmental, and safety objectives that should be consid-
ered in operation, and because of its reliance on electricity
whose availability, cost, and related emissions may vary with
time.

This work extends upon previous analysis of ammonia
production scheduling in two ways: first, four different ob-
jectives are considered, including the traditional objective of
operating cost, along with carbon emissions, water usage,
and electrolyzer safety. Second, we consider that energy pur-
chased from the grid has not only time varying costs, but
also time varying carbon emissions, which can occur due to
different modes of generation, including renewable sources
such as wind and solar as well as inefficient sources such

as fast-ramping fossil fuel generators, being active at differ-
ent times. The remainder of this paper is organized as fol-
lows: in the next section, we briefly overview our approach
for systematically grouping objectives a priori to generating
a Pareto frontier. Then, the problem formulation for many-
objective ammonia production is presented. Next, we present
the details of the specific case studies considered and analyze
the results of our objective reduction algorithm for the vari-
ous problem instances. Finally, we conclude by summariz-
ing important observations and proposing avenues for future
work.

Objective Reduction Algorithm

Consider a linear N-objective optimization problem of the
form:

min
x

{cT
1 x,cT

2 x, ...,cT
Nx}

s.t. Ax ≤ b (1)

The variables x may be continuous or integer, while ci rep-
resent the cost vectors for the various objectives and A rep-
resents the constraint matrix. To reduce the number of ob-
jectives, we need to be able to use the information embed-
ded in the problem to understand if objectives interact in a
correlated or competing manner. For linear problems, opti-
mal solutions always lie on the boundary of the feasible re-
gion when the solution is finite; thus, it makes sense to focus
the analysis to objective interactions on constraint surfaces.
For each objective-objective-constraint triplet, we calculate
an interaction strength by first projecting cost vectors onto
the surface of individual constraints defined by normal vec-
tor ak, a row of the constraint matrix A:

cN
ik =

−cT
i ak

∥ak∥2
2

ak (2)

ĉP
ik =

−ci − cN
ik

∥− ci − cN
ik∥2

(3)

Where cN
ik represents the component of the cost vector ci nor-

mal to constraint surface k, and ĉP
ik is the component of the

cost vector ci along the surface of constraint k, normalized to
length 1. For two objectives i and j interacting on constraint
k, we define a strength of interaction Si jk:

Si jk = (ĉP
ik)

T ĉP
jk (4)

Since projection vectors are normalized, the strength of ob-
jective interaction along a constraint can vary between 1,
when objectives are perfectly correlated and pointing in the
exact same direction, and -1, when objectives are pointing in
the exact opposite direction. To determine the total objective
correlation strength, SA

i j, we consider a weighted sum of the
constraint interaction strengths. Weights Wi jk are zero when
both normal vectors cN

ik and cN
jk point into the feasible region,

as this implies constraint k is unlikely to be active in optimiz-
ing either objective, and are otherwise determined using the



following logistic function:

Wi jk = 1−α

(
1

1+ exp(−β×Si jk)

)
(5)

This equation captures the fact that competition on any con-
straint can lead to an objective tradeoff, while correlation
needs to occur on all constraints for objectives to be corre-
lated. As such, it makes sense to weight negative values of
Si jk more than positive ones. The hyperparameters α and
β alter the shape of the logistic curve, such that α, which
should lie between zero and one, determines how much cor-
relating constraints are discounted and β, which should be
positive, determines the slope of the change from minimum
to maximum weight, with larger values giving a more step-
like change. The total objective interaction strength is deter-
mined as follows:

SA
i j = 0.5

(
1+

∑
M+N
j=1 Wi, j,kSi, j,k

∑
M+N
j=1 Wi, j,k

)
(6)

The objective correlation strength is scaled to be between 0
and 1, with low values corresponding to highly competing
objectives and high values corresponding to highly correlat-
ing objectives. The strengths are used to define edge weights
in an objective correlation graph, where nodes correspond to
each individual objective. Community detection can then be
applied to the objective correlation graph to identify groups
of objectives which are highly correlated to others in the
same group, but competing with those in different groups. In
this work, we perform community detection using the Leiden
algorithm (van Eck N.J., 2019), with a resolution hyperpa-
rameter tuned to give two groups of objectives.

System Description and Problem Formulation

The ammonia production system analyzed in this work is
adapted from previous works (Allman and Daoutidis, 2018),
and described below. First, hydrogen is either produced on-
site via water electrolysis or purchased from a methane steam
reformer. Nitrogen is also produced onsite via a pressure
swing adsorption (PSA) unit. A small amount of storage ca-
pacity exists for both nitrogen and hydrogen, which are then
consumed by a downstream, small-scale ammonia produc-
tion reactor based on a Haber process. Energy for all process
is obtained from onsite wind production and supplemented
with purchases from the power grid. Both the costs of these
purchases and the associated carbon emissions from energy
generation are time-varying parameters. Excess energy can
also be sold back to the power grid at a rate lower than the
purchase rate, but no emissions credit is given for selling
power.

Our goal in this problem is to meet some nominal ammo-
nia demand over a 48-hour period considering four disparate
objectives and the physical constraints of the system. Vari-
able notation in the problem is described as introduced in the
system constraints. For the objectives, we first consider min-
imizing the traditional objective of operating cost Z, where
ζi represent relative cost terms for various variables in the

system:

Z =
48

∑
t=1

(ζb(t)pb(t)−ζs(t)ps(t)+ζNH3mdev
NH3 +ζH2,buybH2(t)

+ζonse(t)+ζelmH2(t)+ζpsamN2(t))+ζH2,stoUH2

+ζN2UN2

(7)

Cost contributions come from exchanging power with the
grid, purchasing hydrogen from the steam reforming plant,
deviating from the target ammonia production rate, operating
the electrolyzer, PSA unit, and ammonia reactor, and deplet-
ing gases from storage. Next, we consider the minimization
of carbon emissions associated with operation of the facility
H, where ηi represent relative emissions terms for various
variables in the system:

H =
48

∑
t=1

(ηbH2bH2(t)+ηpb(t)pb(t)) (8)

Carbon emissions for this system are incurred from exter-
nal purchases, either via the production of hydrogen through
steam reforming, or via the production of power. The lat-
ter contribution can vary with time. Next, we consider the
minimizing usage of water by the system Ψ, which can be of
large concern if the system is being operated in water scarce
regions of the world, where ψi represent relative water usage
for various variables in the system.

Ψ = ψH2,elmH2(t)+ψH2,buybH2(t) (9)

Water is used by the system in the production of hydrogen,
both in electrolysis in steam reforming, although the latter
process has lower water requirements. Finally, we consider
a safety objective, Ξ, related to the number of times an elec-
trolyzer is started up throughout the scheduling horizon, an
action which carries with it an above average safety risk:

Ξ =
48

∑
t=1

se(t) (10)

The four objectives above are constrained by physical and
practical limitations in the system. First, we consider a power
balance that must hold at all times:

pw(t)+ pb(t) = ps(t)+ pN2(t)+ pH2(t)+ pNH3(t)

∀ t ∈ {1, ...,48}
(11)

Here, the amount of power produced by wind p2 and bought
from the grid pb must equal the amount of power sold to
the grid ps or consumed by the chemical units in the system
(pH2, pN2, and pNH3. The amount of power used by chemical
units is related to the production rate of that chemical mi by
a linear conversion factor ρi:

pi(t) = ρimi(t) ∀ i ∈ {H2,N2,NH2}, t ∈ {1, ...,48} (12)

Furthermore, the PSA unit and ammonia reactor have inher-
ent upper and lower bound on their production rates:

mmin
i ≤ mi(t)≤ mmax

i ∀ t ∈ {1, ...,48}, i ∈ {N2,NH3} (13)



A discrete number of electrolyzers are present in the system
which can be in an “on” or “off” state. The number of “on”
electrolyzers ne is limited to the number of electrolyzers in-
stalled Ne:

0 ≤ ne(t)≤ Ne ∀ t ∈ {1, ...,48} (14)

The production rate of hydrogen is bound by the number of
electrolyzers turned on:

mmin
H2 ne(t)≤ mH2(t)≤ mmax

H2 ne(t) ∀ t ∈ {1, ...,48} (15)

It is also important to track the number of electrolyzers start-
ing up in a time period se for cost and safety purposes:

se(t)≥ ne(t)−ne(t −1) ∀ t ∈ {1, ...,48} (16)
se(t)≥ 0 ∀ t ∈ {1, ...,48} (17)

The amount of hydrogen that can be purchased from the
steam reforming plant bH2 is also bounded:

0 ≤ bH2(t)≤ bmax
H2 ∀ t ∈ {1, ...,48} (18)

Intermediate storage units exist to store hydrogen and nitro-
gen for later use in the system, with the amount of component
i stored denoted Mi. Each has a minimum and maximum ca-
pacity:

Mmin
i ≤ Mi(t)≤ Mmax

i ∀ t ∈ {1, ..,48}, i ∈ {N2,H2} (19)

Amount of hydrogen and nitrogen in storage is tracked by
dynamic mass balances for each component:

MH2(t) = MH2(t −1)+bH2(t)+mH2(t)−
3

17
mNH3(t)

∀ t ∈ {1, ...,48}
(20)

MN2(t) = MN2(t −1)+mN2(t)−
14
17

mNH3(t)

∀ t ∈ {1, ...,48}
(21)

It is also important to track the amount of gases depleted from
storage at the end of the scheduling horizon ui, such that this
usage is accounted for in the cost objective and gases are not
depleted at the end of every 48-hour horizon unless there is a
strong economic driving force to do so.

Ui = Mi(0)−Mi(48) ∀ i ∈ {N2,H2} (22)

As the ammonia reactor is inherently a slower responding
unit than the two upstream units, we embed a set of con-
straints limiting its ramp rate by R+ for ramping up and R−

for ramping down, as well as how long its production rate
must remain constant Da after a change:

−da(t)R− ≤ mNH3(t)−mNH3(t −1)≤ da(t)R+

∀ t ∈ {1, ...,48}
(23)

t

∑
τ=t+1−T

da(τ)≤ Da ∀ t ∈ {1, ...,48} (24)

In the above equations, da is a binary variable that is one if
ammonia production rate changes in time period t, and zero

otherwise. Finally, it is important to keep track of the am-
monia production rate relative to demand mtar

NH3, such that
an economic penalty can be provided for underproduction
mdev

NH3:

mdev
NH3(t) = mtar

NH3 −mNH3(t) ∀ t (25)

The total four-objective optimization problem is as fol-
lows:

min {Z,H,Ψ,Ξ} (26)
s.t. (11)− (25)

Such a problem can be rigorously solved by applying the
weighted sum or epsilon constraint approaches. Doing so
results in a set of single objective mixed integer linear pro-
grams that can be solved using CPLEX or Gurobi to obtain
Pareto-optimal operating points.

Case Study Data

The majority of the parameter values used in this work
are unchanged from a previous study in green ammonia pro-
duction scheduling (Allman and Daoutidis, 2018). In this
section, we detail any changes in parameter values or new
parameters added that are considered in this work. First, the
addition of the option to purchase fossil fuel-based hydro-
gen introduces a maximum purchase per hour of 100 kg at
a cost of $ 2.40 which falls in line with data from Ramsden
et al. (2009). Additional stoichiometric calculations were
completed to determine the carbon emission factor from hy-
drogen derived from steam reforming of methane, ηbH2 of
9.3 kg CO2/kg H2. Similarly, water usage coefficients are
derived using stoichiometry to be ψH2,el = 9 kg water/kg H2
for electrolytic hydrogen and ψH2,buy = 3 kg water/kg H2 for
steam reformed hydrogen. For the first 2 instances consid-
ered, power costs follow time varying pricing structure that
peaks in the daytime at 25 ¢/kWh and bottoms out with neg-
ative prices at -2 ¢/kWh. For these studies, grid emissions
are artificially generated to show the extreme cases of when
emissions over time are completely in-phase or anti-phase
with respect to power costs, using high and low emissions
factors of 1.08 and 0 kg CO2/kWh, respectively. The time
variation of costs and emissions for these two studies are dis-
played in Figure 1. Instances using real historic power cost
and average emissions data obtained from CAISO are also
analyzed. For each of these instances, the overlap between
the cost and emissions profile is quantified using an approach
described as follows. First, we shift and normalize the power
(ζ̂b) and emissions (η̂pb ) profiles such that the average value
of the parameter over time is zero, and the maximum devia-
tion from this value is ±1:

ζ̂b(t) =
ζb(t)−∑

48
t ′=1 ζb(t ′)/48

maxt ′ |ζb(t ′)−∑
48
t ′′=1 ζb(t ′′)/48|

(27)

η̂pb(t) =
ηpb(t)−∑

48
t ′=1 ηpb(t

′)/48
maxt ′ |ηpb(t ′)−∑

48
t ′′=1 ηpb(t ′′)/48|

(28)

An overlap factor OZH is then defined as the time average
of the sum of the product of the normalized cost and emis-
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Figure 1: Plots of power costs and emissions factors over
time for instances where costs and emissions are in-phase
(dashed line) and anti-phase (dotted line).

sions profiles, divided by the maximum of the square of the
normalized cost or emissions:

OZH =
1
48

48

∑
t=1

ζ̂b(t)η̂pb(t)

max(ζ̂b(t)2, η̂pb(t)2)
(29)

This overlap metric can vary between 1, where costs and
emissions are completely in phase as in the dotted example in
Figure 1, and -1, where costs and emissions are completely
out of phase as in the dashed example in Figure 1.

Finally, wind speeds used to calculate wind power genera-
tion in each time period are pulled from the National Centers
for Environmental Information climate normals for the past
15 years in Sioux Falls, North Dakota (NCEI, 2020). This lo-
cation was chosen as it is located in the upper Midwest and is
a representative candidate location for a distributed ammonia
production facility, in a location of both high wind availabil-
ity and high corn production.

Results and Discussion

To understand the range over which objective correlations
(namely, those between cost and carbon emissions) can vary
as the power cost and emissions factor parameters vary, it
is useful to first focus on the completely in-phase and anti-
phase instances described in the previous section. In both
instances, the objective reduction algorithm is performed to
generate objective correlation strengths and determine which
two objectives should be grouped together when reducing the
system from four to two objectives. The resulting objective
correlation graphs and community detection results in each
instance are depicted in Figure 2. It is apparent that, as ex-
pected, when power costs and emissions are in phase, the
two corresponding objectives have very strong correlation
extremely close to one, and as such, the algorithm groups
these two objectives together. Conversely, when power costs
and emissions factor are anti-phase, the correlation strength
becomes the weakest of all objective pairs at 0.74, indicating
the presence of strong tradeoffs when considering optimal
operation with respect to the two objectives. We further note
that physically, it makes a lot of sense that water usage and
electrolyzer safety are paired together in both cases, as both
objectives promote avoiding electrolyzer usage, either due to
startups being unsafe or its higher water usage than steam
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Figure 2: Objective correlation graph with color-coded ob-
jective groupings for in-phase (left) and anti-phase (right) in-
stances.

reforming. Somewhat surprisingly, the anti-phase instance
groups carbon emissions with water usage and electrolyzer
safety. This is likely because electrolysis is the most energy-
intensive process in the system, thus contributing strongly to
carbon emissions from grid-purchased power.

To make physical sense of the objective groupings, we
show the single objective optimal schedules in Figure 3.
Here, many of the trends intuited in the previous paragraph
are supported visually. In particular, we see near-perfect
agreement between the optimal operating schedules for op-
erating cost and carbon emissions when the two are in phase,
with most of the hydrogen and nitrogen production shifted to
the times of lower power cost and emissions factor, respec-
tively. Similarly, we see very good agreement between the
optimal operating schedules for water usage and electrolyzer
safety, with both producing as little hydrogen from electrol-
ysis as possible, making as little ammonia as possible, and
purchasing as much hydrogen from steam reforming as pos-
sible in order to produce ammonia at the minimum allowed
production rate. Finally, we note that the anti-phase emis-
sions optimal schedule looks the most different than all the
rest, as it tries to put the bulk of its production in the midday
hours when the grid’s emission factor is lower.

The two instances previously analyzed are illustrative but
extreme examples that demonstrate the two edge cases of
how carbon emissions and operating cost can give correlating
or competing solutions for optimal scheduling. Most realis-
tic cases will have correlation strengths that lie somewhere
in the middle of the two. In Table 1, we summarize the re-
sults of looking at five different 48 hour periods using real
historical power price and average grid emissions data from
CAISO. For each instance, the overlap factor (as defined in
the previous section), correlation strength between operation
cost and carbon emissions objectives, and determined objec-
tive grouping are reported. We note that in most cases, power
costs and average grid emissions tend to be closer to com-
pletely in-phase than not. This is likely a consequence of
using data from the California grid, where there is a large
proportion of solar generation and times of low prices tend
to correspond to times where solar generation is high, and
thus average grid emissions are also low. An exception to
this trend is during times of extremely high demand, such as
due to a heat wave, as seen in the September 1-2 instance.
Here, the overlap factor between cost and emissions is near



Figure 3: Optimal ammonia system production schedules
when optimizing (from top to bottom) operating cost, carbon
emissions (in-phase instance), carbon emissions (anti-phase
instance), water usage, and electrolyzer safety.

Table 1: Results of analyzing 5 instances of historical power
price and average grid emissions.

Dates OZH SA
ZH Obj. Grouping

Jan. 10-11 0.553 0.987 {Z,H},{Ψ,Ξ}
March 9-10 0.600 0.986 {Z,H},{Ψ,Ξ}
June 18-19 0.601 0.946 {Z,H},{Ψ,Ξ}
July 14-15 0.335 0.992 {Z,H,Ψ},{Ξ}
Sept. 1-2 0.007 0.832 {Z},{H,Ψ,Ξ}

zero, and the objective correlation strength is similarly low.
In this instance, despite high solar generation in the midday
lowering average grid emissions, power costs were still quite
high due to the extreme demand of power. Like in the anti-
phase instance tested earlier, the disconnect between times of
high power costs and high average emissions caused the al-
gorithm to group emissions with water usage and electrolyzer
safety instead of with cost. Interestingly, the July 14-15 in-
stance gave a unique objective grouping of operating cost,
emissions, and water usage. In this instance, we saw that all
objective correlation strengths were quite high (above 0.9),
indicating that although we asked the Leiden algorithm to
return two objective groups, we may have only needed one.
Overall, the results show that in general, the most informative
objective groupings that give maximum tradeoff information
can change in time in response to changes in problem param-
eters.

Conclusion

In this work, we demonstrated the variability of objective
correlation strength as dynamic parameters, namely time-
varying power cost and grid emissions factor profiles, var-
ied. Correlation results were shown to make practical sense,
with in-phase profiles leading to high correlation strength be-
tween operating cost and carbon emissions, and anti-phase
profiles leading to low correlation strength. Moreover, the
a priori objective reduction results aligned with the optimal
schedules found considering the different single objectives
of operating cost, carbon emissions, water usage, and elec-
trolyzer safety. In our future work, we will attempt to build
a high-throughput machine learning approach to build classi-
fier models that can predict when different objective group-
ings are more informative based on the optimization problem
parameters. We will also look to build a tool to identify a sin-
gle objective grouping that performs robustly well over the
full range of possible dynamic parameter values, such that
we do not need to worry about changing objective groupings
in time.
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